当前位置:文档之家› 立体几何的综合应用.

立体几何的综合应用.

立体几何的综合应用.
立体几何的综合应用.

立体几何的综合应用

一、 知识梳理: 线面平行的证法,线线角、线面角、二面角、点到平面的距离等的求法,用类比、转化、 归、构造等方法解题。 二、 训练反馈 1如图,以长方体 ABCD-A i B i CD 的顶点为顶点且四个面都是直角三角形的四面体是 (注:只写出其中一个, A — ABC 等

2、在平面几何中有: 并在图中画出相应的四面体)

Rt △ ABC 的直角边分别为a,b ,斜边上的高为

P — ABC 中,PA PB PC 两两互相垂直,且 2 一结论,在三棱锥 2 2 2 —ABC 的高为 h ,则结论为 _1/a +1/b +1/c = 1/ h 3、如图一,在△ ABC 中,AB 丄AC ADL BC, D 是垂足,则 AB 2

题:三棱锥 A — BCD (图二)中,ADL 平面 ABC AC L 平面 BCD S ABC S BCO S BCD , 上述命题是 (A ) A.真命题 B.假命题

C ?增加“ ABL AC 的条件才是真命题

D.增加“三棱锥A — BCD 是正三棱锥”

丄 b 2 PA=a PB=b, PC=C 此三棱锥 P h ,则丄 a 丄。类比这 h 2 BD BC (射影定理)。类似有命 O 为垂足,且 0在厶BCD 内,贝U 的条件才是真命题

4、下列四个正方体图形中, AB// MNP 的图形的序号疋

D

P 分别为其所在棱的中点,能得出 图一

A 、

B 为正方体的两个顶点, ①③(写出所有符合要求的图形序号) ① ②

③ ④

5、如图,在正方体 ABCD-A i B i GD 中,EF 是异面直线 AC 与 A i D 的公垂线,

则由正方体的八个顶点所连接的直线中,与EF平行的直线(A )

中点,AC>AD设PC与DE所成的角为,PD与平面ABC所成的角为二面角P—BC-A的平

面角为,则、

的大小关系是(A )

A. < <

B. < <

C.< <

D. < <

三、典型例题

例1.如图,点P为斜三棱柱ABC-A1B1G的侧棱BB上一点,PM L BB交AA于点M, PN^ BB 交CC 于点N.

(1)求证:CC丄MN

(2)在任意△ DEF中有余弦定理:DE=DF+EF —2DF- EF COS DFE.

拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.

(1)证:??? CC//BB 1 CC丄PM CC丄PN 二CC平面PMN CC丄MN

⑵解:在斜三棱柱ABC-ABG中,有S ABB1A1 s Bg S ACC1A1 2S BC"S AC^COS其中为平面CCB1B与平面CCAA

所组成的二面角.

???CC丄平面PMN ???上述的二面角为/ MNP在厶PMN K

PM=PN+MN— 2PN- MN3OS / MNP

PhMcc2=PN2Cc2+MrNcc2 —2 ( PN- CC) ? ( MN- CC) COS / MNP

A.有且仅有一条

B.有二条

6、如图,在三棱锥P—ABC中,PA!平面ABC /

C.有四条

AB的

由于 S BCC 1

B

1

PN CC

1, S ACC 1A 1

MN CC 1,

S ABB 1A 1

PM BB 1,?有 S A B B 1A 1 2 2 S BCC 1B 1 S ACC 1A 1 2S BCC 1B 1 S ACC 1A 1 COS 2S , 中,侧面AABB 丄底面ABC 侧棱AA 与底面ABC 成 60°的角,

1 AA=

2 .底面ABC 是边长为2的正三角形,其重心为 G 点。E 是线段BC 上一点,且BE —BC .

3 例2、如图,在斜三棱柱 ABC- ABC i

(1) 求证:GE //侧面 AAB i B ; (2) 求平面 BGE 与底面ABC 所成锐二面角的大小 解:(1)延长BE 交BC 于F,

1 1

? -BF= — B 1C 1= B 2 2 ???G 为AAEC 的重心,「.A 、G 、F 三点共线,且 FE 1 ——=—,? GE// AB ,

FB 1

3 又 GE 侧面 AABB, ? GE//侧面 AABB (2)在侧面 AABB 内,过 B 作B 1H 丄AB ,垂足为H,:?侧面 ? B 1H 丄底面 ABC 又侧棱 AA 与底面ABC 成 60°的角,AA F 2 , ???△ BiEO ^A FEB, BE = C,从而F 为EC 的中点. AA i B i B 丄底面 ABO

???/ B 1 BH=60 °,BH=1, BH= ,3 .

