七年级数学上册第四章 图形的初步认识 同步练习(一)新人教版
- 格式:doc
- 大小:203.00 KB
- 文档页数:7
人教版初中数学七年级上册第四章《几何图形初步》测试一、选择題(每小題3分.共36分)1. 在的内部任取一点C作射线OC,则一定成立的是()A. AAOB > ZAOC B・ZAOC > ZBOCC・ZLAOC = Z1BOC D. ZAOC < ZBOC2. 下列描述正确的是()A. 若乙1+乙2+/3=180。
,则厶1、Z2、乙3互补.B. 两个锐角的和一定是钝角.C. 互补的两个角一定是一个锐角,一个钝角.D. 钝角的一半是锐角.3. 如图1是一块手表,早上8点时针、分针的位置如图所示,那么时针与分针所成的角度是()A. 60°B. 80°C. 120°D. 150°4. 已知:ZJ=25. 12°, Z^ = 25°12%那么ZA、ZB的大小关系为()A・ZA>ZB B. ZA<ZB C. ZB = AA D. ZB>Z^5. 用一对三角尺画出小于180。
的角,一共能画出()个A. 10 B・ 11 C. 12 D. 136. 如图2,若Z1 = Z2,则下列结论正确的是()A. OB 平分Z AOCB. OB、OC是ZAOD的三等分线C. ZAOC=ZBODD. ZAOD=3ZBOC1.如果Za + Z^ = 90°>而Z0与互余.那么Za 与Zy 的关系是() A ・一定互余 B ・一定互补 C. 一定相等 D.不能确定8.如图3,是O 直线AB 上一点.OD 是ZAOC 的平分线,OE 是ZCOB 的平分线,则 ZDOE 的度数是( )A. 70°B. 80°C. 90°D. 100°9. 如图4所示.下列说法中错误的是()A. 04的方向是北偏东40。
•B. 的方向是北偏两 C. OC 的方向是南僞西30。
・D. OD 的方向是正东南方向•10. 如图 5. ZAOD=ZCOB=90°t ZAOC=a.则ZBOD的D. 180°-2aA. 90°+aB. 90°+2aC. 180°-a11. 一个角的余角比它的补角的丄少20°.则这个角为()2A. 30°B・ 40° C. 60° D. 75°12、如图3・OB、OC是乙4OD内部的两条射线,OM平分乙4OB・ ON平分厶COD、若M0D=a・ 3ON=p・则MOC可表示为()A. a—flB. 2a—ftC. a—2fl D・—a二、境空題(毎小題3分,共12分)13. 如图7・厶OC = 90。
人教版 七年级数学上册第四章几何图形初步试题(含答案)一、单选题1.已知∠AOB =20°,∠AOC =4∠AOB ,OD 平分∠AOB ,OM 平分∠AOC ,则∠MOD 的度数是( )A .20°或50°B .20°或60°C .30°或50°D .30°或60°2.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°3.下列几何体中,是圆柱的为A .B .C .D .4.将一副直角三角尺按如图所示的不同方式摆放,则图中与相等的是( )α∠β∠A .B .C .D .5.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A .3块B .4块C .6块D .9块6.如图,已知,,则的度数为()70AOC BOD ∠=∠=︒30BOC ∠=︒AOD ∠A .B .C .D .100︒110︒130︒140︒7.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .圆锥C .四棱柱D .圆柱8.如图,将一副三角尺按不同的位置摆放,下列摆放方式中与互余的是( )a ∠β∠A .图①B .图②C .图③D .图④9.A ,B ,C 三个车站在东西方向笔直的一条公路上,现要建一个加油站使其到三个车站的距离和最小,则加油站应建在( )A .在A 的左侧B .在AB 之间C .在BC 之间D .B 处10.下列关于角的说法正确的是( )A .两条射线组成的图形叫做角B .角的大小与这个角的两边的长短无关C .延长一个角的两边D .角的两边是射线,所以角不可度量11.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④12.如图是一个长方体之和表面展开图,纸片厚度忽略不计,按图中数据,这个盒子容积为()A .6B .8C .10D .15二、填空题13.直线AB 、CD 相交于点O ,OE 平分,OF 平分,且:BOD ∠COE ∠1∠:4,则的度数是______.21∠=DOF ∠14.如图,AB ∥CD ,CB 平分∠ACD ,∠ABC=35°,则∠BAE=__________度.15.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是____.16.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB =_____.17.已知M 、N 是线段AB 的三等分点,C 是BN 的中点,CM =6 cm ,则AB =_________ cm .18.已知线段AB =16 cm ,直线AB 上有一点C ,且BC =10 cm ,M 是线段AC 的中点,则AM 的长为________ cm.19.如图,已知O E 是∠A O C 的平分线,O D 是∠B O C 的平分线,若∠A O C =110°,∠B O C =30°,则∠D O E =____.20.如图,如果在阳光下你的身影的方向北偏东60°方向,那么太阳相对于你的方向是_______三、解答题21.我们知道,对于一些立体图形问题,常把它转化为平面图形来研究和处理,棱长为a的正方体摆成如图所示的形状,问:(1)这个几何体共有几个正方体?(2)这个几何体的表面积是多少?22.如图,把一根绳子对折成线段AB,从点P处把绳子剪断,已知AP:BP=2:3,若剪断后的各段绳子中最长的一段为60 cm,求绳子的原长.23.如图,B是线段AD上一动点,沿A→D→A的路线以2 cm/s的速度往返运动1次,C是线段BD的中点,AD=10 cm,设点B的运动时间为t s(0≤t≤10).(1)当t=2时,求线段AB和线段CD的长度.(2)用含t的代数式表示运动过程中AB的长.(3)在运动过程中,若AB的中点为E,则EC的长是否变化?若不变,求出EC的长;若发生变化,请说明理由.24.如图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z的值.25.已知C为线段AB的中点,D在线段BC上,且AD=7,BD=5.求线段CD的长度.26.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON= (直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON= (直接写出结果).参考答案1.C2.A3.A4.C5.B6.B7.A8.A9.D10.B11.A12.A13.105°14.7015.90016.180°17.1218.3或1319.40°20.南偏西60°21.21.(1)11;(2)24a 2.22.(1)150cm (2)绳子的原长为150cm 或100cm23.(1)AB =4cm CD =3cm(2)AB =(3)不变,EC =5cm 2(05)202(510)t t t t ≤≤⎧⎨-≤⎩<24.325.CD= 1.26.(1)45°;(2)35°;(3) 12α。
一、选择题1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是( )A .白B .红C .黄D .黑2.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是( ) A . B . C . D . 3.如图,在ABC 中,90BAC ∠=︒,点D ,E 分别在BC ,CA 边的延长线上,EH BC ⊥于点H ,EH 与AB 交于点F .则1∠与2∠的数量关系是( ).A .12∠=∠B .1∠与2∠互余C .1∠与2∠互补D .12100∠+∠=° 4.“枪挑一条线,棍扫一大片”,从数学的角度解释为( ).A .点动成线,线动成面B .线动成面,面动成体C .点动成线,面动成体D .点动成面,面动成线 5.如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,点E 为BD 的中点,在数轴上的整数点中,离点E 最近的点表示的数是( )A .2B .1C .0D .-1 6.已知线段AB=8cm ,在直线AB 上画BC ,使BC=2cm ,则线段AC 的长度是( ) A .6cm B .10cm C .4cm 或10cm D .6cm 或10cm 7.如图,从A 地到C 地,可供选择的方案是走水路、走陆路、走空中,从A 地到B 地有三条水路、两条陆路,从B 地到C 地有4条陆路可供选择,走空中,从A 地不经B 地直线到C 地,则从A 地到C 地可供选择的方案有( )A.10种B.20种C.21种D.626种8.如图是一个正方体展开图,若在其中的三个正方形A、B、C内分别填入适当的数,使得他们折成正方体后相对的面上的两个数互为相反数,则填入正方形A、B、C内的三个数依次为()A.1,-2,0 B.0,-2,1 C.-2,0,1 D.-2,1,09.下图是一个三面带有标记的正方体,它的表面展开图是()A.B.C.D.10.下列事实可以用“经过两点有且只有一条直线”来说明的是()A.从王庄到李庄走直线最近B.在正常情况下,射击时要保证瞄准的一只眼睛在准星和缺口确定的直线上,才能射中目标C.向远方延伸的铁路给我们一条直线的印象D.数轴是一条特殊的直线11.用一个平面去截正方体,所得截面是三角形,留下较大的几何体一定有()A.7个面B.15条棱C.7个顶点D.10个顶点12.把一张长方形的纸片按如图所示的方式折叠,EM,FM为折痕,C点折叠后的C'点∠的度数是()落在MB'的延长线上,则EMFA.85°B.90°C.95°D.100°二、填空题13.长方体、四面体、圆柱、圆锥、球等都是_____,简称____.包围着体的是______.面有____的面与______的面两种.14.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.15.某产品的形状是长方体,长为8cm ,它的展开图如图所示,则长方体的体积为_____cm 3.16.用一个平面截三棱柱,最多可以截得________边形;用一个平面截四棱柱,最多可以截得________边形;用一个平面截五棱柱,最多可以截得________边形.试根据以上结论,猜测用一个平面去截n 棱柱,最多可以截得________边形.17.把一条长为20厘米的线段分成三段,如果中间一段长为8厘米,那么第一段中点到第三段中点间的距离等于________厘米.18.如图,小颖从家到超市共有4条路可走,小颖应选择第________条路才能使路程最短,用数学知识解释为________________.19.如图,90AOC BOD ∠=∠=︒,70AOB ∠=︒,在∠AOB 内画一条射线OP 得到的图中有m 对互余的角,其中AOP x ∠=︒,且满足050x <<,则m =_______.20.一个几何体,从不同方向看到的图形如图所示.拼成这个几何体的小正方体的个数为______.三、解答题21.如图,已知OE 是∠AOB 的平分线,C 是∠AOE 内的一点,若∠BOC =2∠AOC ,∠AOB =114°,则求∠BOC ,∠EOC 的度数.22.