鸟巢钢结构工程介绍
- 格式:ppt
- 大小:118.99 MB
- 文档页数:16
国家体育场(鸟巢)钢结构安装工程焊接技术3篇国家体育场(鸟巢)钢结构安装工程焊接技术1国家体育场(鸟巢)钢结构安装工程焊接技术国家体育场(鸟巢)是北京市历史悠久、文化底蕴深厚的建筑之一。
作为2008年北京奥运会的主场馆,其耗资巨大,占地面积达21公顷,其中2/3为草坪,1/3为建筑面积。
该建筑采用了高强度的钢结构,为围护结构和支撑结构提供了坚实的支撑和保障。
本文将对国家体育场(鸟巢)钢结构安装工程的焊接技术进行详细介绍。
一、焊接技术选型焊接技术是国家体育场(鸟巢)钢结构安装的关键,主要分为手工焊接、电弧自动焊接和气焊等种类。
此次施工主要以自动焊接为主,手工焊接和气焊仅作为补充使用。
1.电弧自动焊接电弧自动焊技术是目前比较成熟的焊接技术之一,对于大型钢结构的焊接尤为适用。
这种焊接工艺其主要特点是效率高、速度快、工艺控制精度高,焊缝质量好等优点。
此次国家体育场(鸟巢)钢结构安装工程采用电弧自动焊接的主要原因是但是,在焊接过程中,要严格控制温度,防止焊接过程中发生钢材热变形,产生偏差,影响钢结构的稳定性。
2.气焊气焊是一种利用氧、乙炔、氯化钙和氢氧化钠等化学制剂对金属物质进行焊接的技术。
由于国家体育场(鸟巢)中吊屋面中还存在一些复杂的拱形结构,由于其特殊性,所需的钢材比较大,需经过多次裁剪、组装后才能完成拱形结构的焊接。
而气焊技术可以在这种特殊结构下再次运用。
它所需的设备简单,使用方便,工艺可控性高等优点,不仅提高了效率,而且确保了级别,保证了最终焊接质量。
二、焊接工程质量控制在钢结构焊接施工过程中,其焊接质量的稳定性是非常重要的。
为了确保国家体育场(鸟巢)钢结构安装工程焊接的质量,施工人员需对其施工提出详细的要求和标准。
1.焊接工艺的控制焊接前,应进行焊接试样,确保试样强度满足要求。
在焊接过程中,应严格控制焊接速度、温度以及强度等参数,并关注焊接过程中是否出现裂缝、气泡等不稳定因素,以确保焊接成品的稳定性。
钢结构之最——鸟巢
说到钢结构之最,非“鸟巢”莫属了。
“鸟巢”所代表的意义非凡,这座体育馆不仅让钢结构建筑开始进入人们的视野中,它还是世界跨度最大的单体钢结构工程,也由此拉开了钢结构在中国的序幕。
是中国带给世界的又一个奇迹。
这里给大家详细介绍一下这个钢结构之最。
国家体育场俗称“鸟巢”,位于北京奥林匹克公园南部,是北京2008年奥运会的主体育场。
这座建筑南北长333米,高69米,东西宽294米,结构的组件相互支撑,形成了网络状的构架,高低起伏变化的外观缓和了建筑的体量感,并赋予了戏剧性和具有震撼力的形体。
主体建筑呈空间马鞍椭圆形,是目前世界上跨度最大的单体钢结构工程。
“鸟巢”主体建筑呈空间马鞍椭圆形,是目前世界上跨度最大的单体钢结构工程。
2008年奥运会、残奥会期间,“鸟巢”承担开幕式、闭幕式、田径比赛等赛事活动,容纳观众10万人。
现已成为北京地标性的建筑。
鸟巢施工方案和技术路线1. 引言鸟巢是2008年北京奥运会主体育场,也是世界上最大的钢结构体育场之一。
其采用了独特的外观设计和创新的结构方案,成为奥运会的标志性建筑之一。