在底面 ABC 内,过H 作HT 丄AF ,垂足为T,连 B 1T.由三垂线定理有 B T 丄AF,

又平面BGE 与底面ABC 的交线为AF,「./ B TH 为所求二面角的平面角. ???AH = AB + BH=3,/HAT=30

°, ?HT = AH si n30 0 =

3

,

2

在 RtA B HT 中,tan/ B 1 TH= B 1H = , HT 3 从而平面BGE 与底面ABC 所成锐二面角的大小为 arctan 乙3

3 例 3、如图,在矩形 ABCDK AB= 丁3 , BC= a ,又 PA!平面 ABCD PA= 4. (1) 若在边BC 上存在一点 Q 使PQL QD 求a 的取值范围; (2)当BC 上存在唯一点 Q 使PQL QD 寸, 求异面直线 AQ 与 PD 所成角的大小;

⑶ 若a = 4,且PQL QD 求二面角 A - PD-Q 的大小.

A B

方法一

(1)解:以 DA 、AB 、AP 为 x 、y 、 巳0, ,3 , 0) , C ( — a , 设Qt ,戎,

z 轴建立空间直角坐标系,则 、3 ,

0),

0),则

D — a , 0 , PQ = (t , ,3 , — 4) , DQ = (t + a , ■. 3 , 0) 0) , P (0 , 0, 4)

?/ PQL QD ?- PQ a 》2 ■. 3 .

⑵解:??? BC 上存在唯一点

AQ = ( — ■ ;3 , ■. 3 ,

DQ

t(t

0),

AQ PD

a) 3 = 0

PQ 丄QD ?△= PD = ( — 2 .3 , 0 , ?- cos AQ , PD

|AQ ||PD |

故异面直线AQ 与PD 所成角为arccos

2

2

t + at + 3 = 0

①?- △= a — 12》0

a 2

— 12= 0 a = 2 3 , t =— .3

—4)

6 ■ 42 6 2,7

14

、42

14 .

QML AD Mt , 0 , 0) (3)解:过 Q 作 QM CD 交 AD 于 M 贝U

?/ PAL 平面 ABCD ?- PAL QM 又 QML AD ?- QML 平面 PAD 过M 作MN L PD 于 N,连结NQ 由三垂线定理知 QN L PD ???/ MN 健二面角 A — PD- Q 的平面角

设 N (m 0 , n ),则 NM = (t — m 0 ,

—n ) , NQ = (t — m ,3 , — n )

ND = ( — 4— m , 0, — n )

PD 共线,? NM ?/ MNL PD, ND PD cos MN , NQ NM NQ

| NM || NQ | 0 ,

PD

2n 2

2

ND 得:m + n — t = 0 , n — n = 4 ②

2n 2 i2n 2 3

由①得:t =— 1或t = — 3,由②得:

当t =— 1时, cos NM ,ND 二面角 A- PD- Q 的大小为arccos

,15

----------- 当 t =— 3 时,cos NM ,ND 5

J5卡 、门

或 arccos —

5

7

方法二

(1) 解:设 BQ= t ,贝U PQ = 19 +12

, QD = 3 + (a — t )2

, PD = 16+ a 2

2 2 2 2

由 PQL QD 得:19+1 + 3+ (a — t ) = 16+ a ,即 t — at + 3 = 0 a 》

2 .

3 . (2) 解:??? BC 上存在唯一点 Q 使 PQLQD ?△= a 2

—12= 0 是BC 中

点 取 AD 中点 R, PA 中点 S ,连 RS RC 贝U RS// PD RC/ AQ 成角 2

a — 12>

a = 2、3 , t = .. 3 ,故 Q

RSC 就是异面直线AQ 与 PD 所

RS -PD 2

-.7 , RC AQ 、6 , SC 、

SA 2 AC 2 ?、

19

2 2 2

RS 2 RC 2 SC 2 2RS RC

⑶ 解:同方法一得/ MN 健二面角A — PD- Q 的平面角

?- cos RSC

也故异面直线 14 AQ 与 PD 所成角为arccos 丄丝.

