线性规划的实际应用举例
- 格式:doc
- 大小:146.46 KB
- 文档页数:5
线性规划应用案例线性规划是一种在约束条件下寻找最优解的数学优化方法。
它在实际应用中广泛使用,涉及许多领域和行业。
本文将介绍两个典型的线性规划应用案例:运输问题和产能规划问题。
一、运输问题运输问题是线性规划最早发展起来的一个领域,它是指如何在各个供应地和需求地之间运输商品,以使得总运输成本最小。
一个典型的运输问题可以描述为:有m个供应地和n个需求地,每个供应地和需求地之间有一个固定的运输成本和一个固定的供应和需求量。
问题是如何确定每对供需地之间的运输量,以使得总运输成本最小。
举例来说,假设有三个供应地A、B、C,三个需求地X、Y、Z。
运输成本如下表所示:\begin{array}{ c c c c c c }&X&Y&Z&供应量\\A&10&12&8&100\\B&6&8&7&200\\C&9&10&11&300\\需求量&150&175&125&\\\end{array}求解此问题的线性规划模型如下:目标函数:minimize \quad Z = 10x_{11} + 12x_{12} + 8x_{13} + 6x_{21} + 8x_{22} + 7x_{23} + 9x_{31} + 10x_{32} + 11x_{33}约束条件:x_{11} + x_{12} + x_{13} \leq 100x_{21} + x_{22} + x_{23} \leq 200x_{31} + x_{32} + x_{33} \leq 300x_{11} + x_{21} + x_{31} \geq 150x_{12} + x_{22} + x_{32} \geq 175x_{13} + x_{23} + x_{33} \geq 125x_{ij} \geq 0, i = 1,2,3 \quad j = 1,2,3其中x_{ij}表示从供应地i到需求地j的运输量。
第五节线性规划建模举例线性规划是一种操作研究的数学方法,广泛应用于商业、经济、工程领域中的优化问题。
线性规划建模是将实际问题描述为线性规划模型的过程。
本节将介绍几个线性规划建模的典型例子。
例1:混合饲料配方问题某饲料厂要生产一种混合饲料,需包括以下六种饲料成分:大豆粉、面粉、玉米、鱼粉、鸡粉、牛粉,并且要求这种混合饲料包含不少于25%的蛋白质和不多于15%的纤维素。
每吨饲料的生产成本和含量如下:| 饲料成分 | 成本(元/吨) | 蛋白质含量(%) | 纤维素含量(%) || -------- | ------------- | -------------- | -------------- || 大豆粉 | 200 | 45 | 10 || 面粉 | 100 | 10 | 2 || 玉米 | 150 | 8 | 5 || 鱼粉 | 300 | 60 | 0 || 鸡粉 | 280 | 50 | 2 || 牛粉 | 320 | 70 | 5 |问如何使得生产的混合饲料成本最小,同时满足蛋白质含量不少于25%和纤维素含量不超过15%的要求。
自变量:混合饲料中每种成分的含量。
目标函数:最小化混合饲料的成本。
约束条件:1. 蛋白质含量不少于25%:0.45×x1 + 0.1×x2 + 0.08×x3 + 0.6×x4 + 0.5×x5 + 0.7×x6 ≥ 0.25。
2. 纤维素含量不超过15%:0.1×x1 + 0.02×x2 + 0.05×x3 + 0×x4 + 0.02×x5 + 0.05×x6 ≤ 0.15。
3. 非负性:x1, x2, x3, x4, x5, x6 ≥ 0。
其中,x1,x2,x3,x4,x5,x6 分别表示大豆粉、面粉、玉米、鱼粉、鸡粉和牛粉的含量,单位为吨。
线性规划运用举例线性规划是一种经济学和数学领域中的数学优化技术,其主要目的是将某些目标函数在满足一定的约束条件下最大或最小化。
线性规划在现代经济学、决策科学、制造业和生产管理等领域都有广泛的应用。
下面将举例说明线性规划在实际生产和管理中的应用。
1. 生产计划方案优化生产计划方案优化是一个很复杂的问题。
企业的目标是尽可能地减少生产和仓储成本,同时保证所生产的产品能满足市场需求。
线性规划可以帮助企业找到一个最优的计划方案,使得成本最小化,并能够满足市场需求。
例如,生产一种食品有两个不同的发酵温度可以选择。
这个决策需要考虑到提高产量的同时也要保证产品质量。
通过将这个问题转化为线性规划问题,可以确定最佳的温度条件,以最小化生产成本并且保证产品质量。
2. 资源分配问题企业在日常运营中需要管理各种资源,如员工,机器等。
为了确保资源的有效利用,企业需要通过资源分配来确保生产能力最优化。