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间的间距是10cm ,求AB 、CD 的长.23.如图,长度为12cm 的线段AB 的中点为M ,点C 将线段MB 分成两部分,且:1:2MC CB =,则线段AC 的长度为________.24.已知AOB m ∠=,与AOC ∠互为余角,与BOD ∠互为补角,OM 平分AOC ∠,ON 平分BOD ∠,(1)如图,当35m =时,求AOM ∠的度数;(2)在(1)的条件下,请你补全图形,并求MON ∠的度数;(3)当AOB ∠为大于30的锐角,且AOC ∠与AOB ∠有重合部分时,请求出MON ∠的度数.(写出说理过程,用含m 的代数式表示)25.古时候,传说捷克的公主柳布莎曾出过这样一道有趣的题:“一只篮子中有若干李子,取它的一半又一个给第一个人,再取余下的一半又两个给第二个人,又取最后所余的一半又三个给第三个人,那么篮内的李子就没有剩余,篮中原有李子多少个?”26.如图,直角三角形ABC 的两条直角边AB 和BC 分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:由第一个图可知绿色和白色、黑色相邻,由第二个图可知绿色和蓝色、红色相邻,由已知可得每一块的各面都涂上不同的颜色,3块的涂法完全相同.根据第三个图可知涂成绿色一面的对面涂的颜色是黄色,故答案选C.考点:几何体的侧面展开图.2.C解析:C【分析】根据从正面看得到的视图是主视图,从左边看得到的图形是左视图,根据看到的图形进行比较即可解答.【详解】解:A、主视图看到的是2行,3列,最下1行是3个,上面一行是1个,第2列是2个;左视图是2行,上下各1个;B.主视图看到的是3行,最下1行是2个,上面2行在下面1行的中间,各1个,左视图是3行,每行各一个;C.主视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个;左视图是2行2列,下面1行是2个,上面1行1个,左面1列是2个,故主视图和左视图相同;D.主视图是2行2列,下面1行2个,上面1行1个,右面1列2个,左视图也是2行2列,下面1行2个,上面1行1个,左面1列2个.故选:C.【点睛】此题考查了从不同方向观察物体,重点是看清有几行几列,每行每列各有几个.3.C解析:C【分析】先根据同角的余角相等得出∠1=∠BCE,再根据∠BCE+∠2=180°,得出∠1+∠2=180°即可.【详解】∵EH⊥BC,∴∠1+∠B=90°,∵∠BAC=90°,∴∠BCE+∠B=90°,∴∠1=∠BCE.∵∠BCE+∠2=180°,∴∠1+∠2=180°,即∠1与∠2互补,故选:C.【点睛】本题考查了余角和补角.解题的关键是掌握余角和补角的定义,同角的余角相等的性质.4.A解析:A【分析】根据从运动的观点来看点动成线,线动成面进行解答即可.【详解】“枪挑”是用枪尖挑,枪尖可看作点,棍可看作线,故这句话从数学的角度解释为点动成线,线动成面.故选A.【点睛】本题考查了点、线、面得关系,难度不大,注意将生活中的实物抽象为数学上的模型.5.A解析:A【分析】根据A、D两点在数轴上所表示的数,求得AD的长度,然后根据2AB=BC=3CD,求得AB、BD的长度,从而找到BD的中点E所表示的数.【详解】解:如图:∵|AD|=|6-(-5)|=11,2AB=BC=3CD,∴AB=1.5CD,∴1.5CD+3CD+CD=11,∴CD=2,∴AB=3,∴BD=8,∴ED=1BD=4,2∴|6-E|=4,∴点E所表示的数是:6-4=2.∴离线段BD的中点最近的整数是2.故选:A.【点睛】本题考查了数轴、比较线段的长短.灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.6.D解析:D【分析】由点C在直线AB上,分别讨论点C在线段AB上和在线段AB的延长线上两种情况,根据线段的和差关系求出AC的长即可.【详解】∵点C在直线AB上,AB=8,BC=2,∴当点C在线段AB上时,AC=AB-BC=8-2=6cm,当点C在线段AB的延长线上时,AC=AB+BC=8+2=10cm,∴AC的长度是6cm或10cm.故选D.【点睛】本题考查线段的和与差,注意点C在直线AB上,要分几种情况讨论是解题关键.7.C解析:C【分析】本题只需分别数出A到B、B到C、A到C的条数,再进一步分析计算即可.【详解】观察图形,得:A到B有5条,B到C有4条,所以A到B到C有5×4=20条,A到C一条.所以从A地到C地可供选择的方案共21条.故选C.【点睛】解决本题的关键是能够有顺序地数出所有情况.8.A解析:A【分析】本题可根据图形的折叠性,对图形进行分析,可知A对应-1,B对应2,C对应0.两数互为相反数,和为0,据此可解此题.【详解】解:由图可知A对应-1,B对应2,C对应0.∵-1的相反数为1,2的相反数为-2,0的相反数为0,∴A=1,B=-2,C=0.故选A.【点睛】本题考查的是相反数的概念,两数互为相反数,和为0,本题如果学生想象不出来图形,可用手边的纸剪出上述图形,再根据纸片折出正方体,然后判断A、B、C所对应的数.9.D解析:D【解析】【分析】根据正方体侧面展开图中相邻的面和相对的面,进行判断即可.【详解】A三角形和正方形是对面,不符合题意;B不符合题意;C. 三角形和正方形是对面,不符合题意;D符合题意;故选D【点睛】本题考查正方体展开图,掌握正方体侧面展开图中相邻的面和相对的面是解题的关键.10.B解析:B【分析】根据两点确定一条直线进而得出答案.【详解】在正常情况下,射击时要保证瞄准的一只眼在准星和缺口确定的直线上,才能射中目标,这说明了两点确定一条直线的道理.故选B.【点睛】此题主要考查了直线的性质,利用实际问题与数学知识联系得出是解题关键.11.A解析:A【解析】【分析】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.【详解】用一个平面截正方体,若所得的截面是一个三角形,此时剩下的较大的几何体一定比正方体多了一个面,如果过三个面截得的截面是三角形,那么就能多出3条棱和两个顶点,如果过3个顶点截得的截面是三角形,那么就能多出0条棱和两个顶点.故选:A.【点睛】此题考查截一个几何体,解题关键在于掌握立体图形.12.B解析:B【解析】【分析】根据折叠的性质:对应角相等,对应的线段相等,可得.【详解】解:根据图形,可得:∠EMB′=∠EMB,∠FMB′=∠FMC,∵∠FMC+∠FMB′+∠EMB′+∠BME=180°,∴2(∠EMB′+∠FMB′)=180°,∵∠EMB′+∠FMB′=∠FME,∴∠EMF=90°,故选B.【点睛】本题主要考查图形翻折的性质,解决本题的关键是要熟练掌握图形翻折的性质.二、填空题13.几何体体面平曲【解析】【分析】几何体又称为体包围着体的是面分为平的面和曲的面两种【详解】长方体四面体圆柱圆锥球等都是几何体几何体也简称为体包围着体的是面面有平面和曲面两种故答案为:(1)几何体(2)解析:几何体体面平曲【解析】【分析】几何体又称为体,包围着体的是面,分为平的面和曲的面两种【详解】长方体、四面体、圆柱、圆锥、球等都是几何体,几何体也简称为体,包围着体的是面,面有平面和曲面两种.故答案为:(1). 几何体(2). 体 (3). 面(4). 平(5). 曲【点睛】此题考查认识立体图形,解题关键在于掌握其性质定义.14.一【分析】经过两点有且只有一条直线根据直线的性质可得答案【详解】解:植树时只要定出两棵树的位置就能确定这一行树所在的直线用数学知识解释其道理是:两点确定一条直线故答案为:一【点睛】本题考查了直线的性解析:一【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.15.192【分析】根据已知图形得出长方体的高进而得出答案【详解】解:设长方体的高为xcm则长方形的宽为(14-2x)cm根据题意可得:14-2x+8+x+8=26解得:x=4所以长方体的高为4cm宽为6解析:192【分析】根据已知图形得出长方体的高进而得出答案.【详解】解:设长方体的高为xcm,则长方形的宽为(14-2x)cm,根据题意可得:14-2x+8+x+8=26,解得:x=4,所以长方体的高为4cm,宽为6cm,长为8cm,长方形的体积为:8×6×4=192(cm3);故答案为:192【点睛】本题考查几何体的展开图、一元一次方程的应用及几何体的体积等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.16.五六七【分析】三棱柱有五个面用平面去截三棱柱时最多与五个面相交得五边形因此最多可以截得五边形;四棱柱有六个面用平面去截三棱柱时最多与六个面相交得六边形因此最多可以截得六边;五棱柱有七个面用平面去截三n .解析:五,六,七,2【分析】三棱柱有五个面,用平面去截三棱柱时最多与五个面相交得五边形.因此最多可以截得五边形;四棱柱有六个面,用平面去截三棱柱时最多与六个面相交得六边形.因此最多可以截得六边;五棱柱有七个面,用平面去截三棱柱时最多与七个面相交得七边形.因此最多可以截得七边形;n棱柱有n+2个面,用平面去截三棱柱时最多与n+2个面相交得n+2边形.因此最多可以截得n+2边形.【详解】用一个平面去截三棱柱最多可以截得5边形,用一个平面去截四棱柱最多可以截得6边形,用一个平面去截五棱柱最多可以截得7边形,试根据以上结论,用一个平面去截n棱柱,最多可以截得n+2边形.故答案为五;六;七; n+2.【点睛】此题考查截一个几何体,解题关键在于熟练掌握常见几何体的截面图形.17.14【解析】【分析】先求出两边线段的长度之和第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和【详解】根据题意第一段与第三段长度之和=20-8=12cm所以第一段中点到第三段中点之间的解析:14【解析】【分析】先求出两边线段的长度之和,第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和.【详解】根据题意,第一段与第三段长度之和=20-8=12cm,所以第一段中点到第三段中点之间的距离=12÷2+8=6+8=14cm.【点睛】能正确找出“第一段中点到第三段中点之间的距离等于两边线段的一半与中间线段的和”是解本题的关键.18.②两点之间线段最短【分析】结合两点之间线段最短以及图形信息即可解答本题【详解】根据题意可把家与超市看作两个点结合两点之间线段最短即可得出第②条为最短距离即数学知识为两点之间线段最短【点睛】本题考查两解析:② 两点之间,线段最短【分析】结合“两点之间线段最短”以及图形信息即可解答本题.【详解】根据题意,可把家与超市看作两个点,结合“两点之间线段最短”即可得出第②条为最短距离,即数学知识为“两点之间线段最短”.【点睛】本题考查两点之间的最短距离,熟练掌握“两点之间线段最短”的性质是解题关键.19.3或4或6【分析】分三种情况下:①∠AOP=35°②∠AOP=20°③0<x <50中的其余角根据互余的定义找出图中互余的角即可求解【详解】①∠AOP =∠AOB=35°时∠BOP=35°∴互余的角有∠解析:3或4或6【分析】分三种情况下:①∠AOP=35°,②∠AOP=20°,③0<x<50中的其余角,根据互余的定义找出图中互余的角即可求解.【详解】①∠AOP=12∠AOB =35°时,∠BOP=35°∴互余的角有∠AOP与∠COP,∠BOP与∠COP,∠AOB与∠COB,∠COD与∠COB,一共4对;②∠AOP=90°-∠AOB =20°时,∴互余的角有∠AOP与∠COP,∠AOP与∠AOB,∠AOP与∠COD,∠COD与∠COB,∠AOB与∠COB,∠COP与∠COB,一共6对;③0<x<50中35°与20°的其余角,互余的角有∠AOP与∠COP,∠AOB与∠COB,∠COD 与∠COB,一共3对.