七年级数学上册 .5有理数的乘除法同步练习 新人教版
- 格式:doc
- 大小:42.50 KB
- 文档页数:3
有理数的乘除法 同步测试卷一.选择题(本大题共8小题,共24分。
在每小题列出的选项中,选出符合题目的一项) 1. 计算1×23×(−32)的结果是( ) A. −1B. 1C. −94D. −492. 计算(−25)÷53的结果是( ) A. −15B. −5C. −53D. −153. 下列各式计算结果为负数的是( ) A. (−2)+(−3)B. (−2)−(−3)C. (−2)×(−3)D. (−2)÷(−3)4. 2023的倒数是( ) A. 2023B. −2023C. 12023D. −120235. −|−12|的倒数的相反数是( ) A. 12B. 2C. −2D. −126. −12023的倒数是( ) A. 12023B. −2023C. 2023D. −17. 从−4,−3,0,2,5这5个数中任取两个数相乘,所得的乘积中最大数与最小数的差为( ) A. 34B. 32C. 30D. 288. 下列各式的计算结果是负数的是( ) A. −2×3÷(−5) B. 3÷|−3|×2C. (−3)÷12×0D. (−2+5)×(−3)÷|−10|二.填空题(本大题共8小题,共24分) 9. −3的倒数是_______. 10. −313的倒数是 . 11. 计算(−1)÷6×(−16)= .12. 若|x|=4,y =12,且xy <0,则xy = .13. 已知两数相除所得的商是−1,那么这两个数的和是 . 14. 从数−6,1,−3,5,−2中任取二个数相乘,其积最小的是____. 15. (1)绝对值不大于π的所有整数的积等于 ,和等于 .(2)绝对值不大于3的所有负整数的积是 .16. 设有理数a ,b ,c 满足a +b +c =0,abc >0,则a ,b ,c 中正数的个数为 . 三.计算题(本大题共1小题,共8分) 17. 计算:(1) 2.5×0×(−300) (2)(−3)×313(3) 2×(−5) (4) (−825)×1.25(5)(−34)×(−43) (6) (+125)×(−10)×(−1)四.解答题(本大题共8小题,共64分。
有理数的乘除法练习题课堂学习检测一、选择题1.下列计算正确的是( ).(A)911)311()311(=-⨯-(B)1172)218(=⨯- (C)766)71()7(-=+⨯-(D)1)31(3-=-⨯2.两个有理数之积是0,那么这两个有理数( ).(A)至少有一个是0 (B)都是0(C)互为倒数 (D)互为相反数3.,04.018)05.041110(54-+-=+-⨯-这个运算应用了( ).(A)加法结合律(B)乘法结合律 (C)乘法交换律 (D)分配律4.比较a 与3a 的大小,正确的是( ).(A)3a >a (B)3a =a(C)3a <a(D)上述情况都可能二、填空题5.式子)66()981()8.3(5.7)6(31-⨯-⨯+⨯⨯-⨯的符号为______.6.若a =4,b =0,c =-3,d =-5,则c -ad =______,(a -b )(c -d )=______. 三、计算题7.直接将答案写在横线上:(1)=-⨯)54(43______;(2)=-⨯-)4()85(______;(3)=⨯-38)1923(______; (4)=+⨯+)2.1()411(______.8.)720()103()32(-⨯-⨯- 9.)2.0()732()312(-⨯+⨯-10.)721()1179154238312(-⨯+- 11.)194(6)194(13)194(7-⨯--⨯+-⨯-综合、运用、诊断一、填空题12.若a <0,b <0,c >0,则(-a )·b ·(-c )______0. 13.若a +b <0,且ab >0,则a______0,b______0. 二、选择题14.已知(-ab )·(-ab )·(-ab )>0,则( ).(A)ab <0(B)ab >0(C)a >0,b <0 (D)a <0,b <015.|x -1|+|y +2|+|z -3|=0,则(x -1)(y -2)(z +3)的值为( ).(A)48 (B)-48 (C)0 (D)xyz三、计算题 16.)36()12765321(-⨯-+-17.)95.1(9)772.3()9(228.3⨯--⨯-+-⨯18.)83()154()52()433()322()211(-⨯-⨯+⨯+⨯-⨯-四、解答题 19.巧算下列各题:(1))200411)(120031()151)(411)(131)(211(--⋯----(2)666663333222299999⨯-⨯拓展、探宄、思考20.先观察下图,再解答下题:小李在街上碰到为救助失学儿童募捐的学生,于是将身上一半的钱捐了出来;接着他又碰到第二个募捐的学生,便又捐出了剩下钱的一半;跟着第三个,第四个,他每次都捐出了剩下钱的一半,身上还剩下一元.请你算一算,最初小李身上有多少元钱?21.用计算器计算下列各式,将结果写在横线上:999×21=______; 999×22=______; 999×23=______; 999×24=______. (1)你发现了什么规律?(2)不用计算器,你能直接写出999×29的结果吗?有理数的除法练习题学习要求理解除法与乘法的逆运算关系,会进行有理数除法运算;巩固倒数的概念,能进行简单有理数的加、减、乘、除混合运算.课堂学习检测一、填空题1.若两数之积为1,则这两数互为________;若两数之商为1,则这两数________;若两数之积为-1,则这两数互为________;若两数之商为-1,则这两数互为________. 2.零乘以________都得零,零除以________都得零.3.若ab >0,b <0,则a ________0,且ab________0;若ab <0,a >0,则b ________0,且a b ________0由此可知,ab 与ab的符号________. 一、选择题4.下列计算正确的是( ).(A)20)151(5-=-÷- (B)2)81()8(2-=-⨯-÷-(C)40)152()2(38-=-÷-⨯- (D)25)8()116387(-=-÷++-5.已知a 的倒数是它本身,则a 一定是( ).(A)0(B)1(C)-1(D)±16.