14

在Rt △ PAD

中,

MN

PA

NQ DQ

PQ PD

NQ

MB 4 t

MN -------- 在Rt△ PQD中,

PD . 2

19 t2 3 (4 t)2

cos MNQ 仝

NQ

42

_ j4(4 _t)

19 t2 3 (4 t)2

由①得t =1或t =3当t = 1时, 当t = 3时, cos MNQ

7 15

???二面角A- PD- Q的大小为arccos

7

.7

或arccos—

5 7

四、巩固练习

1、在下列关于直线

A .若I 卩

C.若I丄卩

m与平面

丄卩,则l

丄卩,则I

2、如图,在棱长为2

// a.

的命题中,真命题是(B)

B.若I丄卩且 //

D .若A 3 =m K I

卩,则I丄a.

// m 则I //

的正方体ABCD A^B1C1D1中,O是底面ABCD的中心,E,F分别是C?、AD的中点,那么异面直线OE和FD1所成的角的余弦值等于

A. .J0

5

D.

F平移至点O,则点

2.B (提示:将D1F中的点D1移至C1D1的中点,记为点G,由正方体棱长

为2,可求得D1F OG OE \ 2,则cos

3 .15

5 )

3、如图,定点A和B都在平面

PC AC。那么,动点C在平面

A. 一条线段,但要去掉两个点

C. 一个椭圆,但要去掉两个点

内,定点P

内的轨迹是

B.

D.

PB , C 是

()

一个圆,但要去掉两个点

半圆,但要去掉两个点

内异于A和B的动点,且

B (提示:由三垂线定

的逆定理可知AC BC,故C在以AB为

直径的园上,但除去A、B两点)

设P是60的二面角丨内一点,PA 平面,PB 平面,A, B为垂足,

PA 4,PB 2,则AB的长为()

A. 2 3

B. 2、.

5

C. 2 . 7

D. 4.2

4. C (提示:由二面角知识可

APB 1200,根据余弦定理解得AB 2、. 7.)

5、由图(1)有面积关系:S PAB

S PAB

PA PB则由

PA PB '

图(1)

(2)有体积关系:V P ABC

图⑵

5

P PA誌(提示:类比即得

6、如图,

的角为

在正三棱柱

,贝U =

ABCAB i C 中,

(

A. B.

6.D (提示:由正三棱柱特

点,

的平行线交平面

DG

sin

AD

已知AB=1

,

C.

D在棱BB上,且B[=1,若AD与平面AACQ所成

.<10

arcs in

4 D.

?晶arcs

in —

4

4

取AC中点

AC i于点G,则必有DG

BE 32 -,即

AD 2 4

E ,连接BE ,可得BE 平面AC i,再过点D作BE

平面AC1,连AG ,则DAG为,在Rt ADG中,

v 6

arcsin .)

4

7、在棱长为4

点P在棱CC上,且CC=4CP.

(I )求直线AP与平面BCCB1所成的角的大小(结果用反三角函数值表示)

(II )设O点在平面DAP上的射影是H,求证:

(川)求点P到平面ABD的距离.

的正方体ABCD-ABCD中,0是正方形A B i CD的中心,

DH丄

AP

C

P

解:⑴连接BP , AB 平面BCC& , AP与平面BCG 所成的角就是APB 。

— 4 —

CC, 4 4CP , CP 1 , BP 、17, tan APB —円7 ,

17

4 I—即AP与平面BCC i B i所成的

角为arctan 17 ;

17

⑵连接人0出1。1,交于点0,

正方形A1B1C1D1中有A1C1 B1 D1,又CC1平面A1B1C1 D1,

CC1 B1D1,B1D1平面APC1A1,B1D1 AP,即D10 AP,

而D10在平面D1AP内的射影为D1 H,D1H AP ;