则m=3或4或6.故答案为:3或4或6.【点睛】本题考查了余角和补角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.20.6【分析】根据从不同方位看到的图形的形状可知该几何体有2列2行底面有4个小正方体摆成大正方体上面至少2个小正方体放在靠前面的2个小正方体上面由此解答【详解】由题图可知该几何体第一层有4个小正方体第二解析:6【分析】根据从不同方位看到的图形的形状可知,该几何体有2列2行,底面有4个小正方体摆成大正方体,上面至少2个小正方体,放在靠前面的2个小正方体上面.由此解答.【详解】由题图可知,该几何体第一层有4个小正方体,第二层有2个小正方体,所以拼成这个几何体的小正方体的个数为6.故答案为:6.【点睛】本题主要考查从不同方向观察物体和几何体,关键注重培养学生的空间想象能力.三、解答题21.∠BOC=76°,∠EOC=19°.【分析】由∠BOC=2∠AOC,则∠AOB=∠BOC+∠AOC=3∠AOC,即∠BOC=23∠AOB,然后求解即可;再根据OE是∠AOB的平分线求得∠BOE,最后根据角的和差即可求得∠EOC.【详解】解:∵∠BOC=2∠AOC,∠AOB=114°,∴∠BOC=23∠AOB =23×114°=76°,∵OE是∠AOB的平分线,∠AOB=114°,∴∠BOE=12∠AOB =12×114°=57°.∴∠EOC=∠BOC-∠BOE=19°.【点睛】本题主要考查了角平分线的定义以及角的和差运算,掌握数形结合思想成为解答本题的关键.22.AB=12cm,CD=16cm【分析】先设BD=xcm,由题意得AB=3xcm,CD=4xcm,AC=6xcm,再根据中点的定义,用含x的式子表示出AE=1.5xcm和CF=2xcm,再根据EF=AC-AE-CF=2.5xcm,且E、F之间距离是EF=10cm,所以2.5x=10,解方程求得x的值,即可求AB,CD的长.【详解】设BD=xcm,则AB=3xcm,CD=4xcm,AC=6xcm.∵点E、点F分别为AB、CD的中点,∴AE=12AB=1.5xcm,CF=12CD=2xcm.∴EF=AC-AE-CF=2.5xcm.∵EF=10cm,∴2.5x=10,解得:x=4.∴AB=12cm,CD=16cm.【点睛】本题考查了线段中点的性质,设好未知数,用含x的式子表示出各线段的长度是解题关键.23.8cm【分析】先由中点的定义求出AM,BM的长,再根据MC:CB=1:2的关系,求MC的长,最后利用AC=AM+MC得其长度.【详解】∵线段AB的中点为M,∴AM=BM=6cm设MC=x,则CB=2x,∴x+2x=6,解得x=2即MC=2cm.∴AC=AM+MC=6+2=8cm.故答案为:8cm.【点睛】本题主要考查了两点间的距离,在解题时要能根据两点间的距离,利用中点性质转化线段之间的倍分关系是解题的关键.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.24.(1)27.5°;(2) 135°或10°;(3) 2135︒-︒m 或45+︒︒m 或1352︒-︒m .【分析】(1)根据题目已知条件OM 平分AOC ∠,得出∠COM=∠MOA ,因35m =即可求出.(2)∠AOB 和∠BOD 互补,分两种情况讨论,第一种情况是∠AOB 和∠BOD 没有重合部分时,第二种情况是∠AOB 和∠BOD 有重合部分时,再根据题目已知条件求解.(3)根据题目要求画出符合题目的图,在根据题目给出的已知条件求解.【详解】解:(1)∠AOB=35°∵OM 平分AOC ∠∴∠COM=∠MOA=()9035227.5︒-︒÷=︒(2)当∠AOB 和∠BOD 没有重合部分时如图所示∵∠AOB=35°,∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∵ON 平分BOD ∠∴∠BON=∠NOD=()18035272.5︒-︒÷=︒∴∠MON=∠NOB+∠BOA+∠AOM=72.5+35+27.5=135︒︒︒︒当∠AOB 和∠BOD 有重合部分时由(1)知∠MOA=27.5°,∠AOB=35°∠AOB 与∠BOD 互补∴∠AOB+∠BOD=180°∠BOD=180°-35°=145°同理可得:∠NOB=72.5°∠MON=72.5°-27.5°-35°=10°∴∠MON=135°或10°(3)如图所示因为∠AOB ∠AOC 互余,AOB m ∠=∴∠AOC=90︒-m∵OM 平分AOC ∠∴∠COM=∠MOA=()902=452︒︒-÷︒-m m ∵∠OB 与∠BOD 互补∴∠AOB+∠BOD=180°ON 平分BOD ∠∴∠CON=∠NOD=()1802902︒︒-÷=︒-m m ∴∠NAO=3909022︒︒--︒=︒-m m m ∴∠MON=390+45135222︒-︒-=︒-︒m m m同理可得∠MON=45+︒︒m同理可得∠MON=2135︒-︒m∴∠MON=2135︒-︒m 或45+︒︒m 或1352︒-︒m【点睛】本题主要考查的是余角和补角的定义以及角平分线的应用,再做题之前一定要思考清楚需要分几个情况,再根据已知条件解出每种情况.25.34个【分析】在最后一次送了一半加三个,篮子的李子没有剩余,可以知道最后一次的一半就是三个,所以上一次剩余6个,6个加上送的2个合计8个,为第二次的一半,可以知道第一次送出后还有16个,16在加上第一次送的1个为17个,所以最初一共有34个.【详解】用逆推法:解: ()32221234⎡⎤⨯+⨯+⨯=⎣⎦(个)【点睛】送出一半又3个的时候,剩余为0,直接可以知道一半就是3个.26.6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B 作BD ⊥AC ,∵直角边AB 和BC 分别长4厘米和3厘米,∴AC=2234+=5(厘米), 斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:13 2.42 5 =9.6π(立方厘米).。
第四章 图形认识初步 4.1.1 几何图形 当堂训练1.把下列几何图形与对应的名称用线连起来.圆柱 圆锥 正方体 长方体 棱柱 球2.分别画出下列平面图形:长方形 正方形 三角形 圆3.从上向下看图(1),应是如图(2)中所示的( )(2)4.如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.5.如图(1),一本书上放着一个粉笔盒,指出图(2)中的三个平面图形各是从哪个方向看图(1)所看到的.CDBA( )( )( )1()(2)6.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.7.如图,四个图形分别是四个公司的标志,请用线将它们联系起来:中国联合通信有限公司摩托罗拉(中国)电子有限公司方正数码有限公司中国电信集团公司8.如图,上面是一些具体的物体,下面是一些立体图形, 试找出与下面立体图形相类似的实物(用线连接).9.你能只用一笔画出下列图形吗?l l4.1.2 点、线、面、体当堂训练1.如图,观察图形,填空:包围着体的是______;面与面相交的地方形成______; 线与线相交的地方是_______.2.笔尖在纸上快速滑动写出了一个又一个字,这说明了_________;车轮旋转时,看起来像一个整体的圆面,这说明了_________;直角三角形绕它的直角边旋转一周,形成了一圆锥体,这说明了_____________.3.三棱锥有________个面,它们相交形成了________条棱, 这些棱相交形成了________个点.4.如图,各图中的阴影图形绕着直线I旋转360°,各能形成怎样的立体图形?5.小明用如图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的4个图案中,符合图示滚涂出的图案是( )6.生活中经常看到由一些简单的平面图形组成的优美图案, 你能说出下面图中的神秘图案是由哪些平面图形组成的吗?7.将如图左边的图形折成一个立方体, 判断右边的四个立方体哪个是由左边的图形折成的.8.用6根火柴能摆成含有4个三角形的图形吗?有几种方法?9.小明为班级专栏设计一个图案,如图,主题是“我们喜爱合作学习”, 请你也尝试用圆、扇形、三角形、四边形、直线等为环保专栏设计一个图案, 并标明你的主题.4.2 直线、射线、线段当堂训练1.经过一点,有______条直线;经过两点有_____条直线,并且______条直线.2.如图1,图中共有______条线段,它们是_________.3.如图2,图中共有_______条射线,指出其中的两条________.4.线段AB=8cm,C 是AB 的中点,D 是BC 的中点,A 、D 两点间的距离是_____cm.我们喜爱合作学习1()A2()3()5.如图3,在直线上顺次取A 、B 、C 、D 四点,则A C=______+BC=AD-_____,AC+BD- BC=________.6.下列语句准确规范的是( )A.直线a 、b 相交于一点mB.延长直线ABC.反向延长射线AO(O 是端点)D.延长线段AB 到C,使BC=AB 7.下列四个图中的线段(或直线、射线)能相交的是( )A.(1)B.(2)C.(3)D.(4)8.如果点C 在AB 上,下列表达式①AC=12AB;②AB=2BC;③AC=BC;④AC+BC=AB 中, 能表示C 是AB 中点的有( )A.1个B.2个C.3个D.4个9.如上图,从A 到B 有3条路径,最短的路径是③,理由是( ) A.因为③是直的 B.两点确定一条直线 C.两点间距离的定义 D.两点之间,线段最短10.如图,平面上有四个点A 、B 、C 、D,根据下列语句画图 (1)画直线AB 、CD 交于E 点; (2)画线段AC 、BD 交于点F; (3)连接E 、F 交BC 于点G; (4)连接AD,并将其反向延长; (5)作射线BC;(6)取一点P,使P 在直线AB 上又在直线CD 上.11.观察图中的3组图形,分别比较线段a 、b 的长短,再用刻度尺量一下, 看看你的结果是否1()CD2()CD 3()D B4()CD②BA正确.12.如图,要在一个长方体的木块上打四个小孔,这四个小孔要在一条直线上,且每两个相邻孔之间的距离相等,画出图形,并说明其中道理.13.如图,一个三角形纸片,不用任何工具,你能准确比较线段AB 与线段AC 的大小吗?试用你的方法分别确定线段AB 、AC 的中点.14.在一条直线上取两上点A 、B,共得几条线段?在一条直线上取三个点A 、B 、 C,共得几条线段?在一条直线上取A 、B 、C 、D 四个点时,共得多少条线段? 在一条直线上取n 个点时,共可得多少条线段?B AC B A CABC AA1B OBA1B OCA B OCDA1BOD4.3.1 角 当堂训练一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 二、填空:4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=______′;30°6′=_____′=______°. 三、解答题:6.计算:(1)49°38′+66°22′; (2)180°-79°19′;(2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图: (1)画∠AOB=100°;(2)在∠AOB 的内部画射线OC,使∠BOC=50°;(3)在∠AOB的外部画射线OD,使∠DOA=40°;(4)在射线OD上取E点,在射线OA上取F,使∠OEF=90°.8.任意画一个三角形,估计其中三个角的度数,再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?12.如图,在∠AOB 的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC 、OD 呢?引三条射线OC 、OD 、OE 呢?若引十条射线一共会有多少个角?13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.4.3.2 角的比较与运算 当堂训练一、填空: 1.如图1,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<); 用量角器度量∠BOC=____°,∠AOC=______°,∠AOC______∠BOC.2.如图2,∠AOC=______+______=______-______; ∠BOC=______-______= _____-________.3.OC 是∠AOB 内部的一条射线,若∠AOC=________,则OC 平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC. 二、选择:ABO一帆风顺一盏吊灯OC(1)AB O DC(2)ABOD C (3)AB 124.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A一定大于∠C。