一个数与-4的乘积等于531,这个数是( ).(A)52(B)52-(C)25 (D)25-7.填空:(1))21()12(-÷-=_______;(2))2533(2.5-÷=_______; (3)()=-÷⨯-÷-551)51(5 _______;(4))45(545445-⨯÷⨯-=_______;三、计算题 8.)3231(32⨯-÷ 9.)2131(15--÷-10.)434()322(+-÷--综合、运用、诊断一、选择题11.若xy >0,则(x +y )xy 一定( ).(A)小于0(B)等于0(C)大于0(D)不等于012.如果x <y <0,则化简xyxy x x ||||+的结果为( ). (A)0 (B)-2 (C)2 (D)3二、计算题13.)511()73(25.0--⨯-÷-14.)241()245836121(-÷+-+-15.)911(98999-÷16.)]53()32(1[)]53(32[-⨯-+÷-+-三、解答题17.当a =-2,b =0,c =-5时,求下列式子的值:(1)a +bc ;(2)(a -b )(a +c ).18.在10.5与它的倒数之间有a 个整数,在10.5与它的相反数之间有b 个整数,求(a +b )÷(a -b )+2的值.拓展、探究、思考19.式子||||||ab abb b a a ++的所有可能的值有( ). (A)2个 (B)3个 (C)4个 (D)无数个20.如果有理数a ,b ,c ,d 都不为0,且它们的积的绝对值等于它们积的相反数,你能确定a ,b ,c ,d 中最少有几个是负数,最多有几个是负数吗?21.一口枯井深64米,井底之蛙想从井底爬上来.第一天白天,它往上爬到井深一半,晚上又滑落了白天所爬路程的一半;第二天白天,它继续往上爬到剩下路程的一半,晚上又滑落了白天所爬路程的一半;每天这样爬,它需要多少天才能爬到井口?做完题后想一想:“一尺之棰,日取其半,万世不竭”这句话的含义.。
2020年秋七年级数学(人教版上)同步练习第一章第五节有理数的乘方一. 教学内容:有理数的乘方1. 乘方的意义,会用乘法的符号法则进行乘方运算;2. 会用科学记数法表示较大的数,理解近似数和有效数字表示的意义;3. 了解科学记数法在实际生活中的作用。
二. 知识要点:1. 有理数乘方的意义求n个相同因数的积的运算,叫做乘方。
一般地,记作a n。
乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数,a n从运算的角度读作a的n次方,从结果的角度读作a的n次幂。
注:(1)一个数可以看作这个数本身的一次方。
(2)当底数是负数或分数时,要先用括号将底数括上,再在其右上角写指数,指数要写小些。
(3)乘方是一种运算,是一种特殊的乘法运算(因数相同的乘法运算),幂是乘方的运算的结果。
2. 乘方运算的性质(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数,负数的偶次幂是正数;(3)任何数的偶次幂都是非负数;(4)-1的偶次幂得1,-1的奇次幂得-1;1的任何次幂都得1;(5)现在学习的幂的指数都是正整数,在这个条件下,0的任何次幂都得0。
3. 有理数的混合运算顺序(1)先乘方,再乘除,最后加减。
(2)同级运算,从左到右进行。
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
4. 科学记数法把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,像这样的记数方法叫作科学记数法。
注:科学记数法是有理数的一种记数形式,这种形式就是a×10n,它由两部分组成:a和10n,两者相乘,其中a大于或等于1,且小于10(即1≤a<10),它是由原来的小数点向左移动后的结果,也就是说,a与原数只是小数点位置不同。
指数n是正整数,等于原数化为a时小数点移动的位数,用科学记数法表示一个数时,10的指数比原数的整数位数小1。
5. 近似数和有效数字(1)近似数与实际完全符合的数是准确数。
七年级数学上册《第一章 有理数的乘除法》同步练习题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.2的倒数是( )A .12 B .﹣ 12 C .2 D .﹣22.绝对值大于2且小于5的所有整数的积是( )A .﹣144B .144C .0D .73.下列计算正确的是( )A .()1103033⎛⎫÷-=⨯-=- ⎪⎝⎭ B .()()22224-÷-=-⨯=-C .()111999⎛⎫÷-=⨯-=- ⎪⎝⎭ D .()()3693694-÷-=-÷=-4.已知|x|=3,|y|=2,且xy <0,则x ﹣y 的值等于( )A .5B .5或﹣5C .﹣5D .﹣5或15.在简便运算时,把47249948⎛⎫⨯- ⎪⎝⎭变形成最合适的形式是( )A .12410048⎛⎫⨯-+ ⎪⎝⎭B .12410048⎛⎫⨯-- ⎪⎝⎭C .47249948⎛⎫⨯-- ⎪⎝⎭D .47249948⎛⎫⨯-+ ⎪⎝⎭6.有两根铁丝,第一根用去 25 米,第二根用去 25 ,剩下的一样长,两根铁丝原来相比() A .第一根长 B .第二根长 C .一样长 D .无法确定7.从-8,-6,-4,0,3,5,7中任取三个不同数做乘积,则最小的乘积是( )A .-336B .-280C .-210D .-1928.如图,数轴上的点A 、B 分别对应数a 、b ,下列结论正确的是( )A .<0a b +B .>0a b -C .>0abD .>0ab -9.吴与伦比设计了一个计算程序,如图,如果输入的数是1,那么输出的结果是( )A .1B .-1C .3D .-3 二、填空题10.a 的相反数是 710,则a 的倒数是 。
