立体几何综合讲义与应用
- 格式:ppt
- 大小:644.00 KB
- 文档页数:13
I. 基础知识要点一、 平面.1. 经过不在同一条直线上的三点确定一个面.注:两两相交且不过同一点的四条直线必在同一平面内.2. 两个平面可将空间分成3或4部分.(①两个平面平行,②两个平面相交)3. 过三条互相平行的直线可以确定1或3个平面.(①三条直线在一个平面内平行,②三条直线不在一个平面内平行)[注]:三条直线可以确定三个平面,三条直线的公共点有0或1个.4. 三个平面最多可把空间分成 8 部分.(X 、Y 、Z 三个方向)二、 空间直线.1. 空间直线位置分三种:相交、平行、异面. 相交直线——共面有且仅有一个公共点;平行直线——共面没有公共点;异面直线——不同在任一平面内[注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(可能两条直线平行,也可能是点和直线等)②直线在平面外,指的位置关系:平行或相交③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点.⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点..向这个平面所引的垂线段和斜线段)⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面.2. 异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在任何一个平面内的两条直线)3. 平行公理:平行于同一条直线的两条直线互相平行.4. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如下图).(二面角的取值范围[) 180,0∈θ) (直线与直线所成角(] 90,0∈θ)(斜线与平面成角() 90,0∈θ)(直线与平面所成角[] 90,0∈θ) 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等.5. 两异面直线的距离:公垂线的长度.空间两条直线垂直的情况:相交(共面)垂直和异面垂直.21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)三、 直线与平面平行、直线与平面垂直.1. 空间直线与平面位置分三种:相交、平行、在平面内.2. 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行,线面平行”)[注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线)②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) 12方向相同12方向不相同③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之)④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内)⑤平行于同一直线的两个平面平行.(×)(两个平面可能相交)⑥平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面)⑦直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交)3. 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行,线线平行”)4. 直线与平面垂直是指直线与平面任何一条直线垂直,过一点有且只有一条直线和一个平面垂直,过一点有且只有一个平面和一条直线垂直.● 若PA ⊥α,a ⊥AO ,得a ⊥PO (三垂线定理), 得不出α⊥PO . 因为a ⊥PO ,但PO 不垂直OA .● 三垂线定理的逆定理亦成立.直线与平面垂直的判定定理一:如果一条直线和一个平面内的两条相交直线都垂直,那么这两条直线垂直于这个平面.(“线线垂直,线面垂直”)直线与平面垂直的判定定理二:如果平行线中一条直线垂直于一个平面,那么另一条也垂直于这个平面.推论:如果两条直线同垂直于一个平面,那么这两条直线平行.[注]:①垂直于同一平面....的两个平面平行.(×)(可能相交,垂直于同一条直线.....的两个平面平行)②垂直于同一直线的两个平面平行.(√)(一条直线垂直于平行的一个平面,必垂直于另一个平面)③垂直于同一平面的两条直线平行.