本文将介绍鸟巢的施工方案和技术路线,包括主要施工步骤、使用的材料和施工方法等。
2. 施工方案2.1 地基处理鸟巢的施工前需要进行地基处理,以确保建筑结构的稳定性和安全性。
地基处理包括土壤改良、沉降控制和地基加固等。
2.2 基础施工鸟巢的基础采用了钢筋混凝土桩基和地下连续墙结构。
基础施工包括桩基施工、地下连续墙的浇筑和钢筋混凝土基础板的安装等。
2.3 结构施工鸟巢的结构采用了复杂的钢结构系统,包括外部支撑结构和内部空间结构。
结构施工包括钢材加工、焊接和安装等。
2.4 外部支撑结构施工鸟巢的外部支撑结构采用了大跨度、大悬挑和大弯曲度的结构形式,需要精确的测量和施工工艺。
施工过程中需要使用大型起重设备和脚手架等。
2.5 内部空间结构施工鸟巢的内部空间结构包括观众席、走廊和天花板等,需要进行精确的结构装配和安装。
3. 技术路线3.1 BIM技术在鸟巢的施工过程中,采用了BIM(Building Information Modeling)技术。
BIM技术可以将建筑模型与施工进度和质量控制数据相结合,实现建筑施工的数字化管理和协调。
3.2 CAD技术鸟巢的钢结构部分采用了CAD(Computer-ded Design)技术进行设计和制造。
CAD技术可以实现结构的精确设计和制造,提高工程质量和施工效率。
3.3 预制施工技术鸟巢的部分结构采用了预制施工技术,即在工厂内制造构件,然后再进行现场组装。
预制施工可以提高施工效率和质量,并减少对现场的影响。
3.4 钢结构施工技术鸟巢的外部支撑结构采用了先进的钢结构施工技术。
该技术包括焊接、螺栓连接和起重等工艺,可以确保结构的安全和稳定。
4. 结论鸟巢是一座具有标志性意义的建筑,其施工方案和技术路线对于其他大型钢结构建筑的施工具有重要的参考价值。
标志性建筑“鸟巢”的基本介绍和基础类型“鸟巢”外形结构主要由巨大的门式钢架组成,共有24根桁架柱。
主体结构设计使用年限100年,耐火等级为一级,抗震设防烈度8度,地下工程防水等级1级。
工程主体建筑呈空间马鞍椭圆形,南北长333米、体的巨型空间马鞍形钢桁架编织式“鸟巢”结构,钢结构总用钢量为4.2万吨,混凝土看台分为上、中、下三层,看台混凝土结构为地下1层,地上7层的钢筋混凝土框架-剪力墙结构体系。
钢结构与混凝土看台上部完全脱开,互不相连,形式上呈相互围合,基础则坐在一个相连的基础底板上。
国家体育场屋顶钢结构上覆盖了双层膜结构,即固定于钢结构上弦之间的透明的上层ETFE膜和固定于钢结构下弦之下及内环侧壁的半透明的下层PTFE声学吊顶。
“鸟巢”所用钢材强度是普通钢的两倍,是由中国自主创新研发的特种钢材,集刚强、柔韧于一体,从而保证了“鸟巢”在承受最大460兆帕的外力后,依然可以恢复到原有形状,也就是说能抵抗唐山大地震那样的地震波。
托起“鸟巢”最关键的是“肩部”结构,这一部分所用的钢材——“Q460”钢板厚度达到了110毫米,具有良好的抗震性、抗低温性和可焊性等点。
为满足抗震要求,钢构件的节点部位还特别作了加厚处理,杆件的联结方式一律为焊接,以增加结构整体的刚度和强度。
“鸟巢”凌空的屋顶支撑它的是24根巨大钢柱脚。
为保证建造在8度抗震设防的高烈度地震区的“鸟巢”能站稳脚跟,科研设计人员克服“鸟巢”柱脚集合尺寸大且构造复杂、中国现行规范的计算假定与设计方法难以适用等情况,为这些钢柱脚增加了底座和铆钉,将柱脚牢牢铆在了混凝土中。