⑶连接BC1,过点P作PE BC1于E,由AB平面BC1,AB PE,

PE 平面ABD1,则PE长为点P到平面ABD1的距离,

在正方形BC1中,可求得PE^ —2 PC1— 2 ,

2 2

即点P到平面ABD1的距离为。

2

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何综合应用

立体几何综合应用(教案) 一. 复习目标 1. 初步掌握“立几”中“探索性” “发散性”等命题的解法. 2.能正确地分析出几何中基本元素及其相互关系.能对图形进行分解、组合和变形. 进一步提高空间想象能力和逻辑思维能力. 二. 课前预习 1. 棱长为1的正方体容器ABCD-A1B1C1D1 , 在A1B、A1B1、 B1C1的中点E、F、G处各开有一个小孔. 若此容器可以 任意放置, 则装水最多的容积是 ( ) (小孔面积对容积的影响忽略不计) A. B. C. D. 2.如图,是一个无盖的正方体盒子展开后的平面图, A、B、C是展开图上的三点, 则正方体盒子中∠ABC的值为 ( ) A.180° B. 120° C.60° D. 45° 3.图中多面体是过正四棱柱的底面正方形ABCD的点A作截面AB1C1D1而截得的, 且BB1=DD1已知截面AB1C1D1与底面ABCD成30° 的二面角, 则这个多面体的体积 ( ) A. B. C. D. 4.在四棱锥P-ABCD中, O为CD上的动点, 四边形ABCD满足条件时, V P-AOB恒为定值 ( 写上你认为正确的一个条件即可 ) 三. 典型例题 例1. 如图, 四棱锥S-ABC中,AB∥CD,CD⊥平面SAD, 且CD=SA=AD=SD=AB=1. (1) 当H为SD中点时, 求证: AH∥平面SBC, 平面SBC⊥平面SCD; (2) 求点D到平面SBC的距离; (3) 求面SBC和面SAD所成的的二面角的大小. 备课说明:(1)本题的四棱锥是非常规放置的,要注意分辨图形.(2)可以用常规方法解决点面距离及二面角大小, 也可以用面积或体

空间向量在立体几何中的应用和习题(含答案)

空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量: ①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量. 由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量. 由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ?a ∥b ?a =k b ,k ∈R ; ②l ⊥m ?a ⊥b ?a ·b =0; ③l ∥α ?a ⊥u ?a ·u =0; ④l ⊥α ?a ∥u ?a =k u ,k ∈R ; ⑤α ∥?u ∥v ?u =k v ,k ∈R ; ⑥α ⊥β ?u ⊥v ?u ·v =0. (3)用空间向量解决线线、线面、面面的夹角问题: ①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角. 设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2 π,0(∈θ则 ?= >

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

第53讲 立体几何的综合应用

第53讲 立体几何的综合应用 1.(2016·新课标卷Ⅰ)如图,已知正三棱锥P -ABC 的侧面是直角三角形,P A =6,顶点P 在平面ABC 内的正投影为点D ,D 在平面P AB 内的正投影为点E ,连接PE 并延长交AB 于点G . (1)证明:G 是AB 的中点; (2)在图中作出点E 在平面P AC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积. (1)证明:因为P 在平面ABC 内的正投影为D , 所以AB ⊥PD . 因为D 在平面P AB 内的正投影为E ,所以AB ⊥DE . 因为PD ∩DE =D ,所以AB ⊥平面PED ,故AB ⊥PG . 又由已知可得,P A =PB ,所以G 是AB 的中点. (2)在平面P AB 内,过点E 作PB 的平行线交P A 于点F ,F 即为E 在平面P AC 内的正投影. 理由如下:由已知可得PB ⊥P A ,PB ⊥PC ,又EF ∥PB ,所以EF ⊥P A ,EF ⊥PC .又P A ∩PC =P ,因此EF ⊥平面P AC ,即点F 为E 在平面P AC 内的正投影. 连接CG ,因为P 在平面ABC 内的正投影为D , 所以D 是正三角形ABC 的中心. 由(1)知,G 是AB 的中点,所以D 在CG 上, 故CD =23 CG . 由题设可得PC ⊥平面P AB ,DE ⊥平面P AB , 所以DE ∥PC ,因此PE =23PG ,DE =13 PC . 由已知,正三棱锥的侧面是直角三角形且P A =6, 可得DE =2,PE =2 2. 在等腰直角三角形EFP 中,可得EF =PF =2, 所以四面体PDEF 的体积V =13×12×2×2×2=43 . 2.(2017·新课标卷Ⅱ)如图,四棱锥P -ABCD 中,侧面P AD 为等边三角形且垂直于底面 ABCD ,AB =BC =12AD, ∠BAD =∠ABC =90°. (1)证明:直线BC ∥平面P AD ; (2)若△PCD 的面积为27,求四棱锥P -ABCD 的体积. (1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC ?平面P AD ,