《图形认识初步》一、选择题(每小题3分,共30分)1.下列空间图形中是圆柱的为()A. B. C. D.2.桌上放着一个茶壶,4个同学从各自的方向观察,请指出下图右边的四幅图,从左至右分别是由哪个同学看到的()第2题图A.①②③④ B.①③②④ C.②④①③ D.④③①②3.将如图2所示的直角三角形ABC绕直角边AC旋转一周,所得的几何体从正面看是图3中()4.小丽制作了一个如下左图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()A图2A B C D图 35.如图所示,从A 地到达B 地,最短的路线是( )A.A →C →E →BB.A →F →E →BC.A →D →E →BD.A →C →G →E →B6.(2013•云南昭通中考)如图是一个正方体的表面展开图,则原正方体中与“建”字所在的面相对的面上标的字是( )A .美B .丽C .云D .南7.如图所示的立体图形从上面看到的图形是( )8.如果∠1与∠2互为补角,且∠1∠2,那么∠2的余角是( ) A.21∠ 1 B.21∠2 C.21(∠1-∠2) D.21(∠1+∠2)第7题图第5题图二、填空题(每小题2分,共20分)1.长方体由个面,条棱,个顶点.2.下列图形是一些立体图形的平面展开图,请将这些立体图形的名称填在对应的横线上.3.(2012•山东菏泽中考)已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=_______cm.4.(1)32度分秒。
48.(2)//042/72= 度。
235.如图甲,用一块边长为10 cm的正方形的厚纸板,做了一套七巧板.将七巧板拼成一座桥(如图乙),这座桥的阴影部分的面积是 .第5题图6.把一张长方形纸条按图的方式折叠后,量得∠AOB'=110°,则∠B'OC=______.7.下图是由一些相同的小正方体构成的几何体从不同方向看得到的平面图形,这些相同的小正方体的个数是_______.8.如图所示的几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n个几何体中只有两个面...涂色的小立方体共有个.三、解答题1.计算:(1)22°18′×5;(2)90°-57°23′27″.1∠β的值2.已知∠α与∠β互余,且∠α比∠β小25°,求2∠α-33. 一个角的补角加上010后等于这个角的余角的3倍,求这个角.4.⑴已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度。
人教版七年级上册数学第四章几何图形初步单元测试题(含答案)一、选择题1.角是指()A. 由两条线段组成的图形B. 由两条射线组成的图形C. 由两条直线组成的图形D. 有公共端点的两条射线组成的图形2.如果一个角的补角是150°,那么这个角的余角的度数是()A. 30°B. 60°C. 90°D. 120°3.下列说法正确的是()A. 经过两点有且只有一条线段B. 经过两点有且只有一条直线C. 经过两点有且只有一条射线D. 经过两点有无数条直线4.如图,四条线段中,最短和最长的一条分别是()A. acB. bdC. adD. bc5.如图,B在线段AC上,且BC=2AB,D,E分别是AB,BC的中点.则下列结论:①AB= AC;②B是AE的中点;③EC=2BD;④DE=AB.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.已知∠α=70°,则∠α的补角为()A. 120°B. 110°C. 70°D. 20°7.下列语句中,正确的是().A. 比直角大的角钝角;B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角8.如图,已知AD平分∠BAE,若∠BAD=62°,则∠CAE的度数是()A. 55°B. 56°C. 58°D. 62°9.如图,下列关系式中与图不符合的式子是()A. AD-CD=AB+BCB. AC-BC=AD-BDC. AC-BC=AC+BDD. AD-AC=BD-BC10.如图是一个正方体的平面展开图,当把它拆成一个正方体,与空白面相对的字应该是()A. 北B. 京C. 欢D. 迎二、填空题11.已知线段AB=8 cm,在直线AB上画线段BC,使它等于3 cm,则线段AC=________.12.若∠α=32°22′,则∠α的余角的度数为________.13.已知一个角的补角等于155°,则这个角的余角等于________14.八棱柱有________个顶点,________条棱,________个面.15.和互补,且-=50°,求和的度数. ________、 ________16.34.42°=________(用度、分、秒表示).17.一个角的补角加上10°后,等于这个角的余角的3倍,则这个角=________ °.18.用一个平面去截长方体,截面________是平行四边形(填“可能”或“不可能”).19.一条直线上有A、B、C三个点,AB=7cm,BC=4cm,则AC=________ .20.已知线段AB=1996,P、Q是线段AB上的两个点,线段AQ=1200,线段BP=1050,则线段PQ=________.三、解答题21.已知∠BOC=120°,∠AOB=70°,求∠AOC的大小。
第四章几何图形的初步一、单选题1.如图,图、图、图均由四个全等的等边三角形组成,其中能够折叠围成一个立体图形的有()A.只有图①B.只有图①、图②C.图①、图②、图③ D.只有图②、图③2.下列平面图形中不能围成正方体的是()A.B.C.D.3.某校年级(1)班在“迎中考日誓师”活动中打算制作一个带有正方体挂坠的倒计时牌挂在班级,正方体的每个面上分别书写“成功舍我其谁”六个字如图是该班同学设计的正方体挂坠的平面展开图,那么“谁”对面的字是()A.成B.功C.其D.我4.将一个底面直径是10厘米,高为36厘米的圆柱体锻压成底面直径为20厘米的圆柱体,在这个规程中不改变的是圆柱的()A.高B.侧面积C.底面积D.体积5.用一个平面去截下列立体图形,截面可以得到三角形的立体图形有()A.1个B.2个C.3个D.4个6.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹7.点A,B,C在一条直线上,AB=6,BC=2,点M是AC的中点,则AM的长度为()A.4 B.6 C.2或6 D.2或48.如图,小李同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间线段最短D.经过两点有且仅有一条直线9.将直角三角尺和长方形纸片如图放置,图中与∠1互余的角有A.2个B.3个C.4个D.5个10.如图,点位于点的().A.南偏东方向上B.北偏西方向上C.南偏东方向上D.南偏西方向上11.如图,直线AB,CD相交于点O,OE⊥AB于O,∠COE=55°,则∠BOD的度数是()A.35°B.45°C.30°D.40°12.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题13.如图,C岛在A岛的北偏东60°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=_______.14.如图,平面展开图折叠成正方体后,相对面上的两个代数式值相等,则x+y=________.15.如图,将一副三角板叠放在一起,使直角顶点重合于O,则∠AOC+∠DOB=_____.16.线段,C是线段AB上一点,AC=4,M是AB的中点,点N是AC的中点,则线段NM的长是________.三、解答题17.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状图。
人教版七年级数学上册第四章《几何图形初步》单元练习题(含答案)一、单选题1.如图是一个由5个相同的正方体组成的立体图形,从其正面看,得到的平面图形是()A.B.C.D.2.如图,将矩形绕着它的一边所在的直线l旋转一周,可以得到的立体图形是()A.B.C.D.3.图中的长方体是由三个部分拼接而成的,每一部分都是由四个同样大小的小正方体组成的,那么其中第一部分所对应的几何体可能是()A.B.C.D.4.下列图形旋转一周,能得到如图几何体的是()A.B.C.D.5.如图,用一个平行于圆锥底面的平面截圆锥,截面的形状是()A.B.C. D.6.数学源于生活,并用于生活,要把一根木条固定在墙上至少需要钉两颗钉子,其中的数学原理是()A.过一点有无数条直线B.线段中点的定义C.两点之间线段最短D.两点确定一条直线7.下列图形是正方体展开图的个数为()A .1个B .2个C .3个D .4个8.下列说法中正确的有( ).(1)线段有两个端点,直线有一个端点; (2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关; (4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若AOC ∠与AOB ∠有公共顶点,且AOC ∠的一边落在AOB ∠的内部,则AOB AOC ∠>∠.A .1个B .2个C .3个D .4个9.如果一个角的度数比它的补角的度数2倍多30°,那么这个角的度数是( ) A .50°B .70°C .130°D .160°10.圆柱与圆锥的体积之比为2:3,底面圆的半径相同,那么它们的高之比为( ) A .2:3B .4:5C .2:1D .2:911.几何图形都是由点、线、面、体组成的,点动成线,线动成面,面动成体,下列生活现象中可以反映“线动成面”的是( ) A .笔尖在纸上移动划过的痕迹 B .长方形绕一边旋转一周形成的几何体 C .流星划过夜空留下的尾巴 D .汽车雨刷的转动扫过的区域12.己知点M 是线段AB 上一点,若14AM AB =,点N 是直线AB 上的一动点,且AN BN MN -=,则MNAB 的( ) A .34B .12C .1或12D .34或2二、填空题13.有一块积木,每一块的各面都涂上红绿黑白蓝黄六种不同的颜色,下面是它摆放的三种不同方向的图像,请根据图像判断绿色面的对面是_____色14.将两个三角尺的直角顶点重合为如图所示的位置,若108∠=︒,则AOD∠=_________.COB15.如图是用一副七巧板拼成的正方形,边长是10cm.图中小正方形(涂色部分)的面积是( )2cm.16.如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.17.圆柱的侧面展开图是一个相邻的两边长分别为4,2π的长方形,则圆柱体的体积为_____.18.有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为_____.三、解答题19.如图,点E是线段AB的中点,C是EB上一点,AC=12,(1)若EC:CB=1:4,求AB的长;(2)若F为CB的中点,求EF长。