线性规划可以帮助企业分配资源,使得资源利用更加高效,成本更加低廉和运营更加有效。
例如,在生产线上,可以通过线性规划算法来优化设备的分配和维护计划,使得设备的维护和使用更加平滑,减少因设备故障造成的损失和停机时间。
3. 市场销售策略线性规划也可以帮助企业确定最优的市场营销策略。
在一个竞争激烈的市场中,企业需要考虑产品的定价,销售渠道和营销推广策略等因素。
通过将这些因素转化为线性规划问题,企业可以找到最优的市场营销策略。
例如,在销售一种产品时,企业可以通过确定最优价格来最大化销售收入。
总之,线性规划在生产和管理中的应用非常广泛。
通过线性规划算法可以解决非常复杂的问题,帮助企业做出最优的决策,从而实现成本最小化和收益最大化。
市场营销应用案例一:媒体选择在媒体选择中应用线性规划的目的在于帮助市场营销经理将固定的广告预算分配到各种广告媒体上,可能的媒体包括报纸、杂志、电台、电视和直接邮件。
在这些媒体中应用线性规划,目的是要使宣传范围、频率和质量最大化。
对于应用中的约束条件通常源于对公司政策、合同要求及媒体的可用性。
在下面的应用中,我们将介绍如何应用线性规划这一工具来建立模型进而解决媒体选择问题。
REL发展公司正在私人湖边开发一个环湖社区。
湖边地带和住宅的主要市场是距离开发区100英里以内的所有中上收入的家庭。
REL公司已经聘请BP&J 来设计宣传活动。
考虑到可能的广告媒体和要覆盖的市场,BP&J建议将第一个月的广告局限于5种媒体。
在第一个月末,BP&J将依据本月的结果再次评估它的广告策略。
BP&J已经收集到了关于受众数量、广告单价、各种媒体一定周期内可用的最大次数以及评定5种媒体各自宣传质量的数据。
质量评定是通过宣传质量单位来衡量的。
宣传质量单位是一种用于衡量在各个媒体中一次广告的相对价值的标准,它建立于BP&J在广告业中的经验,将众多因素考虑在内,如受众层次(年龄、收入和受众受教育的程度)、呈现的形象和广告的质量。
表4-1列出了收集到的这些信息。
表4-1 REL发展公司可选的广告媒体REL发展公司提供给BP&J第一个月广告活动的预算是30000美元。
而且,REL公司对BP&J如何分配这些资金设置了如下限制:至少要使用10次电视广告,达到的受众至少要有50000人,并且电视广告的费用不得超过18000美元。
应当推荐何种广告媒体选择计划呢?案例二:市场调查公司开展市场营销调查以了解消费者个性特点、态度以及偏好。
专门提供此种信息的市场营销调查公司,经常为客户机构开展实际调查。
市场营销调查公司提供的典型服务包括涉及计划、开展市场调查、分析收集数据、提供总结报告和对客户提出意见。
线性规划是一种数学优化模型,用于解决在有一些约束条件下,如何使一个目标函数达到最优解的问题。
线性规划广泛应用于许多实际案例中,其中一些常见的案例如下:
1.生产规划:在生产过程中,企业可能需要在有限的生产资源和需求的限制下,决策
生产的数量、成本、产品组合等,以使生产效益最大化。
这就需要用到线性规划模
型来解决。
2.交通规划:在城市规划过程中,市政部门可能需要决策道路的建设、扩建、维护等,
以满足城市交通需求,并考虑到道路建设的成本和环境影响等因素。
这时候可以使
用线性规划模型来解决。
3.财务规划:在进行财务管理时,企业或个人可能需要在有限的资金和资产的限制下,
决策投资、储蓄、借贷等,以使财务效益最大化。
这时候可以使用线性规划模型来
解决。
4.供应链管理:在供应链管理过程中,企业可能需要决策采购、生产、运输、库存等
各个环节,以保证供应链的流畅运行并达到最优的效益。
这时候可以使用线性规划
模型来解决。
这些都是线性规划在实际案例中的应用,线性规划能够帮助企业和组织在有限的条件下,有效地规划和决策,并取得较好的效益。
线性规划的应用标题:线性规划的应用引言概述:线性规划是一种数学优化方法,用于求解线性约束条件下的最优解。
在现代社会中,线性规划被广泛应用于各个领域,如生产计划、资源分配、运输问题等。
本文将探讨线性规划在实际应用中的重要性和具体应用案例。
一、生产计划1.1 生产成本最小化:企业在生产过程中需要考虑成本问题,通过线性规划可以优化生产计划,使得成本最小化。
1.2 生产效率最大化:线性规划可以匡助企业合理安排生产资源,提高生产效率,实现生产效益最大化。
1.3 生产排程优化:通过线性规划可以制定合理的生产排程,避免生产过程中的资源浪费,提高生产效率。
二、资源分配2.1 人力资源优化:企业在进行人力资源分配时,可以利用线性规划方法,合理配置人员,提高工作效率。
2.2 资金分配优化:线性规划可以匡助企业合理分配资金,确保各项投资得到最大回报。
2.3 物资调配优化:在物资调配过程中,线性规划可以匡助企业合理安排物资的采购和使用,避免资源浪费。