14,立体几何综合应用

实用文档 §9.11立体几何综合应用 【复习目标】 1. 初步掌握立体几何中的“探索性” “发散性”等命题的解法.; 2. 能正确地分析出几何中基本元素及其相互关系,能对图形进行分 解、组合和变形,进一步提高空间想象能力和逻辑思维能力。 【课前预习】 1. 如图,是一个无盖的正方体盒子展开后的平面图, A 、B 、C 是展开图 上的三点, 则正方体盒子中∠ABC 的值为 ( ) A.180° B. 120° C.60° D. 45° 2. 棱长为1的正方体容器ABCD -A 1B 1C 1D 1 , 在A 1B 、A 1B 1、B 1C 1的 中点E 、F 、G 处各开有一个小孔. 若此容器可以任意放置, 则 装水最多的容积是(小孔面积对容积的影响忽略不计) ( ) A. 87 B. 1211 C. 4847 D. 5655 3. 图中多面体是过正四棱柱的底面正方形ABCD (边长为1)的点A 作截面AB 1C 1D 1而截 得的, 且BB 1=DD 1,已知截面AB 1C 1D 1与底面ABCD 成30°的二面角, 则这个多面体的体积 ( )

实用文档 A. 26 B. 36 C. 46 D. 66 4. 在四棱锥P -ABCD 中, O 为CD 上的动点, 四边形ABCD 满足条件 时, V P -AOB 恒为定值 ( 写上你认为正确的一个条件即可 )。 【典型例题】 例1 如图, 四棱锥S -ABC 中,AB ∥CD,CD ⊥平面SAD, 且21 CD =SA =AD =SD =AB =1. (1) 当H 为SD 中点时, 求证:AH ∥平面SBC 、平面SBC ⊥平面SCD ; (2) 求点D 到平面SBC 的距离; (3) 求面SBC 和面SAD 所成的的二面角的大 小. 例2 如图, 已知距形ABCD 中, AB =1, BC =a (a >0), PA ⊥平面AC, 且PA =1. (1) 问BC 边上是否存在Q, 使得PQ ⊥QD ?说明理由; (2) 若BC 边上有且只有一个点Q ,使得PQ ⊥QD ,求这时二面角Q -PD -A 的大小.

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

长方体模型在立体几何中的应用

长方体模型在立体几何中的应用 江苏省太仓高级中学 陆红力 立体几何中学生最易掌握的简单几何体是长方体和正方体,其简单的几何性质和直观的几何构造已为广大高中生所熟悉,在长方体中适当添加辅助线,不仅可以构建各种线线关系、线面关系、面面关系,还可以割出像三棱锥、四棱锥、直三棱柱、长方体等,所以在遇到某些点、线、面及空间角和距离的问题时,若能联想并巧妙合理地构造出相关的长方体并加以解决,则能使很多复杂的问题变得更易理解,从而起到事半功倍的效果。 一 构造长方体 判断位置关系 例1 在空间,下列命题正确的是 (1)如果直线a ,b 分别与直线l 平行,那么a //b . (2)如果直线a 与平面β内的一条直线b 平行,那么a //β. (3)如果直线a 与平面β内的两条直线b ,c 都垂直,那么a ⊥β. (4)如果平面β内的一条直线a ⊥平面γ,那么β⊥γ. 说明:如图1,以长方形为模型,使得,,AD a BC b ==平面AC 为β,就可否定(2);再使1,,,AB a AD b BC c ===就可否定(3);所以正确为(1)、(4),因为(1)为平行线公理,(4)为面面垂直判定定理。 例2 已知 m ,l 是直线,α,β是平面,给出下列命题: (1) 若l 垂直α内的两条相交直线,则l α⊥. (2) 若//l α,则l 平行于α内的所有直线. (3) 若,,m l αβ??且,l m ⊥则αβ⊥. (4) 若,l β?且,l α⊥则αβ⊥. (5) 若,,m l αβ??且//αβ,则//m l . 其中正确的是 ,(请将正确命题的序号填上) 说明:如图2,在长方体1111ABCD A B C D -中,选1l AB =,平面1DC β=,但1AB 不平行1DD ,易否定(2);选平面1AC α=,平面1,,,AC AB m AD l β===,否定(3);选平面AC α=,平面1111,,,AC AB m B C l β===,否定(5) ;因为(1)(4)分别为线面垂直、面面垂直判定定理,所以选(1)(4).

立体几何的综合应用.