(√)5. ⑴垂线段和斜线段长定理:从平面外一点..向这个平面所引的垂线段和斜线段中,①射影相等的两条斜线段相等,射影较长的斜线段较长;②相等的斜线段的射影相等,较长的斜线段射影较长;③垂线段比任何一条斜线段短.[注]:垂线在平面的射影为一个点. [一条直线在平面内的射影是一条直线.(×)]⑵射影定理推论:如果一个角所在平面外一点到角的两边的距离相等,那么这点在平面内的射影在这个角的平分线上四、 平面平行与平面垂直.1. 空间两个平面的位置关系:相交、平行.2. 平面平行判定定理:如果一个平面内有两条相交直线都平行于另一个平面,哪么这两个平面平行.(“线面平行,面面平行”)推论:垂直于同一条直线的两个平面互相平行;平行于同一平面的两个平面平行.[注]:一平面间的任一直线平行于另一平面.3. 两个平面平行的性质定理:如果两个平面平行同时和第三个平面相交,那么它们交线平行.(“面面平行,线线平行”)4. 两个平面垂直性质判定一:两个平面所成的二面角是直二面角,则两个平面垂直.两个平面垂直性质判定二:如果一个平面与一条直线垂直,那么经过这条直线的平面垂直于这个平面.(“线面垂直,面面垂直”)注:如果两个二面角的平面对应平面互相垂直,则两个二面角没有什么关系.5. 两个平面垂直性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线也垂直于另一个平面.P OA a P αβ推论:如果两个相交平面都垂直于第三平面,则它们交线垂直于第三平面.证明:如图,找O 作OA 、OB 分别垂直于21,l l ,因为ααββ⊥⊂⊥⊂OB PM OA PM ,,,则OB PM OA PM ⊥⊥,.五、 棱锥、棱柱.1. 棱柱.⑴①直棱柱侧面积:Ch S =(C 为底面周长,h 是高)该公式是利用直棱柱的侧面展开图为矩形得出的.②斜棱住侧面积:l C S 1=(1C 是斜棱柱直截面周长,l 是斜棱柱的侧棱长)该公式是利用斜棱柱的侧面展开图为平行四边形得出的.⑶棱柱具有的性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;直棱柱的各个侧面都是矩形........;正棱柱的各个侧面都是全等的矩形......②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等..多边形. ③过棱柱不相邻的两条侧棱的截面都是平行四边形.注:①棱柱有一个侧面和底面的一条边垂直可推测是直棱柱. (×)(直棱柱不能保证底面是钜形可如图)②(直棱柱定义)棱柱有一条侧棱和底面垂直.[注]:①有两个侧面是矩形的棱柱是直棱柱.(×)(斜四面体的两个平行的平面可以为矩形) ②各侧面都是正方形的棱柱一定是正棱柱.(×)(应是各侧面都是正方形的直.棱柱才行) ③对角面都是全等的矩形的直四棱柱一定是长方体.(×)(只能推出对角线相等,推不出底面为矩形) ④棱柱成为直棱柱的一个必要不充分条件是棱柱有一条侧棱与底面的两条边垂直. (两条边可能相交,可能不相交,若两条边相交,则应是充要条件)2. 棱锥: [注]:①一个棱锥可以四各面都为直角三角形.②一个棱柱可以分成等体积的三个三棱锥;所以棱柱棱柱3V Sh V ==.⑴①正棱锥定义:底面是正多边形;顶点在底面的射影为底面的中心.[注]:i. 正四棱锥的各个侧面都是全等的等腰三角形.(不是等边三角形)ii. 正四面体是各棱相等,而正三棱锥是底面为正△侧棱与底棱不一定相等iii. 正棱锥定义的推论:若一个棱锥的各个侧面都是全等的等腰三角形(即侧棱相等);底面为正多边形. ②正棱锥的侧面积:'Ch 21S =(底面周长为C ,斜高为'h ) ⑵棱锥具有的性质:①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.⑶特殊棱锥的顶点在底面的射影位置:①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心. ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心. ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心.⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;⑧每个四面体都有内切球,球心I 是四面体各个二面角的平分面的交点,到各面的距离等于半径.[注]:i. 