柱脚下的承台厚度高达400~600米,24根巨大钢柱分别与24个巨大的钢筋混凝土墩子牢固地连在一起共同擎起巨大的"精钞"。
国家主体育场“鸟巢”工程地基基础设计等级为甲级,基础设计等级为一级。
采用桩基础,桩筏基础、基础底板埋深3.0~10米左右,钻孔灌注桩总桩数约3000根。
完整版鸟巢结构介绍
鸟巢,位于北京奥林匹克公园中心区南部,是2008年北京奥运会的主体育场。
它的结构是钢结构,外形结构主要由巨大的门式钢架组成,共有24根桁架柱。
这些柱子共同支撑着一个网格状的构架,外观看上去就像树枝编织成的鸟巢。
鸟巢的内部结构包括混凝土框架和看台结构,两者通过锚固的方式连接在一起。
看台结构位于混凝土框架的上部,并被钢框架覆盖。
混凝土框架的形状和分布都与鸟巢的外部结构相对应。
在建筑顶部,鸟巢的顶面呈鞍形,长轴为332.3米,短轴为296.4米,最高点高度为68.5米,最低点高度为42.8米。
整个体育场结构的组件相互支撑,形成网格状的构架,外观看上去就像树枝编织成的鸟巢。
此外,灰色矿质般的钢网以透明的膜材料覆盖,高低起伏的波动的基座缓和了容器的体量,而且给了它戏剧化的弧形外观。
这种结构不仅展现了现代科技的卓越成就,也体现了人与自然和谐相处的理念。
总的来说,鸟巢以其独特的结构和精心的设计,成为了北京的地标性建筑之一,同时也成为了中国现代建筑的代表作之一。
前言北京"鸟巢"即国家体育场,是一个异性空间结构体系,外形非常复杂,但其也是由简单的基本结构单元-桁架组成的。
本文借用他人的论文,一起赏析这个经典的建筑结构。
1 概述“鸟巢”的主体钢结构由主结构与次结构两部分构成,主结构包括主桁架与桁架柱,次结构包括顶面次结构、立面次结构以及立面大楼梯。
其中位于屋顶的主桁架相互交叉,与顶面和立面的次结构共同编织,形成了“鸟巢”结构体系。
主场看台部分采用钢筋混凝土框架-剪力墙结构体系,与大跨度钢结构完全脱开。
“鸟巢”钢结构的几何构形非常复杂,建筑造型与结构体系高度一致。
屋顶和立面的几何曲面与各种构件布置是通过应用一些基于建筑造型的设计规则来确定的。
同时考虑建筑的使用功能、减小用钢量、降低钢结构加工制作难度等原因,对这些规则进行了适当调整。
上图是“鸟巢”巨大的钢节点安装过程照片在设计过程中应用CATIA 软件(飞机、轮船、汽车等的专业设计软件)确定“鸟巢”钢结构的几何形状与构件布置,这也是CATIA 软件在中国建筑工程中首次得到应用。
2 “鸟巢”钢结构的几何构型坐标原点位于体育场中心,首先在-9.0m 标高的平面上建立体育场屋盖立面的内表面在水平面的投影,其24 个等分点分别为24 根桁架柱内柱的位置,如图1。
内表面与外表面的构型方法见图2。
在标高60.0m 的参考点处,沿xz 平面放置半径为719.900m 的圆弧R1,沿yz 平面放置半径为882.706m的圆弧R2,将R2 以R1 为母线平行滑动,即可得到屋顶外表面的双曲面,如图3 所示。
将椭圆台与屋盖曲面相交,形成体育场屋盖立面的外表面轮廓线,如图4 所示。
屋盖内环开洞的轮廓由2 段椭圆弧与2 段圆弧构成,如图5 所示。