11.计算: 1()303-⨯+= .12.在6,﹣5,﹣4,3四个数中任取两数相乘,积记为A ,任取两数相除,商记为B ,则A ﹣B 的最大值为 .13.已知 230a b ++-= ,则 ab = .14.有理数a 、b ,规定运算“★”如下:a ★b =a ×b-a-b-2,则(-3)★2= .三、计算题15.()528522514⎛⎫-+÷-⨯- ⎪⎝⎭16.计算(1)()()251236--+⨯-;(2)13212243⎛⎫-+-⨯ ⎪⎝⎭.17.计算:(1)(32)(4)(25)4-÷---⨯;(2)523(5)(7)()(12)1234-⨯-++-⨯-.18.一只蚂蚁从某点A 出发,在一条直线上来回爬行,假定把向右爬行的路程记为正数,向左爬行的路程记为负数,则爬行各段路程(单位:厘米)依次为:+2,-3,+12,-8,-7,+16,-12(1)通过计算说明蚂蚁是否回到起点A ;(2)如果蚂蚁爬行的速度为0.5厘米/秒,那么蚂蚁共爬行了多长时间.19.某工艺厂计划一周生产工艺品2100个,平均每天生产300个,但实际每天生产量与计划相比有出入,下表是某周的生产情况(超产记为正,减产记为负)((2)本周产量中最多的一天比最少的一天多生产多少个工艺品?(3)赶进度期间该厂实行计件工资加浮动工资制度,即:每生产一个工艺品的工资为30元,超过计划完成任务部分的每个工艺品则在原来30元工资上再奖励5元;比计划每少生产一个则在应得的总工资上扣发3元(工资按日统计,每周汇总一次),求该厂工人这一周的工资总额是多少?参考答案:1.A 2.B 3.C 4.B 5.A 6.D 7.B 8.D 9.A10.107- 11.-112.65313.-614.-715.解: ()528522514⎛⎫-+÷-⨯- ⎪⎝⎭ 5281525214⎛⎫⎛⎫=-+⨯-⨯- ⎪ ⎪⎝⎭⎝⎭, 5281525214=-+⨯⨯, 512=-+, 32=- 16.(1)解:()()251236--+⨯-()25+1218=+-19=;(2)解:13212243⎛⎫-+-⨯ ⎪⎝⎭ 132121212243=-⨯+⨯-⨯ 698=-+-=5-.17.(1)解:原式8(100)=--8100=+108=;(2)解:原式52335(12)(12)(12)1234=+⨯-+⨯--⨯- 35589=--+31=.18.(1)解:根据题意得:+2−3+12−8−7+16−12=0答:蚂蚁能回到起点A(2)解:(2+3+12+8+7+16+12)÷0.5=60÷0.5=120(秒)答:蚂蚁共爬行了120秒.19.(1)解:周一的产量为: ()3002298+-= 个;(2)解:由表格可知:星期六产量最高,为 300(16)316++= (个) 星期五产量最低,为 300(10)290+-=(个)则产量最多的一天比产量最少的一天多生产 31629026-= (个) ;(3)解: (5)(2)(5)(15)(10)(16)(9)10++-+-+++-+++-= 个 根据题意得该厂工人一周的工资总额为:()2100103055235315510316593+⨯+⨯-⨯-⨯+⨯-⨯+⨯-⨯ 633002561575308027=+--+-+-63402= (元)。
1.4.1有理数乘法(1)随堂检测1、 填空:(1)5×(-4)= ___;(2)(-6)×4= ___;(3)(-7)×(-1)= ___;(4)(-5)×0 =___; (5)=-⨯)23(94___;(6)=-⨯-)32()61( ___;(7)(-3)×=-)31(2、填空:(1)-7的倒数是___,它的相反数是___,它的绝对值是___;(2)522-的倒数是___,-2.5的倒数是___;(3)倒数等于它本身的有理数是___。
3、计算:(1))32()109(45)2(-⨯-⨯⨯-; (2)(-6)×5×72)67(⨯-;(3)(-4)×7×(-1)×(-0.25);(4)41)23(158)245(⨯-⨯⨯- 4、一个有理数与其相反数的积( )A 、符号必定为正B 、符号必定为负C 、一定不大于零D 、一定不小于零5、下列说法错误的是( )A 、任何有理数都有倒数B 、互为倒数的两个数的积为1C 、互为倒数的两个数同号D 、1和-1互为负倒数 典例分析计算)542()413(-⨯-分析:在运算过程中常出现以下两种错误:①确定积得符号时,常常与加法法则中的和的符号规律相互混淆,错误地写成1091)514()413()542()413(-=-⨯-=-⨯-;②把乘法法则和加法法则混淆,错误地写成516)5441()2()3()542()413(-=⨯⨯-⨯-=-⨯-。
为了避免类似的错误,需先把假分数化成带分数,然后再按照乘法法则进行运算。
解:1091514413)514()413()542()413(=⨯=-⨯-=-⨯-课下作业 拓展提高 1、32-的倒数的相反数是___。
2、已知两个有理数a,b ,如果ab <0,且a+b <0,那么( )A 、a >0,b >0B 、a <0,b >0C 、a,b 异号D 、a,b 异号,且负数的绝对值较大 3、计算: (1))5(252449-⨯; (2)125)5.2()2.7()8(⨯-⨯-⨯-;(3)6.190)1.8(8.7-⨯⨯-⨯-; (4))251(4)5(25.0-⨯⨯-⨯--。
2022-2023学年人教版七年级数学上册《1.4有理数的乘除法》同步练习题(附答案)一.选择题1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.下列说法中正确的有()①同号两数相乘,符号不变;②异号两数相乘,积取负号;③互为相反数的两数相乘,积一定为负;④两个有理数的积绝对值,等于这两个有理数的绝对值的积.A.1个B.2个C.3个D.4个3.下列说法:①整数和分数统称为有理数;②绝对值是它本身的数只有0;③两数之和一定大于每个加数;④如果两个数积为0,那么至少有一个因数为0;⑤0是最小的有理数;⑥数轴上表示互为相反数的点位于原点的两侧;⑦几个有理数相乘,如果负因数的个数是奇数,那么积为负数;其中正确的个数是()A.2个B.3个C.4个D.5个4.有理数a,b在数轴上表示如图所示,则下列各式中正确的是()A.ab>0B.a+b<0C.b<a D.|b|>|a|5.已知|x|=6,y2=9,且xy<0,则x+y的值为()A.3或﹣3B.9或3C.15或3D.9或﹣9 6.若,则下列结论正确的是()A.a<0,b<0B.a>0,b>0C.ab>0D.ab≤07.已知三个有理数m,n,p满足m+n=0,n<m,mnp<0,则mn+np一定是()A.负数B.零C.正数D.非负数8.在下面五个说法中正确的有()①互为相反数的两个数的绝对值相等②没有最大的整数,最大的负整数是﹣1,最小的正数是1 ③一个数的相反数等于它本身,这个数是0④任何有理数的绝对值都是正数⑤几个有理数相乘,如果负因数有奇数个,则积为负数.A.1个B.2个C.3个D.4个9.