D CB AB A第1题图会社谐和设建DC BAβββααα第3题图七级数学第四章几何图形初步测试题(新课标)(时限:100分钟 总分:100分)一、选择题:将下列各题正确答案的代号填在下表中。
每小题2分,共24分。
1.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“建”字一面的相对面上的字是( )A.和B.谐C.社D.会2.下面左边是用八块完全相同的小正方体搭成 的几何体,从上面看该几何体得到的图是( )A B C D3.如图,四个图形是由立体图形展开得到的,相应的立体图形顺次是( ) A. 正方体、圆柱、三棱柱、圆锥 B. 正方体、圆锥、三棱柱、圆柱 C. 正方体、圆柱、三棱锥、圆锥 D. 正方体、圆柱、四棱柱、圆锥4.如图,对于直线AB ,线段CD ,射线EF ,其中能相交的是( )5.下列说法中正确的是( )A.画一条3厘米长的射线B.画一条3厘米长的直线C.画一条5厘米长的线段D.在线段、射线、直线中直线最长 6.如图,将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( )1乙甲N MP D C B A B ()D C A D C B A 第9题图BA 7.点E 在线段CD 上,下面四个等式①CE =DE ;②DE =21CD ;③CD =2CE ; ④CD =21DE.其中能表示E 是线段CD 中点的有( ) A. 1个 B. 2个 C. 3个 D. 4个 8. C 是线段AB 上一点,D 是BC 的中点,若AB =12cm ,AC =2cm ,则BD 的长为( ) A. 3cm B. 4cm C. 5cm D. 6cm9.如图是一正方体的平面展开图,若AB =4,则该正方体A 、B 两点间的距离为( )A. 1B. 2C. 3D. 410.用度、分、秒表示91.34°为( ) A. 91°20/24// B. 91°34/ C. 91°20/4// D. 91°3/4// 11.下列说法中正确的是( )A.若∠AOB =2∠AOC ,则OC 平分∠AOBB.延长∠AOB 的平分线OCC.若射线OC 、OD 三等份∠AOB ,则∠AOC =∠DOCD.若OC 平分∠AOB ,则∠AOC =∠BOC12.甲、乙两人各用一张正方形的纸片ABCD 折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC 折叠,使B 点落在D 点上,则∠1=45°; 乙:将纸片沿AM 、AN 折叠,分别使B 、D 落在对角线AC 上的一点P ,则∠MAN =45°对于两人的做法,下列判断正确的是( )A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错 二、填空题:本大题共8小题,每小题3分,共24分。
导学图(1)§4.1.1几何图形(1) 自主学习制作正方体(大小相等的5个)、长方体、圆柱、圆锥、棱柱、棱锥、球【学习过程】一.独立看书P115~P118页二.独立完成下列预习作业:1.指出下列立体图形的名称:_______ __________ ____________ _______ __________ _________ 2.欣赏章前图“2008年北京奥林匹克公园”,从中找出你熟悉的图形。
3.理解几个概念:几何图形:立体图形:平面图形:思考:几何图形根据是否在同一平面内分为___________图形和_________图形。
4.举例说出生活中下面立体图形的实物。
正方体:长方体:圆柱:圆锥:棱柱:棱锥:球:三.合作交流,解决问题:你能说出下列图形之间的区别吗?(提示:从底面、侧面的形状、数量方面比较)(1)圆柱与棱柱:相同点:不同点:(2)圆锥与棱锥:相同点:不同点:例.说出下列立体图形的名称:(1)认识简单的几何图形:圆柱、圆锥、棱柱、棱锥、球;(2)能由实物形状想象出几何图形,由几何图形想象出实物形状。
学习目标四.当堂检测:1.把下列几何图形与对应的名称用线连起来圆柱圆锥正方体长方体棱柱球2.下面图形中叫圆柱的是()3.下列说法,不正确的是()A、圆锥和圆柱的底面都是圆.B、棱锥底面边数与侧棱数相等.C、棱柱的上、下底面是形状、大小相同的多边形.D、长方体是四棱柱,四棱柱是长方体.4.正方体有个面,个顶点,经过每个顶点有条棱.这些棱的长度(填相同或不同).棱长为acm的正方体的表面积为 cm2.5.五棱柱是由个面围成的,它有个顶点,有条棱.6.从一个七边形的一个顶点出发,连结其余各顶点,将这个七边形分割成个三角形。
7.从一个边数为n的内部一点出发,连结这点与各顶点,将该多边形分割成个三角形。
8.如图所示的几何体是由一个正方体截去四分之一后形成的,这个几何体是由个面围成的,其中正方形有个,长方形有个.(第8题)(第9题)9.如图,求图中共有个四边形。
第四章几何图形初步测试题一、选择题(本大题共10小题,每小题3分,共30分)1.下列几何体中由三个面围成的是()2.下列说法中错误的是()A.直线AB和直线BA是同一条直线B.射线AB和射线BA是同一条射线C.线段AB和射线AB都是直线AB的一部分D.∠ABC和∠CBA表示同一个角3 .如图1所示,能折成棱柱的有()A.1个B.2个C.3个D.4个图14.下列角度换算不正确的是()A. 5°16′=316′B. 10.2°=612′C. 72 000″=20°D. 18°25′=18.5°5.如图2,C,D是线段AB上的两点,D是AC的中点,AD=2.5 cm,AB=8 cm,则BC的长等于()A. 2.5 cm B. 3 cm C. 3.5 cm D. 4 cm6.图3是由8个相同的小正方体堆砌而成的几何体,从上面看这个几何体的形状图的是()A B C D7.过平面上A,B,C三点中的任意两点作直线,共可以作()A.1条B.3条C.1条或3条D.无数条8. 将如图4所示表面带有图案的正方体沿某些棱剪开展平后,得到的图形是()A B C D 图49.甲、乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图5),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM,AN折叠,分别使B,D落在对角线AC上的点P处,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错图510.如图6,已知B在线段AC上,且BC=2AB,D,E分別是AB,BC的中点,有下列结论:①AB=31AC;②B是AE的中点;③EC=2BD;④DE=23AB.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)11. 在图7所示的横线上写出图中的几何体的名称.图712.经过刨平的木板上的两个点能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数知识是.图613. 如图8所示,三个正方体摆成一个几何体,则①是从 看的形状图,②是从 看 的形状图,③是从 看的形状图.图814.已知∠α与∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③21(∠α+∠β);④21(∠α- ∠β).其中能表示∠β的余角的是_________(填序号).15. 一个棱柱有 12 个顶点,所有侧棱长的和是48 cm ,则每条侧棱长是 cm .16. 一个正方体,六个面上分别写着六个连续整数,且每两个相对面上的两个数的和都相等,如图9所示,能 看到的所写的数为16,19,20,则这6 个整数的和为 .图9三、解答题(本大题共6小题,共52分)17.(6分)一个角的补角比这个角的余角的2倍还多40°,求这个角的度数.18.(8分)如图10,货轮O 在航行过程中,在它的北偏东60°方向上,与之相距30海里处发现灯塔A ,同时 在它的南偏东30°方向上,与之相距20海里处发现货轮B ,在它的西南方向上发现客轮C ,按下列要求画出. (1)画出线段OB ; (2)画出射线OC ; (3)连接AB 交OE 于点D.图1019.(8分)图11是从正面、上面看由一些大小相同的小正方体搭成的几何体得到的平面图形. (1)这样的几何体只有一种情况吗?(2)若组成这个几何体的小正方体的块数为n ,请你写出n 的所有可能的值.图1120. (10分)如图12,小华用若干个正方形和长方形准备拼成一个长方体的表面展开图.拼完后,小华看来 看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全.(2)若图中的正方形边长为2 cm ,长方形的长为3 cm ,宽为2 cm ,请直接写出修正后所折叠而成的长方体的容积 cm 3(不计长方体容器的壁厚).图12 21.(10分)如图13,已知C 是线段AB 的中点,E 是线段AB 上的点,D 是线段AE 的中点. (1)若线段AB =a ,CE =b ,且a ,b 满足|a-15|+(b-4.5)2=0,求a ,b 的值; (2)在(1)的条件下,求线段DE 的长; (3)若AB =15,AD =2BE ,求线段CE 的长.图1323.(12分)如图14-①,含30°角的直角三角尺的直角顶点O 在直线AB 上,OC ,OD 是三角尺的两条直角边,OE 平分∠AOD .(1)若∠COE=20°,则∠BOD= ;若∠COE=α,则∠BOD= .(用含α的式子表示)(2)当三角尺绕点O 逆时针旋转到图5-②的位置,其它条件不变,试猜测∠COE 与∠BOD 之间有怎样的数 量关系?并说明理由.BECD A图14附加题(20分)1.(6分)如图1,将三个三角形板直角顶点重叠在一起,公共的直角顶点为点B,若∠ABE=45°,∠GBH=30°,那么∠FBC的度数为()A.30°B.25°C.20°D.15°2.(14分)围成立体图形的每个面都是平面,这样的立体图形叫多面体.仔细观察图2中所示的四面体、六面体、八面体,解决下列问题:(1)填空:①四面体的顶点数V=,面数F=,棱数E=.②六面体的顶点数V=,面数F=,棱数E=.③八面体的顶点数V=,面数F=,棱数E=.(2)若将多面体的顶点数用V表示,面数用F表示,棱数用E表示,则V,F,E之间的数量关系可用一个公式来表示,这就是著名的欧拉公式.请写出欧拉公式:.(3)如果一个多面体的棱数为30,顶点数为20,那么这个多面体有多少个面?第四章 几何图形初步测试题参考答案一、1.B 2.B 3. B 4.D 5.B 6. C 7. C 8.C 9. A10. D 提示:由BC=2AB ,AC=AB+BC ,得AC=3AB ,故①正确;由E 分别是BC 的中点,BC=2AB ,得 BE=AB ,故②正确;由D ,E 分别是AB ,BC 的中点,得EC=BE=AB=2BD ,故③正确;由上述结论,得DE=DB+ BE=21AB+AB=23AB ,故④正确. 二、11. 圆锥 长方体 圆柱 球 五棱柱 12. 7 14 13. 正面 左面 上面 14.