立体几何的综合应用 一、 知识梳理: 线面平行的证法,线线角、线面角、二面角、点到平面的距离等的求法,用类比、转化、 归、构造等方法解题。 二、 训练反馈 1如图,以长方体 ABCD-A i B i CD 的顶点为顶点且四个面都是直角三角形的四面体是 (注:只写出其中一个, A — ABC 等 2、在平面几何中有: 并在图中画出相应的四面体) Rt △ ABC 的直角边分别为a,b ,斜边上的高为 P — ABC 中,PA PB PC 两两互相垂直,且 2 一结论,在三棱锥 2 2 2 —ABC 的高为 h ,则结论为 _1/a +1/b +1/c = 1/ h 3、如图一,在△ ABC 中,AB 丄AC ADL BC, D 是垂足,则 AB 2 题:三棱锥 A — BCD (图二)中,ADL 平面 ABC AC L 平面 BCD S ABC S BCO S BCD , 上述命题是 (A ) A.真命题 B.假命题 C ?增加“ ABL AC 的条件才是真命题 D.增加“三棱锥A — BCD 是正三棱锥” 丄 b 2 PA=a PB=b, PC=C 此三棱锥 P h ,则丄 a 丄。类比这 h 2 BD BC (射影定理)。类似有命 O 为垂足,且 0在厶BCD 内,贝U 的条件才是真命题 图 4、下列四个正方体图形中, AB// MNP 的图形的序号疋 D P 分别为其所在棱的中点,能得出 图一 A 、 B 为正方体的两个顶点, ①③(写出所有符合要求的图形序号) ① ② ③ ④ 5、如图,在正方体 ABCD-A i B i GD 中,EF 是异面直线 AC 与 A i D 的公垂线,

立体几何三大公理-的应用

一、共线问题 例1.若ΔABC所在的平面和ΔA1B1C1所在平面相交,并且直线AA1、BB1、CC1相交于一点O,求证: (1)AB和A1B1、BC和B1C1、AC和A1C1分别在同一平面内; (2)如果AB和A1B1、BC和B1C1、AC和A1C1分别相交,那么交点在同一直线上(如图). 例2.点P、Q、R分别在三棱锥A-BCD的三条侧棱上,且PQ∩BC=X,QR∩CD=Z,PR ∩BD=Y.求证:X、Y、Z三点共线. 例3.已知△ABC三边所在直线分别与平面α交于P、Q、R三点,求证:P、Q、R三点共线。 二、共面问题 例4.直线m、n分别和平行直线a、b、c都相交,交点为A、B、C、D、E、F,如图,求证:直线a、b、c、m、n共面.

例5. 证明两两相交而不共点的四条直线在同一平面内. 已知:如图,直线l 1,l 2,l 3,l 4两两相交,且不共点. 求证:直线l 1,l 2,l 3,l 4在同一平面内 例6. 已知:A 1、B 1、C 1和A 2、B 2、C 2分别是两条异面直线l 1和l 2上的任意三点,M 、N 、R 、T 分别是A 1A 2、B 1A 2、B 1B 2、C 1C 2的中点.求证:M 、N 、R 、T 四点共面. 例7. 在空间四边形ABCD 中,M 、N 、P 、Q 分别是四边上的点,且满足MB AM =NB CN =QD AQ =PD CP =k. (1)求证:M 、N 、P 、Q 共面. (2)当对角线AC =a,BD =b ,且MNPQ 是正方形时,求AC 、BD 所成的角及k 的值(用a,b 表示) 三、共点问题 例8. 三个平面两两相交得三条直线,求证:这三条直线相交于同一点或两两平行.

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

立体几何应用题

知识点详解 1. 正方体V:体积a:棱长 棱长和=棱长×12 棱长=棱长和÷12 表面积=棱长×棱长×6 S表=a×a×6 一面的面积=六个面的面积÷6 S面积= S表÷6 体积=棱长×棱长×棱长V=a×a×a 2. 长方体V:体积s:面积a:长b: 宽h:高 (1)表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 长=体积÷宽÷高a=V÷b÷h 宽=体积÷长÷高b=V÷a÷h 高=体积÷长÷宽h=V÷a÷b 3. 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高高=侧面积÷底面周长底面周长=侧面积÷高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径高=体积÷高 4. 圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 底面积=体积×3÷高高=体积×3÷底面积 例题详解 1.一个圆柱的底面半径是3厘米,高是2厘米,这个圆柱的表面积是多少平方厘米?体积是多少立方厘米? 2.将一张长12.56厘米,宽9.42厘米的长方形纸卷成一个圆柱体,圆柱体的体积是多少立方厘米?