三、运输问题3.1 最优运输路径:线性规划可以匡助企业确定最优的运输路径,降低运输成本,提高运输效率。
3.2 货物分配优化:在货物分配过程中,线性规划可以匡助企业合理分配货物,避免货物积压或者短缺情况。
3.3 运输成本最小化:通过线性规划可以优化运输计划,使得运输成本最小化,提高企业运输效益。
四、市场营销4.1 产品定价优化:线性规划可以匡助企业确定最优的产品定价策略,提高产品市场竞争力。
4.2 推广策略优化:在市场推广过程中,线性规划可以匡助企业制定合理的推广策略,提高市场覆盖率。
4.3 销售计划优化:通过线性规划可以优化销售计划,提高销售额,实现销售目标。
五、金融投资5.1 投资组合优化:线性规划可以匡助投资者优化投资组合,降低风险,提高回报率。
5.2 资产配置优化:在资产配置过程中,线性规划可以匡助投资者合理配置资产,实现资产增值。
5.3 风险控制优化:通过线性规划可以制定有效的风险控制策略,保护投资者的资产安全。
线性规划应用线性规划解决实际问题线性规划应用:线性规划解决实际问题线性规划是一种数学优化方法,广泛应用于解决各种实际问题。
通过对线性函数和线性不等式进行约束,线性规划能够找到最佳解,使得目标函数在约束条件下达到最大或最小值。
在本文中,将探讨线性规划在解决实际问题方面的应用。
一、生产问题的线性规划在生产过程中,线性规划可以帮助企业制定最佳的生产方案。
例如,某家制造公司生产两种产品A和B,每天的生产时间有限。
产品A每单位可以获得100元的利润,产品B每单位可以获得80元的利润。
根据市场需求,每天销售量的上限是200个单位的A和150个单位的B。
此外,生产一个单位的产品A需要2小时,而生产一个单位的产品B需要3小时。
企业想要最大化每天的利润,应该如何分配生产时间?这个问题可以用线性规划来解决。
假设$x$代表生产的产品A数量,$y$代表生产的产品B数量。
则目标函数为$100x+80y$,约束条件为$2x+3y \leq T$,其中$T$为每天的生产时间(以小时为单位)。
另外还有约束条件$x \leq 200$(销售上限)和$y \leq 150$(销售上限),以及$x,y \geq 0$(生产数量非负)。
通过求解这个线性规划问题,可以得到最佳的生产方案,从而实现最大的利润。
二、资源分配问题的线性规划线性规划还可以应用于资源分配问题。
例如,某社区有一定数量的土地可供开发,而开发商希望在这块土地上建造住宅和商业用地,以获得最大的利润。
由于土地有限,住宅和商业面积的总和不能超过土地面积。
此外,开发商希望确保住宅面积至少是商业面积的2倍。
在给定土地面积和其他约束条件的情况下,该如何确定住宅和商业面积的最佳分配?这个问题可以建模为一个线性规划问题。
假设$x$代表住宅面积,$y$代表商业面积。
则目标函数为$x+y$,约束条件为$x+y \leq A$,其中$A$表示土地面积。
另外还有约束条件$x \geq 2y$(住宅面积至少是商业面积的2倍),以及$x,y \geq 0$(面积非负)。
线性规划的实际应用举例
即两为了便于同学们掌握线性规划的一般理论和方法,本文拟就简单的线性规划(
的实际应用举例加以说明。
个变量的线性规划)
1 物资调运中的线性规划问题
万个40万个和30万个,由于抗洪抢险的需要,现需调运1 A,B两仓库各有编织袋50例/元万个、180/万个到乙地。
已知从A仓库调运到甲、乙两地的运费分别为120元到甲地,20元/万个。
问如何调运,能150/万个、万个;从B仓库调运到甲、乙两地的运费分别为100元? ?总运费的最小值是多少使总运费最小仓库调Bz元。
那么需从x万个到甲地,y万个到乙地,总运费记为解:设从A仓库调运40-x万个到甲
地,调运运万个到乙地。
20-y
从而有。
z=120x+180y+100(40-x)+150·(20-y)=20x+30y+7000
1)(图,即可行域。
作出以上不等式组所表示的平面区域
z'=z-7000=20x+30y. 令
:20x+30y=0,作直线l
且与原点距离最小,0),,l的位置时,直线经过可行域上的点M(30l把直线向右上方平移至l y=0时,即x=30,亦取得最小值,取得最小值,从而z=z'+7000=20x+30y+7000z'=20x+30y 元)。
30+30×z=20×
0+7000=7600(min
万个到乙地,可使总万个到甲地,20B30万个到甲地,从仓库调运10A答:从仓库调运元。
运费最小,且总运费的最小值为7600
2 产品安排中的线性规划问题
吨,麦麸0.4吨需耗玉米某饲料厂生产甲、乙两种品牌的饲料,已知生产甲种饲料2例1O.4
吨,其余添加剂0.2.