若ab≠0,则+的值不可能是()A.2B.0C.﹣2D.110.两个非零有理数的和为零,则它们的商是()A.0B.﹣1C.+1D.不能确定11.已知a,b为有理数,则下列说法正确的个数为()①若a+b>0,,则a>0,b>0.②若a+b>0,,则a>0,b<0且|a|>|b|.③若a+b<0,,则a<0,b<0.④若a+b<0,,则a>0,b<0且|b|>|a|.A.1B.2C.3D.412.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书200元一律打八折.如果王明同学一次性购书付款162元,那么王明所购书的原价一定为()A.180元B.202.5元C.180元或202.5元D.180元或200元二.填空题13.绝对值小于π的所有整数的积是.14.如果x、y都是不为0的有理数,则代数式的值为.15.绝对值小于5的所有非负整数的积是.16.给出下列判断:①若a,b互为相反数,则a+b=0②若a,b互为倒数,则ab=1③若|a|>|b|,则a>b④若|a|=|b|,则a=b⑤若|a|=﹣a,则a<0其中正确结论的个数为个.17.小亮有6张卡片,上面分别写有﹣5,﹣3,﹣1,+2,+4,+6,他想从这6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为.18.一个数与﹣4的乘积等于,则这个数是.19.已知|x|=4,|y|=6,且xy<0,x+y>0,则x﹣y=.20.倒数是它本身的数是;相反数是它本身的数是;绝对值是它本身的数是.21.按如图程序计算,如果输入的数是﹣2,那么输出的数是.22.已知|x|=3,|y|=2,且|xy|=﹣xy,则x+y等于.三.解答题23.简便方法计算:①(﹣﹣)×(﹣27);②﹣6×+4×﹣5×.24.阅读下题解答:计算:.分析:利用倒数的意义,先求出原式的倒数,再得原式的值.解:×(﹣24)=﹣16+18﹣21=﹣19.所以原式=﹣.根据阅读材料提供的方法,完成下面的计算:.25.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求m+cd+的值.26.小华在课外书中看到这样一道题:计算:()+().她发现,这个算式反映的是前后两部分的和,而这两部分之间存在着某种关系,利用这种关系,她顺利地解答了这道题(1)前后两部分之间存在着什么关系?(2)先计算哪部分比较简便?并请计算比较简便的那部分.(3)利用(1)中的关系,直接写出另一部分的结果.(4)根据以上分析,求出原式的结果.27.阅读下列材料:计算:÷(﹣+).解法一:原式=÷﹣÷+÷=×3﹣×4+×12=.解法二:原式=÷(﹣+)=÷=×6=.解法三:原式的倒数=(﹣+)÷=(﹣+)×24=×24﹣×24+×24=4.所以,原式=.(1)上述得到的结果不同,你认为解法是错误的;(2)请你选择合适的解法计算:(﹣)÷(﹣+﹣).28.如图是一个“数值转换机”(箭头是指数进入转换机的路径,方框是对进入的数进行转换的转换机).(1)当小明输入4,7这两个数时,则两次输出的结果依次为,;(2)你认为当输入数等于时(写出一个即可),其输出结果为0;(3)你认为这个“数值转换机”不可能输出数;(4)有一次,小明操作的时候,输出的结果是2,聪明的你判断一下,小明输入的正整数是(用含自然数n的代数式表示).29.建设银行的某储蓄员小张在办理业务时,约定存入为正,取出为负.2006年6月29日他办理了6件业务:﹣780元、﹣650元、+1250元、﹣310元、﹣420元、+240元.(1)若他早上领取备用金5000元,那么下班时应交回银行多少元?(2)若每办一件业务,银行发给业务量的0.1%作为奖励,那么这天小张应得奖金多少元?30.小莉同学有7张写着不同数字的卡片,他想从中取出若干张卡片,将卡片上的数字进行有理数的运算.(1)若取出2张卡片,应该抽取哪2张使得数字之积最大,积最大是多少呢?(2)若取出3张卡片,应该抽取哪3张使得数字之积最小,积最小是多少呢?31.某同学把7×(□﹣3)错抄为7×□﹣3,抄错后算得答案为y,若正确答案为x,则x ﹣y=.32.如图,数轴上的A、B两点所表示的数分别为a、b,a+b<0,ab<0,(1)原点O的位置在;A.点A的右边B.点B的左边C.点A与点B之间,且靠近点A D.点A 与点B之间,且靠近点B(2)若a﹣b=2,①利用数轴比较大小:a1,b﹣1;(填“>”、“<”或“=”)②化简:|a﹣1|+|b+1|.参考答案一.选择题1.解:∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选:D.2.解:①两负数相乘,符号变为正号;此选项错误;②异号两数相乘,积取负号;此选项正确;③互为相反数的两数相乘,积不一定为负可能为0,故此选项错误;④两个有理数的积绝对值,等于这两个有理数的绝对值的积,此选项正确.故正确的有2个.故选:B.3.解:①整数和分数统称为有理数是正确的;②绝对值是它本身的数有正数和0,原来的说法是错误的;③两数之和可能小于每个加数,原来的说法是错误的;④如果两个数积为0,那么至少有一个因数为0是正确的;⑤没有最小的有理数,原来的说法是错误的;⑥数轴上表示互为相反数的点位于原点的两侧(0除外),原来的说法是错误的;⑦几个有理数(非0)相乘,如果负因数的个数是奇数,那么积为负数,原来的说法是错误的.故选:A.4.解:由数轴上的位置得:a<0<b,且|a|>|b|,∴ab<0,a+b<0,故选:B.5.解:∵|x|=6,y2=9,∴x=±6,y=±3,又∵xy<0,∴x=6,y=﹣3或x=﹣6,y=3,当x=6,y=﹣3时,x+y=3,当x=﹣6,y=3时,x+y=﹣3,故选:A.6.解:∵,∴,∴ab≤0,故选:D.7.解:∵m+n=0,∴m,n一定互为相反数;又∵n<m,mnp<0,∴n<0,p>0,m>0,∴mn<0,np<0,∴mn+np一定是负数.故选:A.8.解:互为相反数的两个数的绝对值相等,故①正确,没有最大的整数,最大的负整数是﹣1,最小的正数也没有,故②错误,一个数的相反数等于它本身,这个数是0,故③正确,任何有理数的绝对值都是非负数,故④错误,几个不为零的有理数相乘,如果负因数有奇数个,则积为负数,故⑤错误,故选:B.9.