各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)3. 球:⑴球的截面是一个圆面.①球的表面积公式:24R S π=. ②球的体积公式:334R V π=. 附:①圆柱体积:h r V 2π=(r 为半径,h 为高) ②圆锥体积:h r V 231π=(r 为半径,h 为高) ③锥形体积:Sh V 31=(S 为底面积,h 为高) 侧面积公式S 直棱柱侧=ch ( c -底面周长,h -高 )S 正棱锥侧=1/2 ch ( c -底面周长,h -斜高 )S 正棱台侧=1/2 (c +c')h (c ,c'-上、下底面周长,h -斜高)S 圆柱侧=cl =2πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆锥侧=1/2cl =πrl (c -底面周长,l -母线长 ,r -底面半径) S 圆台侧=1/2(c +c')l =π(r +r')l(c ,c' -上、下底面周长,r ,r -上、下底面半径)体积公式V 柱体=Sh ( S -底面积,h -高 )V 椎体=1/3Sh ( S -底面积,h -高 )()h ss s s V '31'++=台体 (S ,S -上下底面积,h -高 ) 3R 34π=球V (R 为球的半径) 24R S π=球。
立体几何基本概念、“综合法”解题基本思路一、立体几何的作图:“几何作图是难点,关健就是面垂线;记住常用典型题,细读题意作直线。
”二、立体几何证明题:“证明平行与垂直,“三者”之间互推导; 逆推分析找思路,证明就是分析倒。
”立体几何证明题,主要是求证线线、线面、面面之间的垂直和平行关系,已知条件一般也是这些关系,所以用的就是垂直和平行的性质和判定定理,思考方式基本如下所示:分析这些位置关系,不断转化,就可证明,一般不会太难(定理内容略)。
“三者”之间互推导:指在证明题中,利用“线线平行”、“线面平行”、“面面平行” ,“三者”之间互为条件和结论,来证明题目的结论;利用“线线垂直”、“线面垂直”、“面面垂直” 之间互为条件和结论,来证明题目的结论。
其中,主要是“线线”、“线面”之间的互相推导。
逆推分析找思路:指在分析的过程中,用“树图”分析的方法,从要“证明的结论”出发,逐步逆推到“已知条件”。
三、立体几何计算题:“一线三角四句话,恢复实形得简化;牢记公式是基础,准确计算很重要。
”“一线”:指 “面垂线”。
有“面垂线”常用“面垂线”,无“面垂线”常作“面垂线”。
作“面垂线”时,要准确确定“垂足”的位置。
解题的关键是会作、会用“面垂线”。
“三角”:指“线线角”、“线面角”、“二面角”。
解题的关键是:会用 “平行线”进行线段的平移,准确作出“线线角”的平面角。
会用 “面垂线”或“棱垂面”准确作出“线面角”、“二面角”的平面角。
“四句话”:立体图形看平面,两个平面看交线;先求线段后求角,常用直角三角形。
两个平面看交线:指在计算题中利用“一线看两面,两面看一线”的方法,例如:某线段(两平面的交线)的长度在一个平面里是要求的,而在另一个平面里则是可求的。
注意:在实际问题中,平面常常是以三角形出现的。
因此,下面讲义中涉及的平面基本上都是用三角形来表示的,所以,有关问题的研究基本上都是放在四面体中去讨论的。
高三数学第一轮复习:立体几何的综合问题【本讲主要内容】立体几何的综合问题立体几何知识的综合应用及立体几何与其它知识点的综合问题【知识掌握】【知识点精析】1. 立体几何的综合问题融直线和平面的位置关系于平面与几何体中,有计算也有论证。
解决这类问题需要系统地掌握线线、线面、面面的位置关系,特别是平行与垂直的判定与性质.深刻理解异面直线所成的角、斜线与平面所成的角、二面角的平面角的概念,理解点到面的距离、异面直线的距离的概念.2. 立体几何横向可与向量、代数、三角、解析几何等综合.3. 应用性问题、探索性问题需综合运用所学知识去分析解决.【解题方法指导】例1.如图所示,在正方体ABCD—A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为()解析:P到直线BC的距离等于P到B的距离,动点P的轨迹满足抛物线定义.故选C.例2.如图,四棱锥P-ABCD的底面是边长为a的正方形,PB⊥平面ABCD,(Ⅰ)若面PAD与面ABCD所成的二面角为60°,求这个四棱锥的体积;(Ⅱ)证明不论四棱锥的高怎样变化,面PAD与面PCD所成的二面角恒大于90°.