吨甲种1吨,其余添加剂0.2吨。
每吨;生产乙种饲料1吨需耗玉米0.5吨,麦麸0.3元。
可供饲料厂生产的玉米供应500元,每1吨乙种饲料的利润是饲料的利润是400吨。
问甲、乙300吨,麦麸供应量不超过500吨,添加剂供应量不超过量不超过600 ? ?最大利润是多少两种饲料应各生产多少吨(取整数),能使利润总额达到最大
1。
分析:将已知数据列成下表
2表1例表
元,那么吨、y吨,利润总额为z解:设生产甲、乙两种饲料分别为x
z=400x+500y。
即可行域。
(图2)作出以上不等式组所表示的平面区域
平行,所以线段l4x+5y=6000与。
并把400x+500y=0l向右上方平移,由于l:作直线l:1。
,N(0,1200)M(250MN上所有坐标都是整数的点(整点)都是最优解。
易求得,1000)
,y=1000时,1000)取整点M(250,,即x=250。
元1000=600000()=60(万元)=400×z250+500×max
吨,能使利润总额达到最大。
最大利润为1000可安排生产甲种饲料250吨,乙种饲料答:万元。
60 使我们认识到最优解的个数还例2课本题中出现的线性规划问题大都有唯一的最优解。
注:有其他可能,这里不再深入探究。
3 配料与下料中的线性规划问题
例3 甲、乙、丙三种食物的维生素A,B含量及成本如表2。
表2例3表
)维生A单千400700600
B(单位/千克) 维生素500 400 800
千克) 元成本(/4 9 11
某食物营养研究所想用xkg甲种食物,ykg乙种食物,zkg丙种食物配成100kg混合食物,并使混合物至少含有56000单位维生素A和63000单位维生素B。
1)用x,y表示混合食物的成本c(元);
2)确定x,y,z的值,使成本最低。
解:1)依题意有:
(3) x+y+z=100
(4) c=11x+9y+4z
得:(3)得z=100-x-y,代入(4)由
c=11x+9y+4(100-x-y)=7x+5y+400,其中x>0,y>0。
2)将z=100-x-y代入(1),(2),并化简,得
图3),即可行域。
作出不等式组( 所表示的平面区域
,且与M向右上方平移至l的位置时,直线经过可行域上的点l:7x+5y=0,把直线l作直线l原点的距
离最小。
点的坐标, 由求得M
c=7x+5y+400亦取得最小值,y=20时,7x+5y取得最小值,故当x=50,。
c=7×50+5×20+400=850min
;y>0)>答:1) c=7x+5y+400(x0,时,成本c最低。
,2) 当x=50,y=20z=30
长两种规格的零件毛坯,其中0.8m0.6m和长的条钢各2m及3m10根,需截成例4 现有个,为使材料不浪费,且使所用条钢根数最小,该300.8m长的毛坯需0.6m长的毛坯需20个,如何设计下料方案。
长3m个,0.8m长的毛坯1长的条钢可截成解:为使材料不浪费,2m0.6m长的毛坯2个,
3个。
0.8m的条钢可截成0.6m长的毛坯1个,长的毛坯
长的条钢y根,则根,设需截2m长的条钢x3m
4)作出可行域(如图,目标函数为z=x+y.
此直线经经过可行域内的点且和原点距离最近的直线,中,)为参数x+y=t(t作出一组平行线
过直线2x+y=20和直线x+3y=30的交点M(6,8)。
故当x=6,y=8时,z=x+y取最小值。
答:符合条件的下料方案是:使用2m长的条钢6根、3m长的条钢8根。
通过上述例题,不难发现,简单的线性规划在实际生活中有较广泛的应用。
在工业、农业、商业、交通运输业、军事、经济计划和管理决策等许多领域都常常使用线性规划方法。
线性规划的理论和方法主要在两类问题中得到应用:
一是征人力、物力、资金等资源一定的条件下,如何使用它们来完成最多的任务;
二是给定一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
对于只有两个变量的线性规划(即简单的线性规划)问题,可以用图解法求解。
其基本的解决步骤是:
1)建立线性约束条件及线性目标函数;
2)画出可行域;
3)求出线性目标函数在可行域内的最值(即最优解);
4)作答。
特别值得一提的是,涉及更多变量的线性规划问题是不能用图解法求解的,需要借助计算机及专门的软件来解决。