固体能带理论(谢希德)课本导读
- 格式:ppt
- 大小:341.50 KB
- 文档页数:8
第四章能带理论能带理论的出发点是固体中的电子不再束缚于个别原子,而是在整个固体内运动(这要求电子的平均自由程远大于晶格常数),称为共有化电子。
能带理论是近似理论。
由于固体中大量电子的运动是相互关联的,每个电子的运动受到其他电子和原子的影响,在如此大量粒子的多体系统严格求解是不可能的。
大多数情况下我们关心的是价电子的运动状态,在单原子结合成固体的过程中价电子的运动状态发生大的变化,而内层电子的变化较小,可以把内层电子和原子实近似看成离子实。
这样价电子的等效势场包括离子实的势场,其他价电子的平均势场以及电子波函数反对称性而带来的交换作用。
能带理论是单电子近似理论,即把每个电子的运动看成是独立的在一个等效势场中的运动。
单电子近似理论最早用于研究多电子原子,又称为哈特里(Hartree)-福克(κoΦ)自洽场方法。
把多体问题简化为单电子问题需要进行多次简化。
1、绝热近似:原子核或者离子实的质量比电子大的多,离子的运动速度慢,在讨论电子问题时可以认为离子是固定在瞬时位置上。
这样多种粒子的多体问题就简化为多电子问题;2、哈特里-福克自洽场方法:每个电子是在固定的离子势场以及其他电子的平静势场只运动;3、所有的离子势场和其他电子的平均场是周期性的势场。
对于三维的周期场中的单电子问题只能用各种近似方法求解。
通常选取某个布洛赫函数形式的集合作为完备的基本函数族,把晶体电子的波函数用此函数的集合展开,然后代入薛定谔方程,确定展开式的系数所满足的久期方程,据此求能量本征值,再依照逐个本征值确定波函数展开式的系数。
不同的方法仅在于选择不同的函数集合。
能带理论取得相当的成功,但也有他的局限性。
如过渡金属化合物的价电子迁移率较小,相应的自由程和晶格常数相当,这时不能把价电子看成共有化电子,周期场的描述失去意义,能带理论不再适用。
此外,长电子和晶格相互作用的强弱程度来看,在离子晶体中的电子的运动会引起周围晶格畸变,电子是带着这种畸变一起前进的,这些情况都不能简单看成周期场中单电子运动。
5.3 晶体的能带结构1 导体、半导体和绝缘体的能带解释能态总数 根据周期性边界条件,布洛赫电子量子态k 在k 空间量子态的密度为V /83π,V 为晶体体积。
每个能带中的量子态数受第一布里渊区体积的限制为N 。
N 为原胞数。
考虑到每个量子态可以填充自旋相反的两个电子,每个能带可以填充2N 个电子。
简单晶格晶体的每个原子内部满壳层的电子总数肯定为偶数,正好填满能量最低的几个能带。
不满壳层中的电子数为偶数的,也正好填满几个能带,为奇数的则必定有一个能带为半满。
复式晶格可以根据单胞数N 和每个单胞中的原子和每个原子的电子数讨论电子填充能带的情况。
满带电子不导电 由于布洛赫电子的能量在k 空间具有反演对称性,即()()k k -=n n E E (5.3.1)因此布洛赫电子在k 空间是对称分布的。
在同一能带中k 和k 态具有相反的速度:()()k k --=υυ(5.3.2)在一个被电子填满的能带中,尽管对任一个电子都贡献一定的电流υq -,但是k 和 k 态电子贡献的电流正好相互抵销,所以总电流为零。
即使有外加电场或磁场,也不改变k 和k 态电子贡献的电流正好相互抵销,总电流为零的情况。
在外场力的作用下,每一个布洛赫电子在k 空间作匀速运动,不断改变自己的量子态k ,但是简约区中所有的量子态始终完全占据,保持整个能带处于均匀填满的状态,k 和 k 态电子贡献的电流始终正好相互抵销。
因此满带电子不导电。
导体和非导体模型 部分填充的能带和满带不同,虽然没有外场力作用时,布洛赫电子在k 空间对称分布,k 和k 态电子贡献的电流始终正好相互抵销。
但是在外场力作用下,由于声子、杂质和缺陷的散射,能带中布洛赫电子在k 空间对称分布被破坏,逆电场方向有一小的偏移,电子电流将只能部分抵销,抵销不掉的量子态上的电子将产生一定的电流。
根据布洛赫电子填充能带和在外场力作用下量子态的变化,提出了导体和非导体能带填充模型。
在非导体中,电子恰好填满最低的一系列能带(通常称为价带),其余的能量较高的能带(通常称为导带)中没有电子。