通过24 根内柱的形心做直线与屋盖内环相切,可以得到48 榀交叉布置主结构的平面定位轴线,如图6 所示。
通过24 根内柱的形心做直线与屋盖内环相切,可以得到48 榀交叉布置主结构的平面定位轴线,如图7,8 所示。
大跨度钢结构典型工程案例一、北京“鸟巢”(国家体育场)这鸟巢可真是个超酷的大跨度钢结构建筑。
你想啊,它的造型就像个巨大的鸟巢,那些错综复杂的钢结构杆件就像是编织鸟巢的树枝一样。
从远处看,那独特的外形就特别吸引人眼球。
它的大跨度结构可不是闹着玩的。
这么大的空间要能容纳那么多观众看比赛啥的。
在建造的时候,那些钢结构的搭建就像搭巨型积木一样,但难度可大多了。
每一根杆件的位置、角度都得精确无比,就好比要让一群调皮的小朋友乖乖站好队,而且不能有丝毫差错。
这个建筑可不仅仅是为了好看,还得能承受各种风雨、地震等自然灾害的考验呢。
二、广州国际会展中心。
这会展中心啊,也是大跨度钢结构的厉害角色。
它的大跨度就像是为了张开双臂欢迎来自世界各地的参展商和游客。
走进里面,那宽敞的空间就像一个超级大的广场,但是又有屋顶遮着,多亏了钢结构的大跨度,才能让这么大的空间没有一根大柱子在中间捣乱。
在建造的时候,就像是给一个超级巨人定制衣服,要把钢结构这个“衣服”做得恰到好处。
这个建筑对于广州的意义可大了,各种大型的展览、贸易活动都在这儿举行,就因为它有这么大的空间,全靠大跨度钢结构撑着呢。
三、埃菲尔铁塔(也算广义的大跨度钢结构啦)虽然埃菲尔铁塔不完全是传统意义上的大跨度建筑,但它的钢结构也非常值得一说。
这个铁塔就像一个钢铁巨人一样矗立在巴黎。
它刚建成的时候,很多人都觉得它奇奇怪怪的,但是现在它可是巴黎的标志性建筑。
它的钢结构就像一个精密的骨架一样,支撑着整个铁塔的重量。
从下往上看,那些钢铁结构一层一层的,像是给天空搭了一个通往云端的梯子。
这么高的铁塔,在一百多年前能建成,靠的就是当时先进的钢结构技术。
而且它能经受住这么多年的风吹雨打、日晒雨淋,可见钢结构的质量那是杠杠的。
四、悉尼歌剧院。
悉尼歌剧院那独特的白色“风帆”造型,可是闻名世界的。
这些像风帆一样的屋顶就是大跨度钢结构的杰作。
想象一下,要把这些巨大的“风帆”架起来,可不是简单的事儿。
国家体育场鸟巢工程钢结构支撑塔架设计国家体育场鸟巢工程是中国的一项标志性建筑项目,该项目位于北京市朝阳区奥林匹克公园内。
该建筑由水利工程联合设计集团和新加坡DP Architects联合设计,建设起于2003年,直至2008年奥运会期间供人们观看比赛使用。
鸟巢设计采用了传统而简约的中国造型,真正实现了体育场馆与自然环境和谐共生。
钢结构支撑塔架是鸟巢工程中非常重要的一部分,今天我们就来探讨一下它的设计。
一、鸟巢工程钢结构支撑塔架的基本情况钢结构支撑塔架是鸟巢工程的主要支架结构之一。
鸟巢总长度332.3米,宽度296.3米。
钢结构支撑塔架由超过1万吨的高强度钢材组成,总高度为69.2米,采用了航天科技使用的“双于”双层钢壳结构设计,内外各设有一个独立的钢结构体系。
塔架体系内部设置有观赛通道、电气线路、雨水设施等各种必要设施。
塔架和钢球采用符合环保要求的焊接工艺进行组装,在焊接质量上要求非常高,以确保结构的强度和稳定性。