①②④ 15. 816. 111三、17. 解:设这个角为x°,则其余角为(90-x )°,补角为(180-x )°. 根据题意,得180-x=2(90-x )+40,解得x=40. 答:这个角的度数是40°.18. 解: (1)(2)(3)如图1所示.图119. 解:(1)这样的几何体不只一种情况;(2)因为从上面看有5个正方形,所以最底层有5个正方体; 由正面看可得第2层最少有2个正方体,第3层最少有1个正方体; 由正面看可得第2层最多有4个正方体,第3层最多有2个正方体;所以该组合几何体最少有正方体5+2+1=8(个),最多有正方体5+4+2=11(个). 所以n 可能为8,9,10或11.20. 解:(1)如图2所示,拼图存在问题,多了一块.图2(2)1221. 解:(1)由|a-15|+(b-4.5)2=0,得a-15=0,b-4.5=0,解得a =15,b =4.5. (2)由(1)知AB =15,CE =4.5. 因为C 是线段AB 的中点,所以AC=21AB=21×15=7.5,所以AE=AC+CE=7.5+4.5=12. 因为D 是线段AE 的中点,所以DE =21AE=21×12=6. (3)设BE =x ,由AD =2BE ,得AD =DE =2x .由AB =15,且AB=AD+DE+EB ,得5x =15,解得x =3,即BE=3. 因为C 是线段AB 的中点,所以BC=21AB=21×15=7.5,所以CE =BC-BE=7.5-3=4.5. 22.解:(1)40° 2α 提示:若∠COE=20°,因为∠COD=90°,∠COE=20°,所以∠EOD=90°-20°=70°.因为OE 平分∠AOD ,所以∠AOD=2∠EOD=140°,所以∠BOD=180°-140°=40°.若∠COE=α,则∠EOD=90-α.因为OE 平分∠AOD ,所以∠AOD=2∠EOD=2(90-α)=180-2α,所以∠BOD=180°-(180-2α)=2α.(2)∠BOD=2∠COE ,理由如下: 设∠BOD=β,则∠AOD=180°-β. 因为OE 平分∠AOD ,所以∠EOD=12∠AOD= 1802β-=90°-2β. 因为∠COD=90°,所以∠COE=90°-(90°-2β)= 2β,即∠BOD=2∠COE . 附加题1. D 提示:∵∠ABE=45°,∴∠CBE=45°,∴∠CBG=45°,∵∠GBH=30°,∴∠FBG=60°,∴∠FBC=∠FBG- ∠CBG=60°-45°=15°.2. (1)①4 4 6 ②8 6 12 ③6 8 12 (2)V+F-E=2(3)由欧拉公式可知,E=30,V=20,可得面数F=12.所以这个多面体有12个面.。
BD A B C D A B C D A ·····B C D E 七年级数学(上册)第四章《图形的认识》测试题一、选择题:1、把弯曲的河道改直,能够缩短航程,这样做的道理是( )A.两点之间,线段最短;B.两点确定一条直线;C. 两点之间,直线最短;D. 两点确定一条线段;2 )3、下列说法正确的个数有( )①端点相同的两条射线是同一条射线;②过两点有且只有一条直线;③射线比直线短;④一条线段两端点之间的点叫做线段中点;A.1个;B.2个;C. 3个;D. 4个;4、已知∠α=35°,那么∠α的余角等于( )A. 35°;B. 55°;C. 65°;D. 145°;5、下列四个角最有可能与70°角互补的是( )6、下列算式中正确的是( )①33.33°=33°3′3″;②33.33°=33°19′48″;③50°40′30″=50.43°;④50°40′30″=50.675°;A. ①②;B. ①③;C. ②③;D. ②④;8、已知点C 是直线AB 上一点,AB=6cm ,BC=2cm ,那么AC 的长是( )A. 2cm ;B. 4cm ;C. 8cm ;D. 4cm 或 8cm ;9、如图,∠AOD=∠BOC =60°,∠AOB=150°,则∠COD 等于( )A. 15°;B. 20°;C.25°;D. 30°;10、一个角的余角与它的补角互补,这个角是( ) A. 30°; B. 45°;C. 60°;D. 90°;二、填空题:14、如图,点C 是线段AB 上一点,D 、E 分别是线段AC ,BC 的中点,若AB=10cm , AD=2cm ,则CE= .B ACD O 123O B A C D E 4123···B A C B A O C D E ·B ····A C M N 15、一个锐角是38°,则它的余角是 。
人教版七年级数学上册第四章几何图形初步同步测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒ 2、如图,BC =12AB ,D 为AC 的中点,DC =3cm ,则AB 的长是( )A .72cm B .4cm C .92cm D .5cm3、一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是( )A .A 代表B .B 代表C .C 代表D .B 代表4、如图所示,∠COD 的顶点O 在直线AB 上,OE 平分∠COD ,OF 平分∠AOD ,已知∠COD =90°,∠BOC =α,则∠EOF 的度数为( )A .90°+αB .90°+2αC .45°+αD .90°﹣2α 5、下列四个图中,是三棱锥的表面展开图的是( )A .B .C.D.6、图中,AB、AC是射线,图中共有()条线段.A.7 B.8 C.9 D.11等于7、平面内两两相交的6条直线,交点个数最少为m个,最多为n个,则m n()A.12 B.16 C.20 D.228、永定河,“北京的母亲河”.近年来,我区政府在永定河治理过程中,有时会将弯曲的河道改直,图中A,B两地间的河道改直后大大缩短了河道的长度.这一做法的主要依据是()A.两点确定一条直线B.垂线段最短C.过一点有且只有一条直线与已知直线垂直D.两点之间,线段最短9、若∠1与∠2互补,则∠1+∠2=()A.90°B.100°C.180°D.360°10、粉刷墙壁时,粉刷工人用滚筒在墙上刷过几次后,墙壁马上换上了“新装”,在这个过程中,你认为下列判断正确的是()A.点动成线B.线动成面C.面动成体D.面与面相交得到线第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将如图所示的平面展开图折叠成正方体后,“爱”的对面的汉字是_____.2、在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明_____________.3、如图,将一副三角板叠放一起,使直角的顶点重合于点O,则∠AOD +∠COB的度数为___________度.4、如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,若∠COM=4∠CON,则∠COM的度数为______.5、一个几何体的三视图如图所示,则该几何体的表面积为____________.三、解答题(5小题,每小题10分,共计50分)1、如图,160AOB ∠=︒,OC 为其内部一条射线.(1)若OE 平分AOC ∠,OF 平分BOC ∠.求EOF ∠的度数;(2)若100AOC ∠=,射线OM 从OA 起绕着O 点顺时针旋转,旋转的速度是20︒每秒钟,设旋转的时间为t ,试求当AOM ∠+MOC ∠+MOB ∠200=时t 的值.2、我们规定,如果两个角的差是一个直角,那么这两个角互为足角. 其中的一个角叫做另一个角的足角.(1)如图,直线经过点O ,OE 平分,COB OF OE ∠⊥.请直接写出图中BOF ∠的足角;(2)如果一个角的足角等于这个角的补角的23,求这个角的度数.3、下面是一个多面体的表面展开图每个面上都标注了字母,(所有字母都写在这一多面体的外表面)请根据要求回答问题:(1)如果面F在前面,从左边看是B,那么哪一面会在上面?(2)如果从右面看是面C面,面D在后边那么哪一面会在上面?(3)如果面A在多面体的底部,从右边看是B,那么哪一面会在前面.4、如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN 重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转(1)试说明∠DPC=90°;(2)如图②,若三角板PBD保持不动,三角板PAC绕点P逆时针旋转旋转一定角度,PF平分∠APD,PE平分∠CPD,求∠EPF;(3)如图③.在图①基础上,若三角板PAC开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请求出旋转的时间.5、如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=90º,∠EOD=60º,求∠BOC的度数-参考答案-一、单选题1、A【解析】【分析】根据余角的定义、角度的四则运算即可得.【详解】和为90︒的两个角互为余角,且6032α'∠=︒,α∴∠的余角为909060322928α''︒-∠=︒-︒=︒,故选:A .【考点】本题考查了余角、角度的四则运算,熟练掌握余角的定义是解题关键.2、B【解析】【分析】先根据已知等式得出AB 与AC 的等量关系,再根据线段的中点定义可得出AC 的长,从而可得出答案.【详解】 ∵12BC AB = ∴1322AC AB BC AB AB AB =+=+=,即23AB AC = ∵D 为AC 的中点,3DC cm =∴26AC CD cm == ∴2264()33AB AC cm ==⨯= 故选:B .【考点】本题考查了线段的和差倍分、线段的中点定义,掌握线段的中点定义是解题关键.3、A【解析】【分析】根据正方体展开图的对面,逐项判断即可.【详解】解:由正方体展开图可知,A 的对面点数是1;B 的对面点数是2;C 的对面点数是4;∵骰子相对两面的点数之和为7,∴A 代表,故选:A .【考点】本题考查了正方体展开图,解题关键是明确正方体展开图中相对面间隔一个正方形,判断哪两个面相对.4、B【解析】【分析】先利用∠COD =90°,∠BOC =α,求出∠BOD 的度数,再求出∠AOD 的度数,利用角平分线,分别求出∠FOD 和∠EOD 的度数,相加即可.【详解】解:∵∠COD =90°,∠BOC =α,∴∠BOD =90°-∠BOC =90°-α,∴∠AOD =180°-∠BOD =90°+α,∵OF 平分∠AOD , ∴114522DOF AOD α∠=∠=︒+,∵OE 平分∠COD , ∴1452DOE COD ∠=∠=︒, ∴∠EOF =∠FOD +∠DOE =90°+2α; 故选:B .【考点】 本题考查了角平分线的计算,解题关键是准确识图,弄清角之间的和差关系.5、B【解析】【分析】根据三棱锥是由四个三角形组成,即可求解【详解】解:A是四棱柱,故该选项不正确,不符合题意;B是三棱锥,故该选项正确,符合题意;C是四棱锥,故该选项不正确,不符合题意;D是三棱柱,故该选项不正确,不符合题意;故选B.【考点】.本题考查了三棱锥的侧面展开图,解题的关键是掌握三棱锥是由四个三角形组成.6、C【解析】【分析】根据线段的定义,线段有两个端点,找出所有的线段后再计算个数.【详解】解:图中的线段有AD、CD、BD、DE、BE、CE、BC、AB、AC,共有9条.故选:C.【考点】本题主要考查了线段的定义,熟练掌握线段有两个端点,还要注意按照一定的顺序找出线段,要做到不遗漏,不重复是解题的关键.7、B【解析】【分析】根据直线相交的情况判断出m和n的值后,代入运算即可.