梁的剪力方程和弯矩方程常用弯矩图
- 格式:docx
- 大小:368.69 KB
- 文档页数:18
4-2 试写出下列各梁的剪力方程和弯矩方程,并作剪力图和弯矩图。
4-3 试利用载荷集度、剪力和弯矩间的微分关系作下列各梁的剪力图和弯矩图。
4-4 试作下列具有中间铰的剪力图和弯矩图。
4-14 一根搁在地基上的梁承受载荷如图所示。
假设地基的反力按直线规律
连续变化。
试求反力在两端A点和B点处的集度q A和q B,并作梁的剪力图和弯矩图。
4-15 试作图示刚架的剪力图、弯矩图和轴力图。
4-22 厚度为h=1.5mm的钢带,卷成直径为D=3m的圆环,试求钢带横截面上的最大正应力。
已知钢的弹性模量E=210GPa。
4-25 矩形截面的悬臂梁受集中力和集中力力偶作用,如图所示。
试求截面m-m和固定端截面n-n上A、B、C、D四点处的正应力。
4-32 简支梁的荷载情况及尺寸如图所示,试求梁的下边缘的总伸长。
4-39 一矩形截面简支梁由圆柱形木料锯成。
已知F =5kN ,a =1.5m ,[σ]=10MPa 。
试确定弯曲截面系数为最大时矩形截面的高宽比h /b ,以及梁所需木料的最小直径d 。
4-48 一矩形截面木梁,其截面尺寸及载荷如图,q =1.3kN/m 。
已知[σ]=10MPa ,[τ]=2MPa 。
试校核梁的正应力和切应力强度。
4-52 图示木梁受一可移动的载荷F =40kN 作用。
已知[σ]=10MPa ,[τ]=
3MPa 。
木梁的横截面为矩形,其高宽比23=b h 。
试选择梁的截面尺寸。
梁的剪力方程和弯矩方程常用弯矩图Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】5-7.试列出下列梁的剪力方程和弯矩方程,并画出剪力图和弯矩图。
解:首先求出支座反力。
考虑梁的整体平衡 由 0,0=+⋅=∑e RA B M l F M 得lM F eRA -= 由 0,0=-⋅=∑e RB A M l F M 得 lM F eRB= 则距左端为x 的任一横截面上的剪力和剪力图 弯矩表达式为:()l M F x F eRA S -== ()x lM x F x M eRA ⋅-=⋅= 剪力方程为常数,表明剪图应是一条平行梁轴线的直线;弯矩方程是x 的一次函数,表明弯矩图是一条斜直线。
(如图) 解:首先求出支座反力。
考虑梁的平衡由 0452,0=⋅⋅-⋅=∑l l q l F M RB c得 ql F RB 85=由 021,02=+⋅=∑ql l F M RC B得 ql F RC 21-=则相应的剪力方程和弯矩方程为:AB 段:(201l x ≤≤) 剪力BC段:(2322lxl≤≤)AB段剪力方程为x1的一次函数,弯矩方程为x1的二次函数,因此AB段的剪力图为斜直线,弯矩图为二次抛物线;BC段剪力方程为常数,弯矩方程为x2的一次函数,所以BC 段剪力图为平行梁轴线的水平线段,弯矩图为斜直线。
(如图)5-9 用简便方法画下列各梁的剪力图和弯矩图。
解:由梁的平衡求出支座反力:AB段作用有均布荷载,所以AB段的剪力图为下倾直线,弯矩图为下凹二次抛物线;BC段没有荷载作用,所以BC段的剪力图为平行梁轴线的水平线段,弯矩图为直线。
在B支座处,剪力图有突变,突变值大小等于集中力(支座反力F RB)的大小;弯矩图有转折,转折方向与集中力方向一致。
(如图)(5)解:由梁的平衡求出支座反力:KNFKNFRBRA5.6,5.3==AB 与BC 段没有外载作用,所以AB 、BC 段的剪力图为平行梁轴线的水平线段,弯矩图为直线;CD 段作用均布荷载,所以CD 段的剪力图为下倾直线,弯矩图为下凹二次抛物线。
5-7.试列出下列梁的画力方程和弯拒方程,并ntuw 力图和弯拒图。
解:首先求出支座反力。