二、鸟巢工程钢结构支撑塔架设计的原则和方法1、结构合理、稳定、刚性好在钢结构支撑塔架设计中,需要考虑到结构合理、稳定并且刚性好的原则,保证塔架系统整体性能优良。
钢结构支撑塔架同时受到地震荷载,风荷载和自重荷载的作用,因此需要运用各种先进的计算方法和技术手段对其进行分析和研究,包括有限元方法、模拟分析、计算机模拟和三维数学模型,以及基础设计等。
2、合适的技术方案在钢结构支撑塔架的设计时,还需要考虑到合适的技术方案。
在设计阶段,必须进行多方面的技术研究和试验,针对不同的道路、气候、地形和地质条件,选择最为适合的设计方案。
三维有限元分析技术能够对塔架的受力、变形等进行精确计算,以便为塔架的制造和施工提供指导。
3、利用钢结构的优势采用钢材结构,体现了钢结构的优势。
钢材具有质量轻、强、抗震的特点,而且经过不同的加工工艺可以制造出各种截面形态的材料,所以可以制造更为复杂的三维结构。
同时,钢材在制造上的耐腐蚀、耐候性等性能也非常注重,保证了建筑的寿命和稳定性。
国家体育场钢结构焊接
国家体育场,即鸟巢,是中国北京市奥运会的主体育场,也是一座有
着世界级影响力的建筑。
作为中国的标志性建筑之一,鸟巢的钢结构焊接
是该建筑中不可或缺的一部分。
下面将从鸟巢的设计背景、钢结构焊接的
需求和技术要求等方面进行阐述。
其次,钢结构焊接的需求。
鸟巢的钢结构具有很高的复杂性,不同部
分的焊接需要满足不同的技术要求。
例如,屋顶部分需要焊接精密的细节,以确保结构的稳定性和安全性。
建筑的外观也需要进行焊接,以保证整体
的美观性。
钢结构焊接技术要求的高,主要是出于对鸟巢结构的强度和稳定性的
要求。
焊接的质量直接关系到鸟巢的整体安全性,所以必须严格按照设计
要求和相关标准进行操作。
鸟巢的钢结构焊接需要使用高强度的焊材,并
进行相关的非破坏性检测来验证焊接质量。
在钢结构焊接过程中,还需要考虑到鸟巢的施工环境和时间安排。
为
了保证焊接的质量,必须在干燥、无风、无雨等适宜的施工环境下进行。
另外,由于鸟巢是一座大型建筑,施工时间也是非常紧张的,因此焊接作
业必须尽可能高效,以确保按计划完成。
总之,国家体育场(鸟巢)的钢结构焊接是一项高要求、高难度的工作。
它涉及到鸟巢整体的稳定性和安全性,对焊接工艺的要求非常高。
在焊接
过程中,需要严格按照设计要求和相关标准进行操作,并在适宜的环境下
进行。
这样才能保证鸟巢的整体质量和安全性。
北京城建精工钢结构工程有限公司提要:国家体育场钢结构安装工程,主桁架分项根据安装实际情况被分成空间立体桁架和平面桁架两种吊装单元。
空间立体桁架的多对口对接、平面桁架的翻身过程稳定性是该分项工程的重难点。
关键词:鸟巢钢结构、空间巨型桁架、龙门吊、三机抬吊、安装工艺一、工程简况国家体育场位于北京市城府路南侧,奥林匹克公园中心区内,是北京2008年奥运会的主体育场。
建筑顶面呈马鞍型,长轴为332.3m,短轴为297.3m,南北跨度结构相对标高为42.246m,东西跨度结构相对标高为69.900m,屋盖中间开洞长度为185.3m,宽度为127.5m。
主桁架围绕屋盖中间的开口放射形布置,与屋面及立面的次结构一起形成了"鸟巢"的特殊建筑造型。
大跨度屋盖支撑在周边的24根桁架柱之上。