解:①当a、b同号时,原式=1+1=2;或原式=﹣1﹣1=﹣2;②当a、b异号时,原式=﹣1+1=0.则+的值不可能的是1.故选:D.10.解:∵两个非零有理数的和为零,∴这两个数是一对相反数,∴它们符号不同,绝对值相等,∴它们的商是﹣1.故选:B.11.解:①若a+b>0,,则a>0,b>0,故①结论正确;②若a+b>0,,则a>0,b<0且|a|>|b|或a<0,b>0且|a|<|b|,故②结论错误;③若a+b<0,,则a<0,b<0,故③结论正确;④a+b<0,,则a>0,b<0且|b|>|a|或a<0,b>0且|b|<|a|,故斯结论错误.故正确的有2个.故选:B.12.解:∵200×0.9=180,200×0.8=160,160<162<180,∴一次性购书付款162元,可能有两种情况.162÷0.9=180元;162÷0.8=202.5元.故王明所购书的原价一定为180元或202.5元.故选:C.二.填空题13.解:绝对值小于π的所有整数的积是(﹣3)×(﹣2)×(﹣1)×0×1×2×3=0.故答案为:0.14.解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的值是1或﹣3.故答案为:1或﹣3.15.解:绝对值小于5的所有非负整数为:﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,积为0.故答案为:0.16.解:①若a,b互为相反数,则a+b=0,是正确的;②若a,b互为倒数,则ab=1,是正确的;③若|a|>|b|,当a=﹣4,b=1也成立,所以a不一定大于b,是错误的;④若|a|=|b|,则a=b或a=﹣b,是错误的,⑤若|a|=﹣a,则a≤0,是错误的,所以有2个正确的结论;故答案为:2.17.解:从6张卡片中取出3张,使这3张卡片上的数字的积最小,最小积为﹣5×4×6=﹣120.故答案为:﹣120.18.解:÷(﹣4)=﹣.故这个数是﹣.故答案为:﹣.19.解:∵|x|=4,|y|=6,∴x=±4,y=±6,又∵xy<0,x+y>0,∴x=﹣4,y=6,∴x﹣y=﹣4﹣6=﹣10,故答案为:﹣10.20.解:倒数是它本身的数是±1;相反数是它本身的数是0;绝对值是它本身的数是非负数,故答案为:1或﹣1,0,非负数.21.解:﹣2×(﹣3)=6,6×(﹣3)=﹣18,﹣18×(﹣3)=54,54×(﹣3)=﹣162,故答案为:﹣162.22.解:∵|x|=3,|y|=2,且|xy|=﹣xy,∴x<0或y<0,当x<0时,x=﹣3,y=2,x+y=﹣1,当y<0时,x=3,y=﹣2,x+y=1.故答案为:1或﹣1.三.解答题23.解:①原式==﹣6+9+2=5.②原式=×(﹣6+4﹣5)=(﹣7)=﹣3.24.解:根据题意得:[﹣++(﹣)2×(﹣6)]÷(﹣)=[﹣++×(﹣6)]×(﹣42)=﹣21+14﹣30+112=75,则原式=.25.解:(1)∵a、b互为相反数,c、d互为倒数,m的绝对值为2,∴a+b=0,cd=1,m=±2.(2)当m=2时,m+cd+=2+1+0=3;当m=﹣2时,m+cd+=﹣2+1+0=﹣1.26.解:(1)前后两部分互为倒数;(2)先计算后一部分比较方便.()=()×36=9+3﹣14﹣1=﹣3;(3)因为前后两部分互为倒数,所以()=﹣;(4)根据以上分析,可知原式==﹣3.27.解:(1)上述得到的结果不同,我认为解法一是错误的;故答案为:一;(2)原式的倒数为:(﹣+﹣)÷(﹣)=(﹣+﹣)×(﹣42)=﹣7+9﹣28+12=﹣35+21=﹣14,则原式=﹣.28.解:(1)若输入的数字为4时,4>2,得到4+(﹣5)=﹣1,﹣1<2,得到相反数为1,倒数为1,输出结果为1;若输入数字为7时,7>2,得到7+(﹣5)=2,得到相反数为﹣2,绝对值为2,输出结果为2;(2)根据题意得:输入数字为0(5、10、15…5的倍数均可),结果为0;(3)这个“数值转换机”不可能输出负数;(4)归纳总结得:小明输入的正整数是5n+2.故答案为:1,2;0;负;5n+2.29.解:(1)5000﹣780﹣650+1250﹣310﹣420+240=4330(元);他下班时应交回银行4330元;(2)(780+650+1250+310+420+240)×0.1%=3.65(元),这天他应得奖金为3.65元.30.解:(1)取出﹣6和﹣4,积最大为(﹣6)×(﹣4)=24;(2)取出﹣6,3,5,积最小为(﹣6)×3×5=﹣90.31.解:根据题意得,7×(□﹣3)=x①,7×□﹣3=y②,①﹣②得,x﹣y=7×(□﹣3)﹣7×□+3=7×□﹣21﹣7×□+3=﹣18.故答案为:﹣18.32.解:(1)∵ab<0,a+b<0,∴原点O的位置在点A与点B之间,且靠近点A.故答案为:C(2)①∵a﹣b=2,原点O的位置在点A与点B之间,且靠近点A,∴a<1,b<﹣1,故答案为:<、<;②∵a<1,b<﹣1,∴a﹣1<0,b+1<0,∴|a﹣1|+|b+1|=﹣a+1﹣b﹣1=﹣a﹣b.。
课后训练基础巩固1.求25-3× [32+2×(-3)]+5的值为().A.21 B.30 C.39 D.71 2.对于(-2)4与-24,下面说法正确的是().A.它们的意义相同B.它们的结果相同C.它们的意义不同,结果相等D.它们的意义不同,结果不等3.下列算式正确的是().A.22433⎛⎫-=⎪⎝⎭B.23=2×3=6C.-32=-3×(-3)=9 D.-23=-84.在绝对值小于100的整数中,可以写成整数平方的个数是().A.18 B.19C.10 D.95.若a n>0,n为奇数,则a().A.一定是正数B.一定是负数C.可正可负D.以上都不对6.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7次后剩下的小棒有多长?能力提升7.-(-32)-|-4|的值为().A.13 B.-13C.5 D.-58.下列式子正确的是().A.-24<(-2)2<(-2)3B.(-2)3<-24<(-2)2C.-24<(-2)3<(-2)2D.(-2)2<(-2)3<-249.a,b互为相反数,a≠0,n为自然数,则().A.a n,b n互为相反数B.a2n,b2n互为相反数C.a2n+1,b2n+1互为相反数D.