考虑梁的整休平何由 £M fi =0, Fg/ + M<,=o由工M 「0, F 加/-M 严0则距左端为X 的任一横截面上的剪力和 弯葩表达式为:两力方程为常数,表明囲图应是一条平行梁轴线的直线;弯矩方程是X 的一次函 数,表明弯矩图是一条斜直线。
(如图)解:首先求岀支座反力。
考虑梁的平衡由工瓯=0,你小-“£心0 得F RB =討由》%=0,甩./ + *厂=0 得 F RC = - * qi则相应的画力方程和弯犯方程为:©M./1兀⑴=F RA = --—•X剪力图0」25g/8KN.M6.4KN.M弯矩图解:由梁的平求出支座反力:梯=8KN, F42KNAB段作用有均布荷裁,所以AB I?的剪力图为下颐直线,弯矩图为下凹二次I!物线;BC段没有荷教作用,所以BCI3的卿力图为平行梁轴线的水平线段,弯矩图为直线。
在B支座处,卿力图有突变,AB段:心是)心(“)=一处BC段:(*弓)集(小¥-如qiTAB段剪力方程为冷的一次函数,弯矩方程为冷的二次函数,因lit ABH的卿力图为斜直线,弯矩图为二次枢物线;BC段卿力方程为常数,弯拒方程为X2的一次函数,所以BC段勢力图为平行梁轴线的水平线fL弯葩图为斜直线。
(如图)5-9用简便方法画下列各梁的卿力图和弯葩图。
A/ (x2) = -q ・—・ x2(2 ) g=5KN/m Mr =8KN.mF RA4m F RB 2m解:由梁的平求岀支座反力:匚=3.5KN, F KB = 6.5KNAB 与BC 段没有外载作用,所 以AB 、BCB 的勇力图为平行 梁轴线的水平线段,弯矩图为 直线;CD 段作用均布荷载, 所以CD 段的卿力图为下颐直 线,弯拒图为下凹二次拋物 线。
在B 处,剪力图有突变,突变5)反力F RB )的大小;弯矩图有 转折,转折方向习集中力方向 一致。
5.4.1 梁的剪力、弯矩方程和剪力、弯矩图梁在外力作用下,各个截面上的剪力和弯矩一般是不相等的。
若以横坐标表示横截面沿梁轴线的位置,则剪力Q 和弯矩M 可以表示为坐标的函数,即它们分别称为梁的剪力方程和弯矩方程。
与绘制轴力图或扭矩图一样,可用图线表明梁的各截面上剪力和弯矩沿梁轴线的变化情况。
作图时,取平行于梁轴线的直线为横坐标轴,值表示各截面的位置;以纵坐标表示相应截面上的剪力、弯矩的大小及其正负,这种表示梁在各截面上剪力和弯矩的图形,称为剪力图和弯矩图。
例5-1 简支梁AB 承受承受均布荷载作用,如图 5 - 10a 所示。
试列出剪力方程和弯矩方程,并绘制剪力图和弯矩图。
图5-10解:(1) 计算支反力以整梁为研究对象,利用平衡条件计算支反力。
由于简支梁上的载荷对于跨度中央截面是对称的,所以 A 、 B 两端的支反力应相等,即(1)方向如图。
(2) 建立剪力、弯矩方程以梁左端A 为的坐标原点,取坐标为的任意横截面的左侧梁段为研究对象。
设截面上的剪力Q () 、弯矩M () 皆为正,如图5-10b 所示。
由平衡方程将(1) 式代入上面两式,解得( 2 )( 3 )(2) 、(3) 两式分别为剪力方程和弯矩方程。
(3) 绘制剪力图、弯矩图由式(2) 可知,剪力图为一直线。
只需算出任意两个截面的剪力值,如A 、B 两截面的剪力,即可作出剪力图,如图5 - 10c 所示。
由式(3) 可知,弯矩图为一抛物线,需要算出多个截面的弯矩值,才能作出曲线。
例如计算下列五个截面的弯矩值:当时, M =0 ;当时,;当时,。
由此作出的弯矩图,如图5-10d 所示。
由剪力图和弯矩图可知,在靠近A 、B 支座的横截面上剪力的绝对值最大,其值为在梁的中央截面上,剪力Q =0 ,弯矩为最大,其值为例5-2 简支梁AB 承受集中力偶M0作用,如图 5 - 11a 所示。
试作梁的剪力图、弯矩图。
图5-11解:(1) 计算支反力由平衡方程分别算得支反力为反力R A的方向如图,R B为负值,表示其方向与图 5 - 11a 中假设的方向相反。