(Ⅰ)解:∵PB⊥面ABCD,∴BA是PA在面ABCD上的射影,又DA⊥AB ∴PA⊥DA∴∠PAB是面PAD与面ABCD所成的二面角的平面角∴∠PAB=60°,PB=AB·tan60°=3a ,∴ V 锥=3233·3·31a a a = (Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为等腰三角形,作AE ⊥PD ,垂足为E ,连结CE ,则△ADE ≌△CDE ,因为AE =CE ,∠CED =90o,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角. 设AC 与BD 交于点O ,连结EO ,则EO ⊥AC ,所以a AD AE OA a =<<=22,22a AE <, 在△AEC 中,02222cos 222222222<-=-=•-+=∠AE a AE AE a AE EC AE AC EC AE CEA 所以面PAD 与面PCD 所成的二面角恒大于90o。
立体几何综合应用(A组)学习提纲1、对直线方向向量、平面的法向量及其应用回顾一下2、对空间向量的综合应用回顾一下,重点是如何利用空间向量解决线线角、线面角和面面角问题1、平面的法向量:与平面α垂直的任意非零向量n 均叫平面α的法向量. 很明显,一个平面的法向量也不唯一,但这些法向量显然是共线的。
同时,要证明一条直线l 与平面α垂直,只需证明l 的方向向量与平面α的法向量平行即可;同理,要证明两个平面互相垂直,只需证明这两个平面的法向量互相垂直。
2、异面直线所成的角设a ,b 分别是两异面直线12,l l 的方向向量,θ为直线1l 与2l 所成的角,则a 与b 的夹角β1l 与2l 所成的角θ范围(0,)π (0,]2π 求法cos ||||β=a ba bcos |cos |||||||θβ==a ba b3、直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则||sin |cos ,|||||θ=<>=a n a n a a4、求二面角的大小 (1)如图①,,AB CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>. (2)如图②③,,12n n 分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足|cos ||cos ,|θ=<>12n n ,二面角的平面角大小是向量1n 与2n 的夹角(或其补角).BDACαβl例1☆.已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,若直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( ) A. //,//l αβαB. α与β相交,且交线平行于lC. αβ⊥,l β⊥D. α与β相交,且交线垂直于l【解析】借助如图所示的长方体模型,很明显,A 、C 、D 均错,只能选B 。
mnlαβHGFEDACB例2.在三棱锥P-ABC中,点P在平面ABC中的射影为点O,(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心. 【解析】(1)如图1,连接OA,OB,OC,OP,在Rt△POA、Rt△POB和Rt△POC中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,∵PC⊥PA,PB⊥PC,PA∩PB=P,∴PC⊥平面PAB,AB⊂平面PAB,∴PC⊥AB,又AB⊥PO,PO∩PC=P,∴AB⊥平面PGC,又CG⊂平面PGC,∴AB⊥CG,即CG为△ABC边AB的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.图1图2例3(2017全国I )如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边ABC 的中心为O 。