【详解】解:当六条直线相交于一点时,交点最少,则1m =当任意两条直线相交都产生一个交点时交点最多,∵且任意三条直线不过同一点∴此时交点为:6(61)215⨯-÷=∴15n =∴11516m n +=+=故选:B【考点】本题主要考查了直线相交的交点情况,找出交点个数是解题的关键.8、D【解析】【分析】根据线段的性质分析得出答案.【详解】由题意中改直后A ,B 两地间的河道改直后大大缩短了河道的长度,其注意依据是:两点之间,线段最短,故选:D .【考点】此题考查线段的性质:两点之间线段最短,掌握题中的改直的结果是大大缩短了河道的长度的含义是解题的关键.9、C【解析】【分析】由补角的概念,如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角,即可得出答案.【详解】解:1∠与2∠互补,∴∠+∠=︒,12180故选:C.【考点】本题主要考查补角的概念,解题的关键是利用补角的定义来计算.10、B【解析】【分析】点动线,线动成面,将滚筒看做线,在运动过程中形成面.【详解】解:滚筒看成是线,滚动的过程成形成面,故选:B.【考点】本题考查点、线、面的关系;理解点动成线,线动成面的过程是解题的关键.二、填空题1、家【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”字对面的字是“丽”,“爱”字对面的字是“家”,“美”字对面的字是“乡”.故答案为:家.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.2、点动成线.【解析】【分析】根据点动成线可得答案.【详解】解:“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了线,这说明点动成线.故答案为:点动成线.【点睛】本题主要考查了点、线、面、体,从运动的观点来看:点动成线,线动成面,面动成体.3、180【解析】【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB =∠COD+∠AOB=90°+90°=180°.故答案是:180.【点睛】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.4、72°##72度【解析】【分析】利用平角、角平分线的性质,可求得∠MON的度数,由∠COM=4∠CON,得关于∠COM的方程,求解即可.【详解】解:∵OM平分∠AOC,ON平分∠BOC,∴∠COM=12∠AOC,∠CON=12∠COB,∵∠AOC+∠COB=180°,∴∠COM+∠CON=90°,∵∠COM=4∠CON,∴∠COM+14∠COM=90°,即54∠COM=90°,∴∠COM=72°,故答案为:72°.【点睛】本题考查了角平分线的性质、平角的定义及一元一次方程方程的解法.利用平角是180°、角平分线的性质,得∠MON=90°是解决本题的关键.5、3π+4【解析】【分析】首先根据三视图判断几何体的形状,然后计算其表面积即可.【详解】解:观察该几何体的三视图发现其为半个圆柱,半圆柱的直径为2,高为1,故其表面积为:π×12+(π+2)×2=3π+4,故答案为:3π+4.【点睛】本题考查了由三视图判断几何体的知识,解题的关键是首先根据三视图得到几何体的形状,难度不大.三、解答题1、(1)80EOF ∠=;(2)3t s =或7t s =,【解析】【分析】(1)根据角平分线定义和角的和差计算即可;(2)分四种情况讨论:①当OM 在∠AOC 内部时,②当OM 在∠BOC 内部时,③当OM 在∠AOB 外部,靠近射线OB 时,④当OM 在∠AOB 外部,靠近射线OA 时.分别列方程求解即可.【详解】(1)∵OE 平分∠AOC ,OF 平分∠BOC , ∴∠1=12∠AOC ,∠2=12∠BOC ,∴∠EOF =∠1+∠2=12∠AOC +12∠BOC =12(∠AOC +∠BOC )=12∠AOB .∵∠AOB=160°,∴∠EOF=80°.(2)分四种情况讨论:①当OM在∠AOC内部时,如图1.∵∠AOC=100°,∠AOB=160°,∴∠MOB=∠AOB-∠AOM=160°-20t.∵∠AOM+∠MOC+∠MOB=∠AOC+∠MOB=200°,∴100°+160°-20t=200°,∴t=3.②当OM在∠BOC内部时,如图2.∵∠AOC=100°,∠AOB=160°,∴∠BOC=∠AOB-∠AOC=160°-100°=60°.∵∠AOM+∠MOC+∠MOB=∠AOM+∠COB=200°,∴2060200t+=,∴t =7.③当OM 在∠AOB 外部,靠近射线OB 时,如图3,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵∠AOM =20t ,∴∠MOB =∠AOM -∠AOB =20160t ︒-︒,∠MOC =20100t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴202010020160200t t t ︒+︒-︒+︒-︒=︒,解得:t =233. ∵∠AOB =160°,∴OM 转到OB 时,所用时间t =160°÷20°=8. ∵233<8, ∴此时OM 在∠BOC 内部,不合题意,舍去.④当OM 在∠AOB 外部,靠近射线OA 时,如图4,∵∠AOB =160°,∠AOC =100°,∴∠BOC =160°-100°=60°.∵36020AOM t ∠=︒-︒,∴∠MOC =∠AOM +∠AOC =36020100t ︒-︒+︒=46020t ︒-︒,∠MOB =∠AOM +∠AOB =36020160t ︒-︒+︒=52020t ︒-︒.∵∠AOM +∠MOC +∠MOB =200°,∴()()()360204602052020200t t t ︒-︒+︒-︒+︒-︒=︒,解得:t =19.当t =19时,20t =380°>360°,则OM 转到了∠AOC 的内部,不合题意,舍去.综上所述:t =3s 或t =7s .【考点】本题考查了角的和差和一元一次方程的应用.用含t 的式子表示出对应的角是解答本题的关键.2、(1)COE BOE ∠∠、;(2)这个角的度数为18或126︒.【解析】【分析】(1)根据题意,得到90FOE ∠=︒,BOE COE ∠=∠,由足角的定义,即可得到答案;(2)设这个角为x ︒,然后分090x <<和90180x <<两种情况进行讨论,列式计算,即可得到答案.【详解】解:(1)∵OE 平分,COB OF OE ∠⊥,∴BOE COE ∠=∠,90FOE ∠=︒,∴90BOF BOE BOF COE FOE ∠-∠=∠-∠=∠=︒,∴BOF ∠的足角为:COE BOE ∠∠、.(2)设这个角的度数为x ︒,当090x <<时,()2901803x x +=- 解得:18x =.当90180x <<时,()2901803x x -=- 解得:126x =.∴这个角的度数为:18︒或126︒.【考点】本题考查了角平分线的性质,解一元一次方程,以及新定义,解题的关键是熟练运用所学知识进行解题.3、(1)C 面会在上面;(2)A 面会在上面;(3)C 面会在前面【解析】【分析】利用长方体及其表面展开图的特点解题.这是一个长方体的平面展开图,共有六个面,其中面“A”与面“F”相对,面“B”与面“D”相对,面“C”与面“E”相对.【详解】解:(1)由图可知,如果F 面在前面,B 面在左面,那么“E”面下面,∵面“C”与面“E”相对,∴C 面会在上面;(2)由图可知,如果C 面在右面,D 面在后面,那么“F”面在下面,∵面“A”与面“F”相对,∴A 面在上面.(3)由图可知,如果面A 在多面体的底部,从右边看是B ,那么“E”面在后面,∵面“C”与面“E”相对,∴ C 面会在前面【考点】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.4、(1)见解析;(2)30︒;(3)旋转时间为15秒或1054秒时,PB 、PC 、PD 其中一条射线平分另两条射线的夹角.【解析】【分析】(1)结合题意利用直角三角形的两个锐角互余,即可证明90DPC ∠=︒.(2)结合题意根据角平分线的定义,利用各角之间的等量关系即可求解.(3)设t 秒时,其中一条射线平分另两条射线的夹角.根据题意求出t 的取值范围,再根据情况讨论,利用数形结合的思想列一元一次方程,求解即可.【详解】(1)∵两个三角板形状、大小完全相同,∴30C BPD ∠=∠=︒,又∵90C APC ∠+∠=︒,∴90BPD APC ∠+∠=︒,∴180()1809090DPC BPD APC ∠=︒-∠+∠=︒-︒=︒.(2)根据题意可知EPF DPF DPE ∠=∠-∠, ∵12DPF APD ∠=∠,12DPE CPD ∠=∠, ∴111()222EPF APD CPD APD CPD ∠=∠-∠=∠-∠, 又∵60APD CPD APC ∠-∠=∠=︒,∴11603022EPF APC ∠=∠=⨯︒=︒. (3)设t 秒时,其中一条射线平分另两条射线的夹角,∵当PA 转到与PM 重合时,两三角板都停止转动,∴180536t ≤÷=秒.分三种情况讨论:当PD 平分BPC ∠时,根据题意可列方程59030t t -=-,解得t =15秒<36秒,符合题意.当PC 平分BPD ∠时,根据题意可列方程1590302t t -=+⨯,解得t =1054秒<36秒,符合题意. 当PB 平分CPD ∠时,根据题意可列方程590230t t -=+⨯,解得t =752秒>36秒,不符合题意舍去. 所以旋转时间为15秒或1054秒时,PB 、PC 、PD 其中一条射线平分另两条射线的夹角. 【考点】 本题考查直角三角形的性质,角平分线的定义,图形的旋转.掌握图形旋转的特征,找出其等量关系来列方程求解是解答本题的关键.5、30°【解析】【分析】 根据题意易得1452BOE AOB ∠=∠=︒,∠BOC=2∠BOD,则有∠BOD=15°,进而问题可解. 【详解】解:∵OE 平分∠AOB,∠AOB=90°, ∴1452BOE AOB ∠=∠=︒, ∵OD 是∠BOC 的平分线,∴∠BOC=2∠BOD,∵∠EOD=60°,∴15∠=∠-∠=︒,BOD EOD BOE∴∠BOC=30°.【考点】本题主要考查角平分线的定义及角的和差关系,熟练掌握角平分线的定义及角的和差关系是解题的关键.。
第四章《图形认识初步》 综合测试题(满分120 分时间90 分钟)一、选择题(每题 3 分,共 30 分)1. ①平角是一条直线;②射线是直线的一半;③射线一个扩大 2 倍的放大镜去看一个角, 这个角会扩大= 120 °50. ?AB 与射线 BA 表示同一条射线;④用2 倍;⑤两点之间,线段最短; ⑥ 120.5 °以上说法正确的有 (A.0 个B.12.以下四个图中,能用∠)个 C.2 个 D.3 个1、∠ AOB 、∠ O 三种方法表示同一个角的是()3.以下表达正确的选项是() A . 180°是补角B 120°和 60°互为补角 C 120 °和 60°是补角 D 60°是 30°的补角4. 如图 1 表示一个用于防震的 L 形的包装用泡沫塑料,当从上边看这一物体时看到的图形形状是()A .B .C .D .(图 1)5.以下图形中,哪一个是正方体的睁开图()6.甲看乙的方向为南偏西25°,那么乙看甲的方向是 ()A .北偏东 75° B.南偏东 75° C.北偏东 25° D .北偏西 25°7.若∠ A 的余角是 70°,则∠ A 的补角是()A . 70°B .110°C . 20°D . 160°8.如图,AOC和BOD都是直角,假如D CAOB150 ,那么 COD()AA 、30B 、40C 、50D 、60BO9.经过随意三点中的两点共可画出()A .1 条直线B . 2 条直线C .1 条或 3 条直线D . 3 条直线10. 如下图,从O点出发的五条射线,能够构成角的个数是().A.10个B.9个C.8个D.4个二、填空题(每题 3 分,共 30 分)11.橙子近似 ______ 体,菠萝近似 _______ 体,角柜近似 _______ 体,金字塔近似 _______体,粉笔盒近似 _______体。