以上都不对10.若x为有理数,则|x|+1一定是().A.等于1 B.大于1C.不小于1 D.小于111.某市约有230万人口,用科学记数法表示这个数为().A.230×104B.23×105C.2.3×105D.2.3×10612.为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330 000毫克/千瓦时,用科学记数法表示并精确到 1 000毫克/千瓦时为__________毫克/千瓦时.13.计算:-24-17×[2-(-2)4]的结果为__________.14.计算下列各题:(1)(-3)2-(-2)3÷3 2 3⎛⎫- ⎪⎝⎭;(2)-72+2×(-3)2-(-6)÷2 1 3⎛⎫- ⎪⎝⎭.15.如果|a+1|+(b-2)2=0,求(a+b)39+a34的值.16.已知|x-1|+(y+3)2=0,求(xy)2的值.17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2;22+(2×3)2+32=(2×3+1)2;32+(3×4)2+42=(3×4+1)2;……(1)写出第2 004行式子;(2)用字母表示你所发现的规律.参考答案1答案:A 点拨:原式=25-3×(9-6)+5=25-9+5=21,所以A 正确,故选A.2答案:D 点拨:(-2)4的意义是-2的4次方,-24的意义是2的4次方的相反数,所以意义不同,结果也不等.3答案:D 点拨:根据乘方定义计算,只有D 正确,故选D.4答案:C 点拨:这样的数不能是负数,只能是非负数.5答案:A 点拨:正数的奇次幂是正数,负数的奇次幂为负数,所以a 为正数.6解:71112128⎛⎫⨯= ⎪⎝⎭(米). 答:第7次后剩下的木棒长1128米. 7答案:C 点拨:原式=-(-9)-4=9-4=5,所以选C.8答案:C 点拨:A.-16<4<-8,错误;B .-8<-16<4,错误;C .-16<-8<4,正确;D .4<-8<-16,错误.故选C.9答案:C 点拨:a ,b 互为相反数,那么它们的奇次幂互为相反数,它们的偶次幂相等,而n 不确定,2n 为偶数,2n +1为奇数,所以只有C 正确.10答案:C 点拨:|x |≥0,则|x |+1≥1,故C 正确.11答案:D12答案:3.30×10513答案:-14点拨:本题容易出现错解:原式=16-17×(2-16)=16+2=18,其错误在于不能正确理解-24与(-2)4的区别造成的,-24是4个2相乘的相反数,底数为2,结果为-16;(-2)4是4个-2相乘,底数为-2,结果为16.原式=-16-17×(2-16)=-16+2=-14. 14解:(1)原式=9-(-8)÷827⎛⎫- ⎪⎝⎭=9-(-8)×278⎛⎫- ⎪⎝⎭=9-27=-18.(2)原式=-49+2×9-(-6)÷19=-49+18-(-54)=-49+18+54=23.点拨:先算乘方,再算乘除,最后算加减.15解:因为|a +1|+(b -2)2=0,所以a +1=0,b -2=0,即a =-1,b =2.因此(a +b )39+a 34=[(-1)+2]39+(-1)34=1+1=2.点拨:利用|a +1|与(b -2)2的非负性.16解:∵|x -1|≥0,(y +3)2≥0,又∵|x -1|+(y +3)2=0,∴|x -1|=0,(y +3)2=0.∴x =1,y =-3.∴(xy )2=[1×(-3)]2=9.17解:(1)2 0042+(2 004×2 005)2+2 0052=(2 004×2 005+1)2.(2)n2+[n×(n+1)]2+(n+1)2=[n×(n+1)+1]2.点拨:观察式子,寻找数序号与数字之间的变化规律,从而由特殊到一般,得到变化规律,写出结果.。
课后训练基础巩固1.一个有理数和它的相反数相乘,积为( ). A .正数 B .负数 C .正数或0 D .负数或0 2.下列说法正确的是( ).A .异号两数相乘,取绝对值较大的因数的符号B .同号两数相乘,符号不变C .两数相乘,如果积为负数,那么这两个因数异号D .两数相乘,如果积为正数,那么这两个因数都为正数 3.如果ab =0,那么一定有( ). A .a =b =0 B .a =0C .b =0D .a ,b 至少有一个为04.三个数的积是正数,那么三个数中负数的个数是( ). A .1 B .0或2 C .3 D .1或35.若两个有理数的商是正数,和为负数,则这两个数( ). A .一正一负 B .都是正数 C .都是负数 D .不能确定6.两个不为零的有理数相除,如果交换被除数与除数的位置,它们的商不变,那么这两个数( ).A .一定相等B .一定互为倒数C .一定互为相反数D .相等或互为相反数 7.计算(-12)÷[6+(-3)]的结果是( ). A .2 B .6 C .4 D .-4 能力提升8.若||m m=1,则m __________0. 9.若ab<0,b c <0,则ac __________0.10.计算:(1)(-10)×13⎛⎫- ⎪⎝⎭×(-0.1)×6; (2)-3×56×415×(-0.25);(3)-15÷(-5)÷115⎛⎫- ⎪⎝⎭; (4)-8-2710.6(3)3⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦.11.欢欢发烧了,妈妈带她去看医生,结果测量出体温是39.2 ℃,用了退烧药后,以每15分钟下降0.2 ℃的速度退烧,求两小时后,欢欢的体温.12.某班分小组举行知识竞赛,评分标准是:答对一道题加10分,答错一道题扣10分,不答不得分也不扣分.已知每个小组的基本分为100分,有一个小组共答20道题,其中答对了10道题,不答的有2道题,结合你学过的有理数运算的知识,求该小组最后的得分是多少.13.已知a,b互为相反数,c,d互为倒数,且a≠0,那么3a +3b+ba-cd的值是多少?14.若|a+1|+|b+2|=0,求a+b-ab.15.若定义一种新的运算为a*b=1abab,计算[(3*2)]*16.参考答案1答案:D 点拨:如1×(-1)=-1,一个正数和一个负数相乘,积为负数,但不要漏掉0的情况.2答案:C 点拨:根据有理数乘法法则,例如-2×4=-8,A 错;(-2)×(-4)=8,B 错;(-2)×(-5)=10,D 错.