圆梦教育1对1个性化辅导讲义学员姓名 学校 年级和科目教师课 题 空间点、直线、平面之间的位置关系授课时间教学目标掌握平面的基本性质,在充分理解本讲公理、推论的基础上结合图形理解点、线、面的位置关系和等角定理.教学内容【基础知识回顾】 1.平面的基本性质公理1:如果一条直线上的 在一个平面内,则这条直线在此平面内. 公理2:过的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,则它们过该点的公共直线. 2.直线与直线的位置关系(1)位置关系的分类(2)异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫做异面直线a ,b 所成的角(或夹角).②范围:0,2π⎛⎤ ⎥⎝⎦.④若直线l1、l2是异面直线,则与l1、l2都相交的两条直线是异面直线.其中假命题的个数( )A.1 B.2C.3 D.47.若三个平面两两相交,有三条交线,且三条交线互相平行,则这三个平面把空间分成( )A.5部分B.6部分C.7部分D.8部分8.如下图所示,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是异面直线的一个图是( )9.三个不重合的平面可以把空间分成n部分,则n的可能取值为________.5.如下图所示,正方体ABCD—A1B1C1D1中,(1)求A1C1与B1C所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小.【考点探究】考点一平面的基本性质例1正方体ABCDA1B1C1D1中,P、Q、R分别是AB、AD、B1C1的中点,则,正方体的过P、Q、R的截面图形是( ).A.三角形B.四边形C.五边形D.六边形画几何体的截面,关键是画截面与几何体各面的交线,此交线只需两个公共点即可确定.作图时充分利用几何体本身提供的面面平行等条件,可以更快的确定交线的位置.【训练1】下列如图所示是正方体和正四面体,P、Q、R、S分别是所在棱的中点,则四个点共面的图形是________.考点二异面直线例2如图所示,正方体ABCDA1B1C1D1中,M、N分别是A1B1、B1C1的中点.问:(1)AM和CN是否是异面直线?说明理由;(2)D1B和CC1是否是异面直线?说明理由.【训练2】在下图中,G、H、M、N分别是正三棱柱的顶点或所在棱的中点,则表示直线GH、MN是异面直线的图形有________(填上所有正确答案的序号).考点三异面直线所成的角例3(2014·宁波调研)正方体ABCD-A1B1C1D1中.(1)求AC与A1D所成角的大小;(2)若E、F分别为AB、AD的中点,求A1C1与EF所成角的大小.【训练3】A是△BCD平面外的一点,E,F分别是BC,AD的中点.(1)求证:直线EF与BD是异面直线;(2)若AC⊥BD,AC=BD,求EF与BD所成的角.例4正方体ABCD-A1B1C1D1中,E、F分别是AB和AA1的中点.求证:(1)E、C、D1、F四点共面;(2)CE、D1F、DA三线共点.【训练4】如图所示,已知空间四边形ABCD中,E、H分别是边AB、AD的中点,F、G分别是边BC、CD上的点,且CFCB =CGCD=23,求证:三条直线EF、GH、AC交于一点.【作业】[知能演练]一、选择题1.已知a,b是异面直线,直线c∥直线a,则c与b( )C.35 D.45二、填空题5.如图所示,在三棱锥C-ABD中,E、F分别是AC和BD的中点,若CD=2AB =4,EF⊥AB,则EF与CD所成的角是________.6.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号).①矩形②不是矩形的平行四边形③有三个面为等腰直角三角形,有一个面为等边三角形的四面体④每个面都是等边三角形的四面体⑤每个面都是直角三角形的四面体三、解答题7.有一矩形纸片ABCD,AB=5,BC=2,E,F分别是AB,CD上的点,且BE=CF=1,如下图(1).现在把纸片沿EF折成图(2)形状,且∠CFD=90°.(1)求BD的距离;(2)求证:AC,BD交于一点且被该点平分.[高考·模拟·预测]1.正方体ABCD-A1B1C1D1的棱上到异面直线AB,CC1的距离相等的点的个数为( ) A.2 B.3C.4 D.52.已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC上的射影为BC的中点,则异面直线AB与CC1所成的角的余弦值为( )A.34B.54C.74 D.34。
