(优选)结构化学分子的对称性
- 格式:ppt
- 大小:3.31 MB
- 文档页数:56
北师大结构化学第4章分子对称性和群论第4章分子对称性和群论是北师大结构化学课程的重要内容。
本章主要介绍了分子对称性和群论的基本概念,分子对称元素的分类,分子对称性的测定方法,以及如何利用群论分析分子的物理性质等内容。
首先,我们来介绍一下分子对称性的概念。
分子对称性是指分子在空间中具有对称性的特征。
对称性可以分为轴对称性和面对称性两种。
轴对称性是指分子围绕一个轴线旋转180°后能够重合,而面对称性是指分子能够分成两部分,在一个平面上旋转180°后能够重合。
根据分子对称元素的类型,分子可以分为三类:单反射面分子,具有一个反射面;多反射面分子,具有两个或更多的反射面;旋转反射面分子,具有一个旋转反射面。
这些分子对称元素的存在与否决定了分子的对称性。
测定分子对称性的方法有很多种,其中比较常用的是Infrared (IR)光谱法和微波光谱法。
IR光谱法是利用分子中特定的振动频率和对称性之间的关系来判断分子的对称性;微波光谱法则是利用分子的自由度和对称性之间的关系来判断分子的对称性。
利用群论分析分子的物理性质是分子对称性研究的一个重要方面。
群论是数学的一个分支,用来研究对称性和变换的关系。
在化学领域,群论应用广泛,可以用来描述分子中原子的位置和分子的振动等性质。
通过分子的对称群分析,可以确定分子的光谱活性、电子转移、化学反应的速率等一系列物理性质。
在分子对称性和群论的学习中,还需要了解一些基本的概念,如对称操作、置换、等价、置换群、分类、标识号等。
这些概念在群论分析中起到了重要的作用,可以帮助我们理解分子的对称性和群论的原理。
总的来说,第4章分子对称性和群论是北师大结构化学课程中的一章重要内容。
通过学习这一章,我们可以了解到分子对称性的基本概念和分类,以及如何利用群论分析分子的物理性质。
这对我们理解分子结构和性质,以及在化学研究中的应用具有重要意义。
一、填空题
1.群的表示可分为可约表示和不可约表示。
2.判断分子有无旋光性的标准是是否具有反轴。
3. 分子有无偶极矩与分子对称性有密切关系,只有属于C n和C nv这两类点群的分子才具有偶极矩,而其它点群的分子偶极矩为0。
二、选择题
1. CO2分子没有偶极矩,表明该分子是【D 】
A. 以共价键结合的
B. 以离子键结合的
C. V形的
D. 线形的,并且有对称中心
2. 根据分子的对称性,可知CCl4分子的偶极矩等于【A 】
A. 0
B.
C.
D.
3. 组成点群的群元素是什么【A 】
A. 对称操作
B. 对称元素
C. 对称中心
D. 对称面
4. CH4属于下列哪类分子点群【A 】
A. T d
B. D h
C. C3v
D. C s
5. H2O属于下列哪类分子点群【 A 】
A. C2v
B. C3v
C. C2h
D. O h
三、回答问题
1. 找出H2O分子和NH3分子的对称元素和对称操作及其所属点群,并建立其对称操作的乘积表。
课本第125页:表和表课本第142页:表。
第三章分子的对称性3.1 对称操作与对称元素3.2分子点群3.3 分子的对称性和分子的物理性质对称在自然界中普遍存在。
北京天坛北京地坛在化学中,我们研究的分子、晶体等也有各种对称性。
有时会感觉这个分子对称性比那个分子高(如HF、H2O、NH3、CH4 、PF5 、SF6)。
如何表达、衡量各种对称?数学中定义了对称元素来描述这些对称。
3.1 对称操作与对称元素•对称操作:是指不改变物体内部任何两点间的距离而使物体复原或与原分子等价的操作。
•对称元素:对称操作所依据的几何元素。
•对称元素与对称操作紧密联系又有区别。
•点操作:对于分子等有限物体,在进行操作时,物体中至少有一点是不动的,这种对称操作叫点操作。
点对称操作和相应的点对称元素旋转反映操作旋映轴S n反演操作对称中心I 反映操作对称面σ旋转操作对称轴(真轴)C n 恒等操作恒等元素E对称操作对称元素符号分子中若存在一条轴线,绕此轴旋转一定角度能使分子复原或与原分子等价,就称此轴为旋转轴,符号为C n 。
1. 对称轴C n和旋转操作旋转轴的性质C n 旋转轴能生成n 个旋转操作,记为:EC C C C C C n n n n n n n n ˆˆ,ˆ,,ˆ,ˆ,ˆˆ1321=⋅⋅⋅=−m n m n b a nb n a n C C C C C ˆˆˆˆˆ22==⋅+•基转角:和C n 轴相应的基本旋转操作为Ĉn 1,它为绕轴转360˚/n 的操作,该旋转角度为基转角。
旋转角度按逆时针方向计算。
C n 旋转轴有如下性质:分子中若有多个旋转轴,轴次最高的轴一般叫主轴,其它的叫副轴。
通常将主轴取笛卡尔坐标的z轴。
旋转可以实际进行,旋转轴称为真轴。
分子中若存在一个平面,将分子两半部分互相反映而能使分子与原分子等价,则该平面就是对称面σ(镜面),这种操作就是反映。
=为奇数)(为偶数)n n E nσσˆ(ˆˆ2.对称面σ和反映操作和主轴垂直的镜面以σh 表示;通过主轴的镜面以σv 表示;通过主轴,平分副轴夹角的镜面以σd 表示。