主桁架尽可能直通或接近直通,并在中部形成由分段直线构成的内环。
钢结构总量约4.6万吨,构件截面均为箱形截面,其空间位置复杂多边,形体宏大、美观。
国家体育场主桁架共有48榀,分别由外围24榀桁架柱开始向中间延伸,在中间形成椭圆形的环。
主桁架总用钢量约14000吨,桁架柱约17020吨,主桁架与桁架柱一起共同形成如图1.2所示的主要承力体系。
主桁架的轴线高度为12m,上下弦及腹杆均为箱形截面构件。
目前工程主结构构件加工制作、拼装已经完成,现场主结构安装接近尾声,钢结构安装重量已经超过四分之三,其中桁架柱已安装完成,鸟巢形体初现端倪。
二、主桁架分段及设备选择打垮度空间巨型桁架的吊装分段很重要,不仅要考虑各分段重量、安装作业半径和国内、现有吊机资源的匹配,同时各分段在支撑塔架上的临时固定及相互搭接各分段间吊装顺序的确定同样是施工的关键。
根据支撑塔架的设置及主桁架的空间交叉情况,将屋盖主桁架共分成182吊。
其中,内环吊装单元共96吊,空间桁架16吊,平面桁架80吊;外环吊装单元共86吊,均为平面桁架。
综合考虑体育场主桁架大型构件的吊装,主桁架最终选用一台CC4800型800T履带吊和CC2800型600T履带吊吊装。
鸟巢研究报告鸟巢结构形式:“鸟巢”外形结构主要由巨大的门式钢架组成,共有24根桁架柱,现已完成20根桁架柱整柱及2根下柱吊装。
国家体育场建筑顶面呈鞍形,长轴为332.3米,短轴为296.4米,最高点高度为68.5米,最低点高度为42.8米。
传力途径:在保持“鸟巢”建筑风格不变的前提下,新设计方案对结构布局、构建截面形式、材料利用率等问题进行了较大幅度的调整与优化。
原设计方案中的可开启屋顶被取消,屋顶开口扩大,并通过钢结构的优化大大减少了用钢量。
大跨度屋盖支撑在24根桁架柱之上,柱距为37.96米。
主桁架围绕屋盖中间的开口放射形布置,有22榀主桁架直通或接近直通。
为了避免出现过于复杂的节点,少量主桁架在内环附近截断。
钢结构大量采用由钢板焊接而成的箱形构件,交叉布置的主桁架与屋面及立面的次结构一起形成了“鸟巢”的特殊建筑造型。
主看台部分采用钢筋混凝土框架一剪力墙结构体系,与大跨度钢结构完全脱开。
关键构造:鸟巢是一个大跨度的曲线结构,有大量的曲线箱形结构,设计和安装均有很大挑战性,在施工过程中处处离不开科技支持。
“鸟巢”采用了当今先进的建筑科技,全部工程共有二三十项技术难题,其中,钢结构是世界上独一无二的。
“鸟巢”钢结构总重4.2万吨,最大跨度343米,而且结构相当复杂,其三维扭曲像麻花一样的加工,在建造后的沉降、变形、吊装等问题正在逐步解决,相关施工技术难题还被列为科技部重点攻关项目。
“鸟巢”外形结构主要由巨大的门式钢架组成,共有24根桁架柱。
国家体育场建筑顶面呈鞍形,长轴为332.3米,短轴为296.4米,最高点高度为68.5米,最低点高度为42.8米。
为了有效控制构件的最大壁厚,减小焊接工作量,使连接构造比较合理,在设计中采用了高强度的Q460钢材。
Q460钢材,大多数人可能都不了解。
“鸟巢”结构设计奇特新颖,而这次搭建它的钢结构的Q460也有很多独到之处:Q460是一种低合金高强度钢,它在受力强度达到460兆帕时才会发生塑性变形,这个强度要比一般钢材大,因此生产难度很大。