立体几何讲义一、三种平行关系的相互转化:判定定理 判定定理线线平行 线面平行 面面平行 定义 性质定理例1、如图,在正方体1111ABCD A B C D -中,(1)若P 为11B D 的中点,证明:1||AP BC D 面 (2) 若P 为11B D 的动点,证明:1||AP BC D 面 (3)若面11111BC D A B C D l =面证明:11||l B D2.如图,在棱长为1的正方体ABCD ﹣A1B1C1D1中,点E ,F 分别是棱BC ,CC1的中点,P 是侧面BCC1B1内一点,若A1P ∥平面AEF ,则线段A1P 长度的取值范围是( ) A .[1,] B .[,] C .[,] D .[,]3、如图,若Ω是长方体1111ABCD-A B C D 被平面EFGH 截去几何体11EFGH B C 后得到的几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1B B 上异于1B 的点,且EH ∥11A D ,则下列结论中不正确的是( ) A. EH ∥FG B.四边形EFGH 是矩形 C. Ω是棱柱 D. Ω是棱台4、如图,E 是以AB 为直径的半圆上异于A 、B 的点,矩形ABCD 所在的平面垂直于该半圆所在的平面 (Ⅱ)设平面ECD 与半圆弧的另一个交点为F . 试证://EF AB ;思考:平面α过正方体ABCD —A1B1C1D1的顶点A ,11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为( )(A )32 (B )22(C )33 (D )13二、垂直关系:(1)垂直要集中,然后由旧垂推出新垂判定定理 判定定理线线垂直 线面垂直 面面垂直 定义 性质定理注:(1)线面垂直的性质又揭示了平行与垂直之间的转化 (2)转化的思想:⊥⊥⇒⊥⇒⇒线线或利用面面的性质(后者较多)证明(或做出)线面体积高体积例1、如图,在斜三棱柱111ABC A B C -中,90BAC ∠=,1BC AC ⊥,则1C 在底面ABC 上的射影必在( )A.直线AB 上B.直线BC 上C.直线AC 上D.△ABC 内部回顾:如图,棱长为1的正方体1111D C B A ABCD -中,P 为线段B A 1上的动点,则下列结论正确的有__________ ①P D DC 11⊥ ②平面⊥P A D 11平面AP A 1C 1B 1A 1CBA D 1C 1B 1A 1③三棱锥11_C PDD 的体积与P 点位置无关④若动点Q 在正方体的表面上运动,且总保持1AQ BD ⊥。
立体几何综合应用(C组)补形问题:(1)四面体S ABC -中,如,,SA SB SC 互相垂直,其外接球直径等于以,,SA SB SC 为棱的长方体之体对角线长 (2)四面体S ABC -为等腰四面体(对棱相等),其外接球直径等于以,,SA SB SC 为面对角线的长方体之体对角线长 体积法:体积法属于典型的“算两次”问题,就是以体积为桥梁,针对同一几何体,从角度一看,体积是a (式子),换一个角度,体积是b (式子),从而得到方程a b =,通过方程,获得想要的量。
翻折问题:翻折问题是立体几何中常见、也是高考中常考的问题。
解决此类问题的关键:是要注意翻折前后不变的量和关系,比如垂直关系、长度、角度等。
善于甚至必须利用这些不变特征方能解决问题。
高考数学中的难题和压轴题这类试题一般以选填题模式出现,题型各异,比如存在性问题、轨迹问题、以立体几何为载体的计数问题、路径问题等,这类问题对空间想象能力、分析问题和解决问题的能力有较高要求。
、、分别为其所在棱的中点,能得出例1(全国卷)下列5个正方体图形中,l是正方体的一条对角线,点M N Pl面MNP的图形的序号是(写出所有符合要求的图形序号)(1)(2)(3)(4)(5)【解析】建立如图所示的空间直角坐标系,则l 的方向向量为(1,1,1)e =(1)l 在上底面的投影与MP 垂直,所以l MP ⊥,根据对称性,l MN ⊥,从而l ⊥平面MNP(2)易知11(0,0,),(1,,0)22N P ,故11(1,,)22NP =-,显然0e NP ≠(3)易知11(0,1,),(,0,0)22M N ,故11(,1,)22MN =--,(1)(2)(3)(4)(5)xz y 显然0e MN ≠(4)显然l MP ⊥, l MN ⊥,从而l ⊥平面MNP(5)易知111(,1,0),(1,0,),(0,,1)222M N P ,故11(,1,)22MN =-,11(,,1)22MP =--显然0,0e MN e MP ==,从而l ⊥平面MNP例2.在三棱锥P ABC -中,PA ⊥底面ABC ,120,2BAC PA AB AC ∠====,若该三棱锥的顶点都在同一个球面上,则该球的表面积为( )A.103πB. 18πC. 20πD. 93π【解析】将三棱锥扩充成如图所示的正六棱柱,该正六棱柱的高为2,底面是边长为2的正六边形,正六棱柱的体对角线AE 即为所求外接球的直径,即222244220R AE ==+=,故题中三棱锥外接球的表面积为20π,选C 。