梁的剪力方程和弯矩方程常用弯矩图公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]5-7.试列出下列梁的剪力方程和弯矩方程,并画出剪力图和弯矩图。
解:首先求出支座反力。
考虑梁的整体平衡 由 0,0=+⋅=∑e RA B M l F M得 lM F eRA -= 由 0,0=-⋅=∑e RB A M lF M得 lM F e RB= 则距左端为x 的任一横截面上的剪力和剪力图 弯矩表达式为:()lM F x F eRA S -== 弯矩图 ()x lM x F x M eRA ⋅-=⋅= 剪力方程为常数,表明剪图应是一条平行梁轴线的直线;弯矩方程是x 的一次函数,表明弯矩图是一条斜直线。
(如图)解:首先求出支座反力。
考虑梁的平衡由0452,0=⋅⋅-⋅=∑llqlFMRBc得qlFRB85=由021,02=+⋅=∑qllFMRCB得qlFRC21-=则相应的剪力方程和弯矩方程为:AB段:(21lx≤≤)()()2111121qxxMqxxFS-=-=BC段:(2322lxl≤≤)()()⎪⎭⎫⎝⎛-⋅+⎪⎭⎫⎝⎛-⋅⋅-==-=28542821852222lxqllxlqxMqlqlqlxFSAB段剪力方程为x1的一次函数,弯矩方程为x1的二次函数,因此AB段的剪力图为斜直线,弯矩图为二次抛物线;BC段剪力方程为常数,弯矩方程为x2的一次函数,所以BC段剪力图为平行梁轴线的水平线段,弯矩图为斜直线。
(如图)5-9 用简便方法画下列各梁的剪力图和弯矩图。
解:由梁的平衡求出支座反力:KN F KN F RB RA 12,8==AB 段作用有均布荷载,所以AB 段的剪力图为下倾直线,弯矩图为下凹二次抛物线;BC 段没有荷载作用,所以BC 段的剪力图为平行梁轴线的水平线段,弯矩图为直线。
在B 支座处,剪力图有突变,突变值大小等于集中力(支座反力F RB )的大小;弯矩图有转折,转折方向与集中力方向一致。
(如图)(5)解:由梁的平衡求出支座反力:KN F KN F RB RA 5.6,5.3==AB与BC段没有外载作用,所以AB、BC段的剪力图为平行梁轴线的水平线段,弯矩图为直线;CD段作用均布荷载,所以CD段的剪力图为下倾直线,弯矩图为下凹二次抛物线。
在B处,剪力图有突变,突变值大小等于集中力F的大小;弯矩图有转折,转折方向与集中力方向一致。
(如图)(7)解:AB段作用有均布荷载(方向向下),所以AB段的剪力图为下倾直线,弯矩图为下凹二次抛物线;BC段作用有均布荷载(方向向上),所以BC 段的剪力图为上倾直线,弯矩图为上凸直线。
(如图)试用叠加法画下列各梁的弯矩图。
(1)=(4)题型:计算题题目:试作图所示悬臂梁A B的剪力图和弯矩图。
+【解】1、列剪力方程和弯矩方程取坐标原点与梁左端点A对应。
选取距梁左端点A为x的任一截面,如图(a)所示,以该截面左侧梁段上的外力,写该截面上的剪力和弯矩表达式,即可得到梁A B的剪力方程和弯矩方程为用,则其剪力为不定值,第一式的适用范围为。
由于截面B有集中力偶作用,则其弯矩也为不定值,第二式的适用范围为关于这个问题,待后面作进一步说明。
2、作剪力图和弯矩图剪力方程表明,梁各截面上的剪力都相等,因此剪力图应是一条平行于横轴的直线。
取直角坐标系x—,画出梁的剪力图为一水平直线。
因各横截面的剪力为负值,故画在横轴下面,如图(b)所示。
弯矩方程表明,弯矩M是x的一次函数,因此弯矩图应是一条倾斜直线。
可以确定其上两点,在x=0处,M=0;在x=L处(应理解为x略小于L处),M=P L。
取直角坐标系O x M,表示弯矩的纵坐标以向下为正,画出梁的弯矩图,如图(c)所示。
由图可见,最大弯矩发生在固定端B稍偏左的横截面上,其值为常见问题题2题型:计算题题目:试作图(a)所示简支梁A B的剪力图和弯矩图。