3.把一根长是2米,底面直径是4分米的圆柱形木料锯成4段后,表面积增加了多少平方分米? . 4.一个圆锥体的底面半径是6厘米,高是1分米,体积是多少立方厘米? 5.一个圆柱的侧面展开得到一个长方形,长方形的长是9.42厘米,宽是3厘米,如果将它削成一个最大的圆锥体,应削去多少立方厘米? 6.一个圆柱体和一个圆锥体的底面积和体积都相等,圆柱的高8厘米,圆锥的高是多少厘米? 7.一个长方体,棱长总和是200厘米,相交于一点的三条棱的长度和是多少厘米?

(完整版)非常好高考立体几何专题复习

立体几何综合习题 一、考点分析 1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 ①? ? ??????→?? ?????→? ? ?? L 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱 ★ 底面为矩形 底面为正方形侧棱与底面边长相等 2. 棱锥 棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 ★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 3 .球 球的性质: ①球心与截面圆心的连线垂直于截面; ★②r(其中,球心到截面的距离为 d、球的半径为R、截面的半径为r) ★球与多面体的组合体:球与正四面体,球与长 方体,球与正方体等的内接与外切. 注:球的有关问题转化为圆的问题解决. B

1.求异面直线所成的角(]0,90θ∈??: 解题步骤:一找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移 另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。常用中位线平移法 二证:证明所找(作)的角就是异面直线所成的角(或其补角)。常需要证明线线平行; 三计算:通过解三角形,求出异面直线所成的角; 2求直线与平面所成的角[]0,90θ∈??:关键找“两足”:垂足与斜足 解题步骤:一找:找(作)出斜线与其在平面内的射影的夹角(注意三垂线定理的应用); 二证:证明所找(作)的角就是直线与平面所成的角(或其补角)(常需证明线面垂直);三计算:常通过解直角三角形,求出线面角。 3求二面角的平面角[]0,θπ∈ 解题步骤:一找:根据二面角的平面角的定义,找(作)出二面角的平面角; 二证: 证明所找(作)的平面角就是二面角的平面角(常用定义法,三垂线法,垂面法); 三计算:通过解三角形,求出二面角的平面角。

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

浅析立体几何在设计学中的应用

龙源期刊网 https://www.doczj.com/doc/1c8423590.html, 浅析立体几何在设计学中的应用 作者:张莞清 来源:《数码设计》2018年第13期 摘要:设计学是一门理、工、文相结合,融机电工程、艺术学、人机工效学和计算机辅助设计于一体的科技与艺术相融合的新型交叉学科。而我们知道,要想学好设计学,必须要进行专业的设计培训。设计培训所融合的知识,其中有很大一部分就是立体结构的应用,而设计学中有很多都应用到了立体几何。本文就从立体几何在设计学的重要性,对立体几何在工业产品设计和建筑设计中的应用作出阐述。 关键词:立体几何;设计学 中图分类号:C633 文献标识码:A 文章编号:1672 - 9129( 2018 )13 - 0148 - 01 1 立体几何在设计学中的重要性 1.1立体几何为设计学奠定一定基础。设计学是离不开立体几何的,立体几何也是锻炼人的想象力的,我们作为这个世界的一个构件就必须服从这个社会的自然规律,我们学好了立体几何就可以解决一些设计学中的问题。设计学的门类比较多,所涉及的范围也比较广,但它们有一个特性,就是都有立体几何的元素存在。这就是它们共同的特点,这对于学习设计学来说也是一种方法,找到它们的一个特性,从而去研究它们,这样就能很好地去学习设计学。 1.2立体几何有助于培养空间思维。立体几何给人的第一印象就是其较强的空间感。对于学习设计学的人来说,具备较强的空间感对整个结构的设计十分有利。在空间结构这一方面,我们会发现,凡是建筑结构的形体都成三维空间性状,在荷载作用下具有三维受力的特性、呈立体工作状态。类似的情况还有很多,当在学习了适当的立体结构后,设计师的空间感会更强,在实际操作中他们就会迸发更多的想法与灵感。 2 立体几何在工业产品设计中的应用 2.1工业产品生产的要求。随着工业革命的发展,许多国家成了工业大国,也因为工业的发展带来了很大的经济作用。正是因为工业的发展,产品的增多,所以对于工业产品的需求量也增大了,而且对于产品也变得越来越多元化。我们在一些工厂中会看到有画设计图的,他们有的是根据工业产品的模样画出它从不同方向看到的图像,并把它们用相对应的比例画出来。而有的工作则是需要设计师自己去想象,去发挥自己的空间想象力,然后构造出工业产品的图