故C 正确.3答案:D 点拨:0同任何数相乘都得0.4答案:B 点拨:几个不为零的有理数相乘,积的符号由负因数的个数决定,因为三个数的积是正数,所以负因数为偶数个或0个,故选B.5答案:C 点拨:从商为正数得出两个数同号,从和为负数得出两个数都为负数,若两个数都为正数,和只能为正数.6答案:D 点拨:不要漏掉互为相反数这种情况.7答案:D 点拨:(-12)÷[6+(-3)]=(-12)÷3=-4,故选D.8答案:> 点拨:若m >0,|m |=m ,则m mm m==1;若m <0,|m |=-m ,则m mm m-==-1,m 为分母,不能等于0.9答案:> 点拨:因为ab<0,所以a , b 异号,又因为b c <0,所以b ,c 异号,所以a ,c 同号,故ac >0.10解:(1)原式=11106310⎛⎫-⨯⨯⨯ ⎪⎝⎭=-2. (2)原式=3×56×95×14=98.(3)原式=-15×15⎛⎫- ⎪⎝⎭×56⎛⎫- ⎪⎝⎭=52-. (4)原式=231871353⎡⎤⎛⎫⎛⎫---+-⨯⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=2187153⎡⎤⎛⎫⎛⎫---+-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=318753⎡⎤⎛⎫---+⨯- ⎪⎢⎥⎝⎭⎣⎦ =1148787555⎛⎫----=-+=- ⎪⎝⎭. 点拨:(1)(2)先取号,再统一化为分数进行运算,(3)统一化为乘法运算,(3)先算括号里的,再算括号外的.括号里的先算乘除,再算加减.11解:由题意可得,39.2-2×60÷15×0.2 =39.2-120÷15×0.2 =39.2-8×0.2 =39.2-1.6 =37.6,即两小时后,欢欢的体温是37.6 ℃.点拨:先求出两小时内有多少个15分钟,再根据每15分钟下降0.2 ℃求出两小时下降的体温数,用39.2 ℃减去下降的体温数.12解:根据题意,得100+10×10+(20-10-2)×(-10)=100+100-80=120(分).答:该小组最后的得分是120分.点拨:所得分数等于基础分加上所得分,所得分等于答对的得分减去答错的扣分.不答不得分也不扣分.13解:因为a ,b 互为相反数且a ≠0,所以a +b =0,b a=-1.因为c ,d 互为倒数,所以c ·d =1,所以3a +3b +b a-cd =3(a +b )+b a-cd =3×0+(-1)-1=-2.点拨:a ,b 互为相反数且a ≠0,那么两数和为0,商为-1,c ,d 互为倒数,两数积为1,3a +3b =3(a +b ).14解:因为|a +1|+|b +2|=0,且|a +1|≥0,|b +2|≥0,所以a +1=0,b +2=0,所以a =-1,b =-2,所以a +b -ab =-1+(-2)-(-1)×(-2)=-3-2=-5. 点拨:|a +1|+|b +2|=0,所以a +1=0,b +2=0,求出a 、b 的值,代入a +b -ab 中,求出式子的值.15解:因为a *b =1abab -, 所以[(3]1,6)=321*1326⨯-⨯=6156⎛⎫-* ⎪⎝⎭ =6115656111()1565-⨯-=--⨯+=16-.点拨:观察所给式子的特点,按字母表示的运算顺序代入求值即可.先从a=3,b=2开始计算.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是( )A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是( )3.下列方程是一元一次方程的是( )A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为( )A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是( ) A .3x 2-x 2=3 B .3a 2+2a 3=5a 5 C .3+x =3xD .-0.25ab +14ba =06.已知ax =ay ,下列各式中一定成立的是( ) A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( ) A .100元 B .105元 C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( ) A .130° B .40° C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12;②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -ba +b>0.其中正确的结论是( ) A .①②③ B .①②④ C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________.12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________. 15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC =12∠AOB ,则射线OC 是∠AOB 的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________. 17.规定一种新运算:a △b =a ·b -2a -b +1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分) 19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程: (1)4-3(2-x )=5x ; (2)x -22-1=x +13-x +86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y =-1.22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读数/度123130137145153159165该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O 的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A 8.D 9.C 10.B二、11.23;5 12.