4.1几何图形同步练习一、单选题1.下列图形中不是正方体的平面展开图的是()A. B.C. D.【答案】C【解析】:A、是正方体的展开图,不合题意; B、是正方体的展开图,不合题意;C、不能围成正方体,故此选项正确;D、是正方体的展开图,不合题意.故选:C.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.2.一个几何体的边面全部展开后铺在平面上,不可能是()A. 一个三角形B. 一个圆 C. 三个正方形 D. 一个小圆和半个大圆【答案】B【解析】:正四面体展开是个3角形;顶角为90度,底角为45度的两个正三棱锥对起来的那个6面体展开可以是3个正方形;一个圆锥展开可以是一个小圆+半个大圆.故选B.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.3.将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的是()A. B.C. D.【答案】B【解析】:观察图形可知,将选项中的四个正方体分别展开后,所得的平面展开图与如图不同的选项B.故选:B.【分析】立体图形的侧面展开图,体现了平面图形与立体图形的联系.立体图形问题可以转化为平面图形问题解决.4.下列几何体:①球;②长方体;③圆柱;④圆锥;⑤正方体,用一个平面去截上面的几何体,其中能截出圆的几何体有()A. 4个B. 3个 C. 2个 D. 1个【答案】B【解析】:长方体、正方体不可能截出圆,球、圆柱、圆锥都可截出圆,故选:B.【分析】根据几何体的形状,可得答案.5.下列图形是四棱柱的侧面展开图的是()A. B. C.D.【答案】A【解析】:由分析知:四棱柱的侧面展开图是四个矩形组成的图形.故选:A.【分析】根据四棱柱的侧面展开图是矩形图进行解答即可.6.下面现象能说明“面动成体”的是()A. 旋转一扇门,门运动的痕迹 B. 扔一块小石子,小石子在空中飞行的路线C. 天空划过一道流星D . 时钟秒针旋转时扫过的痕迹【答案】A【解析】:A、旋转一扇门,门运动的痕迹说明“面动成体”,故本选项正确;B、扔一块小石子,小石子在空中飞行的路线说明“点动成线”,故本选项错误;C、天空划过一道流星说明“点动成线”,故本选项错误;D、时钟秒针旋转时扫过的痕迹说明“线动成面”,故本选项错误.故选A.【分析】根据点、线、面、体之间的关系对各选项分析判断后利用排除法求解.7.如图,将正方体沿面AB′C剪下,则截下的几何体为()A. 三棱锥B. 三棱柱 C. 四棱锥 D. 四棱柱【答案】A【解析】:∵截下的几何体的底面为三角形,且AB、CB、B′B交于一点B,∴该几何体为三棱锥.故选A.【分析】找出截下几何体的底面形状,由此即可得出结论.8.下列说法:①一点在平面内运动的过程中,能形成一条线段;②一条线段在平面内运动的过程中,能形成一个平行四边形;③一个三角形在空间内运动的过程中,能形成一个三棱柱;④一个圆形在空间内平移的过程中,能形成一个球体.其中正确的是()A. ①②③④B. ①②③C. ②③④D. ①③④【答案】B【解析】:①一点在平面内运动的过程中,能形成一条线段是正确的;②一条线段在平面内运动的过程中,能形成一个平行四边形是正确的;③一个三角形在空间内运动的过程中,能形成一个三棱柱是正确的;④一个圆形在空间内平移的过程中,能形成一个圆柱,原来的说法错误.故选:B.【分析】根据点动成线,可以判断①;根据线动成面,可以判断②;根据面动成体,可以判断③;根据平移的性质,可以判断④.二、填空题9.薄薄的硬币在桌面上转动时,看上去象球,这说明了________.【答案】面动成体【解析】:从运动的观点可知,薄薄的硬币在桌面上转动时,看上去象球,这种现象说明面动成体.故答案为:面动成体.【分析】薄薄的硬币在桌面上转动时,看上去象球,这是面动成体的原理在现实中的具体表现.10.将如图所示的平面展开图折叠成正方体,则a相对面的数字是________.【答案】-1【解析】:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上a相对面的数字是﹣1.故答案为:﹣1.【分析】在正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,得到在此正方体上a相对面的数字是﹣1.11.六棱柱有________个顶点,________个面,________条棱.【答案】12;8;18【解析】:六棱柱上下两个底面是6边形,侧面是6个长方形.所以共有12个顶点;8个面;18条棱.故答案为.【分析】根据六棱柱的概念和定义即解.12.一个棱柱的棱数是18,则这个棱柱的面数是________.【答案】8【解析】:一个棱柱的棱数是18,这是一个六棱柱,它有6+2=8个面.故答案为:8.【分析】根据棱柱的概念和定义,可知有18条棱的棱柱是六棱柱,据此解答.13.将如图几何体分类,柱体有________,锥体有________,球体有________(填序号).【答案】(1)、(2)、(3);(5)、(6);(4)【解析】:柱体分为圆柱和棱柱,所以柱体有:(1)、(2)、(3);锥体包括棱锥与圆锥,所以锥体有(5)、(6);球属于单独的一类:球体(4).故答案为:(1)、(2)、(3);(5)、(6);(4)【分析】首先要明确柱体,椎体、球体的概念和定义,然后根据图示进行解答.14.如图是棱长为2cm的正方体,过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为________cm2.【答案】24【解析】:过相邻三条棱的中点截取一个小正方体,则剩下部分的表面积为2×2×6=24cm2.故答案为:24.【分析】由于是在正方体的顶点上截取一个小正方体,去掉小正方形的三个面的面积,同时又多出小正方形的三个面的面积,表面积没变,由此求得答案即可.三、解答题15.如图所示,A、B、C、D、E五个城市,它们之间原有道路相通,现在打算在C、E两城市之间沿直线再修建一条公路,这条公路与原公路的交叉处必须设立交桥,问怎样确定立交桥的位置?应架设几座立交桥?【答案】解:连接CE,与BD的交点处架立交桥;1座.【解析】【分析】连接CE时只与BD有一个交点,所以只有一座立交桥.16.如图是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注式子的值相等,求x的值.【答案】解:根据题意得,x﹣3=3x﹣2,解得:x=﹣【解析】【分析】利用正方体及其表面展开图的特点,列出方程x﹣3=3x﹣2解答即可.17.如图所示的正方体被竖直截取了一部分,求被截取的那一部分的体积.(棱柱的体积等于底面积乘高)【答案】解:如图所示:根据题意可知被截取的一部分为一个直三棱柱,三棱柱的体积= =5.【解析】【分析】根据题意可知正方体被截取的一部分为一个直三棱柱,由正方体的棱长相等求出三棱柱各个边的长,求出三棱柱的体积.18.将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?【答案】解:①绕长所在的直线旋转一周得到圆柱体积为:π×52×6=150π(cm3);②绕宽所在的直线旋转一周得到圆柱体积为:π×62×5=180π(cm3).答:它们的体积分别是150π(cm3)和180π(cm3)【解析】【分析】根据圆柱体的体积=底面积×高求解,注意底面半径和高互换得圆柱体的两种情况.。
第四章图形的初步认识同步练习(一)
选择题:
1.下列命题中正确的是()
(A)两直线相交所成四个角中有两个相等,那么这两条直线垂直;
(B)两直线相交所成四个角中两对角相等,则这两直线垂直;
(C)两条直线相交所成四个角中若有两个角互补,则这两直线垂直;
(D)两条直线相交所成四个角中有两个对顶角互补,则这两直线垂直.
2、下列说法正确的是()
(A)两点之间,直线最短;
(B)大于直角的角叫钝角;
(C)若两个角互为余角,则这两个角不可能相等;
(D)一个锐角的补角比这个锐角的余角大0
90.
3、下列图形,()都是柱体.
(A)(B)(C )
(D)
4、如图,下列关系式错误的是( )
A.∠DOE=∠BOC B.∠AOE=2∠AOC
C.∠AOC>∠AOB D.∠COD+∠COB=∠BOD
5、下列说法中不正确的是()
A.过两点有且只有一条直线
B.直线上任意两点都可以表示这条直线
C.两条直线相交只有一个交点
D.三条直线相交,共有三个交点
6、下列说法中正确的是()
A.射线比直线短一半
B.延长直线AB至C
C.两点之间的线叫线段
D.直线上两点和它们之间的部分叫做线段
7、延长线段AB至C,再反向延长AB至D,则线段CD上共有线段()条A.3 B.4 C.5 D.6
8、已知线段AB=4 cm,在直线AB上,画线段BC=2cm,则AC=()cm A.6 B.2 C.6或2 D.不能确定
9、A、B、C三点在同一条直线上,AB=5cm,BC=2cm,则AC=()
A.7cm B.3cm C.7cm或3cm D.无法确定
10、下面给出的图形中分别有直线、射线、线段能相交的图形是()
①②③④
A、①②
B、②③
C、①④
D、①③
11.①平角是一条直线②射线是直线的一半③射线AB与射线BA表示同一条射线④用一个扩大2倍的放大镜去看一个角,这个角会扩大2倍⑤两点之间,线段最短⑥120.5°= 120°50׳
以上说法正确的有( )
A .0个 B.1个 C.2个 D.3个
12.下列四个图中,
能用∠1、∠AOB、∠O三种方法表示同一个的是
()
13.若一个立体图形的正视图、左视图都是长方形,俯视图圆,则这个图形可能
()A.圆柱 B 球 C 圆锥 D 三棱锥
14.若∠A的余角是70°,则∠A的补角是()
A.70° B.110° C.20° D.160°
15.下列叙述正确的是()
A.180°是补角 B 120°和60°互为补角
C 120°和60°是补角
D 60°是30°的补角
填空题:
16、线段有_____个端点,射线有_____个端点,直线_____端点。
17、要在墙上钉一根木条,至少需要_____个钉子,原因是___________________。
18、经过4个点,最多可以画_____条直线。
19、如图,图中有_____条直线,有_____条射线,有_____条线段。
解答题:
20、计算:
①56°36′+72°42′②46°35′×3 ③109°8′÷3
21、一个角的余角是这个角的补角的1
3
,求这个角的度数。
22、根据下列语句画出图形
①直线m、n相交于点Q
②点M在直线l外,点A、B、N在直线c上并且点N在A、B两点之间
③∠AOB=60°OC是∠AOB的角平分线,OD是∠BOC的平分线
23、线段AD=6cm,线段AC=BD=4cm ,E、F分别是线段AB、CD中点,求EF。
A B C D
E F
24、OE是∠COA的平分线,∠AOE=β,
∠AOB=∠COD=α
①用α、β表示∠BOC
②比较∠AOC和∠BOD大小
【参考答案】
1、D
2、D
3、C
4、A
5、D
6、D
7、D 8、C 9、C 10. D 11.B 12. D
13. A 14. D 15. B
16. 2; 1; 没有 17. 2, 两点确定一条直线 18. 6
19. 1; 1; 2 20.(1)129°18′ (2) 129°55′ (3)36°22′21.45° 22. 略 23. 4cm 24.(1)2∠β-∠α
(2)∠AOC=∠BOD。