必修二立体几何典型例题

必修二立体几何典型例题 【知识要点】 1.空间直线和平面的位置关系: (1)空间两条直线: ①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交. ②无公共点:平行或异面. 平行,记作:a∥b. 异面中特殊位置关系:异面垂直. (2)空间直线与平面: ①有公共点:直线在平面内或直线与平面相交. 直线在平面内,记作:a?α . 直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交. ②无公共点:直线与平面平行,记作:a∥α . (3)空间两个平面: ①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交. ②无公共点:平行,记作:α ∥β . 2.空间作为推理依据的公理和定理: (1)四个公理与等角定理: 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)空间中线面平行、垂直的性质与判定定理: ①判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. ②性质定理: 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图: 【例题分析】

微专题——立体几何中的应用题

微专题——立体几何中应用题 1.(2006江苏)(本小题满分14分) 请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如右图 所示)。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐篷的体积最大? 2.(2011江苏)请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE=FB=xcm (1)若广告商要求包装盒侧面积S (cm 2)最大,试问x 应取何值? (2)若广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值。 P 3.(2016江苏)

4.某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为803π 立方米,且2l r ≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c (3c >)千元.设该容器的建造费用为y 千元. (1)写出y 关于r 的函数表达式,并求该函数的定义域; (2) 求该容器的建造费用最小时的r . 5.要制作一个由同底圆锥和圆柱组成的储油罐(如图),设计要求:圆锥和圆柱的总高度和圆柱底面半径相等,都为r 米.市场上,圆柱侧面用料单价为每平方米a 元,圆锥侧面用料单价分别是圆柱侧面用料单价和圆柱底面用料单价的4倍和2倍.设圆锥母线和底面所成角为θ(弧度),总费用为y (元). (1)写出θ的取值范围; (2)将y 表示成θ的函数关系式; (3)当θ为何值时,总费用y 最小? 6

空间几何体复习知识与经典例题练习

第一章 空间几何体 一、知识点归纳 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱. 2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图 1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积: 各个面面积之和 ②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+ ④圆台的表面积 22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π= ⑥扇形的面积公式21 3602 n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积 ①柱体的体积 V S h =?底 ②锥体的体积 13 V S h =?底 ③台体的体积 1 )3 V S S h =+ +?下上( ④球体的体积 343 V R π= 222r rl S ππ+=

立体几何三大公理应用超级全面

立体几何三大公理的应用 公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。 公理2:如果两个平面有一个公共点,那么它们有且只有一 条通过这个点的公共直线。 公理3:过不在同一条直线上的三个点,有且只有一个平 面。 推论1: 经过一条直线和这条直线外一点,有且只有一个平 面。 推论2:经过两条相交直线,有且只有一个平面。 推论3:经过两条平行直线,有且只有一个平面。 公理4 :平行于同一条直线的两条直线互相平行。 1.如图,在正方体ABCD?A′B′C′D′中,P是B′D′的中 点,对角线A′C∩平面AB′D′=Q.求证:A,Q,P三 点共线.

2.如图所示,在正方体ABCD?A1B1C1D1中,E为AB的中点,F为A1A的中点,求 证: (1)E,F,D1,C四点共面; (2)CE,D1F,DA三线共点. 3.如图,在正方体ABCD?A1B1C1D1中,设线段A1C与平面ABC1D1 交于点Q,求证:B,Q,D1三点共线.

4.如图所示,在正方体ABCD?A1B1C1D1中,E,F分别是AB和AA1的中点.求 证: (1)E,C,D1,F四点共面; (2)CE,D1F,DA三线共点. 5.如图,正方体ABCD?A1B1C1D1中,E,F分别为C1D1,B1C1的中点. (1)求证:E,F,B,D四点共面; (2)若AC∩BD=P,A1C1∩EF=Q,AC1与平面EFBD交于点R,求证:P,Q,R 三点共线.

6.在正方体AC1中,E,F分别为D1C1,B1C1的中点,AC∩BD=P,A1C1∩EF= Q,如图. (1)若A1C交平面EFBD于点R,则P,Q,R三点共线. (2)证明DE、BF、CC1三线共点. 7.如图,空间四边形ABCD中,H、G分别是AD、CD的中点,E、F分别在AB、 BC上,且CF FB =AE EB =1 3 .

相关主题
文本预览
相关文档 最新文档