-8 13.-5 14.19°31′13″ 15.3 16.717.> 18.(6n +2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x =5x .移项、合并同类项,得-2x =2.系数化为1,得x =-1.(2)去分母,得3(x -2)-6=2(x +1)-(x +8).去括号,得3x -6-6=2x +2-x -8.移项、合并同类项,得2x =6.系数化为1,得x =3.21.解:原式=2x 2y +2xy -3x 2y +3xy -4x 2y =(2x 2y -3x 2y -4x 2y )+(2xy +3xy )=-5x 2y +5xy .当x =1,y =-1时,原式=-5x 2y +5xy =-5×12×(-1)+5×1×(-1)=5-5=0. 22.解:由题图可知-3<b <-2.所以1-3b >0,2+b <0,3b -2<0.所以原式=1-3b -2(2+b )+(3b -2)=1-3b -4-2b +3b -2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α. 所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a 度.根据题意,得0.65a -15=0.55a ,解得a =150.答:该用户10月用电150度.26.解:(1)130(2)若点C 在原点右边,则点C 表示的数为100÷(3+1)=25; 若点C 在原点左边,则点C 表示的数为-[100÷(3-1)]=-50. 故点C 表示的数为-50或25.(3)设从出发到同时运动到点D 经过的时间为t s ,则6t -4t =130,解得t =65.65×4=260,260+30=290,所以点D 表示的数为-290.(4)ON -AQ 的值不变.设运动时间为m s ,则PO =100+8m ,AQ =4m .由题意知N 为PO 的中点,得ON =12PO =50+4m , 所以ON +AQ =50+4m +4m =50+8m ,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.教师应该——消消气,别发火目标我知道,你为何怒吼声嘶力竭,虚张声势殊不知在众人眼中你已斯文扫地。
有理数的乘除法同步练习
班级:______________姓名:________________
导航
有理数的乘除法的运算法则及有关的运算律. 一、填空题
1.两个非零有理数相乘,同号得_____,异号得_____.
2.零与任意负数的乘积得_____.
3.计算:
(1)(-4)×15×(-5
3
)=_____
(2)(-54)×21×74×(-8
35
)=_____
4.两数相除同号_____,异号_____.
5.一个数的倒数是它本身,这个数是_____.
6.非零有理数与其倒数的相反数的乘积为_____.
7.几个不等于0的数相乘,积的符号由______的个数决定. 8.自然数中,若两数之和为奇数,则这两个数_____. 9.若两个自然数之积为偶数,则这两个数_____. 10.若一个数的绝对值等于3,则这个数为______. 11.如果a >0,b >0,c <0,d <0,则: a ·b ·c ·d ____0
b a +d
c
____0 c a +d
b
____0 (填写“>”或“<”号) 12.某学习小组,共有四名同学,在一次考试中所得分数为83.5、82、81.5、73,则这四名同学的平均分为_____,最低分比平均分低了______分.
二、选择题
13.下列说法正确的是
[ ]
A .几个有理数相乘,当因数有奇数个时,积为负
B.几个有理数相乘,当正因数有奇数个时,积为负
C.几个有理数相乘,当积为负数时,负因数有奇数个
D.几个有理数相乘,当负因数有偶数个时,积为负
14.如果两数之和等于零,且这两个数之积为负数,那么这两个数只能是
[ ]
A.两个互为相反数的数
B.符号不同的两个数
C.不为零的两个互为相反数的数
D.不是正数的两个数
15.如果一个数的绝对值与这个数的商等于-1,则这个数是
[ ]
A.正数
B.负数
C.非正
D.非负
16.下列说法错误的是
[ ]
A.正数的倒数是正数
B.负数的倒数是负数
1
C.任何一个有理数a的倒数等于
a
D.乘积为-1的两个有理数互为负倒数
17.如果abcd<0,a+b=0,cd>0,那么这四个数中负因数的个数至少有
[ ]
A.4个
B.3个
C.2个
D.1个
18.如果两个有理数a、b互为相反数,则a、b一定满足的关系为
[ ] A.a·b=1 B.a·b=-1
C.a+b=0
D.a-b=0
19.设a、b、c为三个有理数,下列等式成立的是
[ ]
A .a (b +c )=ab +c
B .(a +b )·c =a +b ·c
C .(a -b )·c =ac +bc
D .(a -b )·c =ac -bc 三、解答题 20.计算:[4
32×(-145)+(-0.4)÷(-254)]×15
1
21.某班举办数学知识比赛,共分五个小组,其中四个小组的成绩如表所示,请问
(1)这四个小组的总平均分比全班的平均分高还是低?为什么? (2)据(1)你能否判断第五组的成绩比全班平均分高,还是低?
22.筐中放着2002只球,甲、乙两同学轮流取球,每次只能取1只、2只或3只球,不可多取,谁能最后一次恰好取完球,谁就获胜,甲想获胜,他应该怎样去玩这场游戏?
有理数的乘除法答案
一、1.正 负 2.0 3.(1)36 (2)1 4.得正 得负 5.±1 6.-1 7.负数 8.一奇一偶 9.至少有一偶数 10.±3 11.> > < 12. 80 7
二、13.C 14.C 15.B 16.C 17.D 18.C 9.D 三、20. 1
21.(1)高,因为4×15+12×1-13×3-14×2=5>0 (2)据(1)可判断第五组的成绩比全班平均分低
22.甲先拿两只,然后让乙拿,甲两次拿球时与乙所拿球之和为4,重复上面的过程,甲便可获胜.。