【解】1、求支座反力由梁的平衡方程,可求得支座A,B两处的反力为2、列剪力方程和弯矩方程取坐标原点与梁左端点A对应。
列出梁A B的剪力方程和弯矩方程为3、作剪力图和弯矩图剪力方程表明,剪力是x的一次函数,剪力图应是一条倾斜直线。
因此,只要确定其上两点,即可绘出该梁的剪力图。
在处(应理解为x略大于0),;处(应理解为x略小于),。
画出梁的剪力图,如图(b)所示。
由剪力图可见,,该梁最大剪力发生在支座内侧的横截面上,其值为弯矩方程表明,弯矩M是x的二次函数,弯矩图应是一条抛物线。
因此,只要确定其上三个点,即可绘出该梁的弯矩图。
在处,M=0;在处,M=0;在处,。
画出弯矩图,如图6-12(c)所示。
由弯矩图可见,该梁最大弯矩发生在梁的跨中截面处,其值为在此截面上剪力为零。
常见问题题3题型:计算题题目:试作图(a)所示简支梁A B的剪力图和弯矩图。
【解】1、求支座反力由梁的静力平衡方程,可求得支座A,B两处的反力为2、列剪力方程和弯矩方程当作用在梁上的外力不连续时,通常不能角一个方程描述全梁的剪力或弯矩,必须分段研究。
在该例题中,集中力P把梁分成A C和C B两段,这两段梁的剪力方程和弯矩方程分别为A C段:C B段:3、作剪力图和弯矩图两段梁的剪力方程表明,两段梁的剪力图均为水平直线。
画出梁的剪力图,如图(b)所示。
由剪力图可见,在集中力P作用的C处,其左右两侧横截面上剪力的数值分别为和,剪力图发生突变,其突变值等于集中力P的大小。
由此可得,在集中力作用处剪力图发生突变,其突变值等于该集中力的大小。
如果b>a,则最大剪力发生在A C段梁的任一截面上,其值为两段梁的弯矩方程表明,两段梁的弯矩图均为倾斜直线。
画出梁的弯矩图,如图(c)所示。
由弯矩图可见,A C和C B两段梁的弯攀图两直线斜率不同,在C处形成向下凸的“尖角”,而剪力图在此处改变了正、负号。
最大弯矩发生在集中力P作用的截面上,其值为如果a=b,则最大弯矩的值为常见问题题4题型:计算题题目:试作图(a)所示简支梁A B的剪力图和弯矩图。
【解】1、求支座反力由梁的静力平衡方程,可求得支座A,B两处的反力为2、列剪力方程和弯矩方程集中力偶M e把梁分成A C和C B两段,这两段梁的剪力方程和弯矩方程分别为A C段:C B段:3、作剪力图和弯矩图在集中力偶作用处的左、右梁段上,剪力方程相同,全梁剪力图为一水平直线。
画出梁的剪力图,如图(b)所示示。
由剪力图可见,在集中力偶作用处,剪力图并不发生突变,即集中力偶不影响剪力图。
两段梁的弯矩方程表明,两段梁的弯矩图均为倾斜直线。
画出梁的弯矩图,如图(c)所示。
由弯矩图可见,在集中力偶从作用的C处,其左右两侧横截面上弯矩的数值分别为和,弯矩图发生突变,其突变值等于集中力偶M e的大小。
由此可得,在集中力偶作用处弯矩图发生突变,其突变值等于该集中力偶的大小。
如果b>a,则最大弯矩发生在集中力偶从作用处右侧横截面上,其值为常见问题题5题型:计算题题目:试作图示简支梁的剪力图和弯矩图。
【解】1、求支座反力由梁的静力平衡方程可知,支座A,B的反力为2、列剪力方程和弯矩方程当梁上荷载不连续,剪力或弯矩不能用一个统一的函数式表达时,必须分段列出剪力方程和弯矩方程。
通常分段是以集中力、集中力偶和分布荷载的起点与终点分界。
因此,该简支梁应分为A C,C D和D B三段,分别列出剪力方程和弯矩方程。
A C段:C D段:D B段:3、作剪力图和弯矩图按上述剪力方程和弯矩方程,画出剪力图和弯矩图,如图(b)、(c)所示。
在画A C段弯矩图时,由于弯矩方程是二次函数,弯矩图应是一条抛物线,至少需要确定其上三个点,才可绘出该梁的弯矩图。
在处,M=0;在x=3m处,M=33k N.m。
在剪力为零处x=2.4m,该点处弯矩。
用光滑曲线连接这三个点即可得A C段的弯矩M图。
如图(c)所示。