1 傅里叶级数解析
- 格式:ppt
- 大小:4.39 MB
- 文档页数:19
傅里叶级数原理1. 简介傅里叶级数原理是分析不规则周期信号最重要的工具之一。
在数学、物理、工程等领域中广泛应用。
它的核心思想是:任何周期信号都可以表示为一系列基频为整数倍的正弦和余弦函数叠加而成。
这些正弦和余弦函数在傅里叶级数中被称为谐波分量。
2. 傅里叶级数的定义设周期为T的函数f(t)在一个周期内满足可积且连续,则它可以表示为以下形式的级数:f(t)=a0/2+ Σ [an*cos(nωt)+bn*sin(nωt)]其中,ω=2π/T,an和bn是傅里叶系数,a0/2是等于f(t)在一个周期内的平均值。
可以看出,f(t)的傅里叶级数展开式是一组带有不同频率的正弦和余弦函数的和。
3. 傅里叶级数的意义通过傅里叶级数展开式,我们可以得到一个正弦和余弦函数的频域图像。
从这个频域图像中,我们可以得到一些信息,比如信号中哪些频率成分占比较高,哪些成分占比较低。
甚至可以根据这些信息对原始信号进行重建或修正。
具体地说,如果从一个连续不依赖于时间的物理现象中获得一段周期数据,那么可以通过法力级数的计算来确定信号包含的基本频率,并且据此对信号进行频谱分析。
频谱分析可以帮助我们更好地理解和利用信号,比如音频和视频信号的处理。
4. 傅里叶级数的应用在数学中,可以用傅里叶级数来解决微分方程的边界条件问题、傅里叶级数的离散化应用——快速傅里叶变换在信号处理中大量应用,还可以用于数值匹配。
在物理学中,傅里叶级数主要应用于波的传播和放大中,可以确定波的频率,方法是通过光谱来确定。
在光学领域中,傅里叶级数被广泛应用于计算机成像,用于抵消扰动、组合图像等。
在工程实践中,傅里叶级数也具有重要的应用价值。
特别是对于电子和通信工程师来说,傅里叶级数和傅里叶变换是必不可少的工具。
它们可用于信号处理、控制、数据分析和通信等领域。
傅里叶级数的应用不仅局限于上述领域,在音乐节拍分析、图像处理、机器学习等领域中都得到广泛应用。
5. 总结无论是在理论研究还是在工程实践中,傅里叶级数都是一个非常重要的工具。
傅里叶级数展开傅里叶级数展开是一种将周期函数表示为无穷级数的方法,由法国数学家傅里叶在19世纪初提出。
傅里叶级数展开在信号处理、图像处理、物理学等领域中有广泛应用,并且被认为是研究周期现象的基础工具之一。
1. 傅里叶级数展开的基本原理傅里叶级数展开的基本思想是将一个周期函数分解为正弦函数和余弦函数的叠加。
根据傅里叶级数的表达式,一个周期函数可以表示为无限多个正弦和余弦函数的和,即:f(x) = a0 + Σ(An * cos(nωx) + Bn * sin(nωx))其中,a0表示直流分量,An和Bn表示函数f(x)中的谐波系数,ω为频率,n为谐波阶数。
由此可知,通过傅里叶级数展开,一个周期函数可以分解为不同频率的谐波信号的叠加。
2. 傅里叶级数的计算公式根据给定周期函数的表达式,我们可以通过一系列复杂的积分计算,求得傅里叶级数展开的各个系数。
对于奇函数和偶函数,傅里叶级数的计算公式有所不同。
- 对于奇函数f(x),即满足 f(-x) = -f(x) 的函数,傅里叶级数展开的计算公式为:fn = (1/π) * ∫[0, π] f(x) * sin(nωx) d x- 对于偶函数f(x),即满足 f(-x) = f(x) 的函数,傅里叶级数展开的计算公式为:fn = (2/π) * ∫[0, π] f(x) * cos(nωx) dx在实际计算中,为了减小计算量,通常只考虑有限个谐波分量,而不是无限个。
通过计算傅里叶级数展开的前几个系数,就可以对周期函数进行较好的逼近。
3. 傅里叶级数的应用傅里叶级数展开在信号处理中有重要的应用。
通过傅里叶级数展开,可以将任意信号分解为基本频率的叠加,从而分析信号的频谱特性。
这对于音频信号的处理、图像处理、振动分析等方面非常重要。
此外,傅里叶级数展开还广泛应用于物理学领域,特别是波动现象的研究中。
通过将波动的形态分解为不同频率的谐波信号的叠加,可以更好地理解和描述波动现象。
傅里叶级数(Fourier Series )引言正弦函数是一种常见而简单的周期函数,例如描述简谐振动的函数 就是一个以ωπ2为周期的函数。
其中y 表示动点的位置,t 表示时间,A 为振幅,ω为角频率,ϕ为初相。
但在实际问题中,除了正弦函数外,还会遇到非正弦的周期函数,它们反映了较复杂的周期运动,我们也想将这些周期函数展开成由简单的周期函数例如三角函数组成的级数。
具体地说,将周期为)2(ωπ=T 的周期函数用一系列以T 为周期的正弦函数)sin(n n t n A ϕω+组成的级数来表示,记为其中),3,2,1(,,0 =n A A n n ϕ都是常数。
将周期函数按上述方式展开,它的物理意义就是把一个比较复杂的周期运动看成是许多不同频率的简谐振动的叠加。
在电工学上,这种展开称为谐波分析。
其中常数项0A 称为)(t f 的直流分量;)sin(11ϕω+t A 称为一次谐波(又叫做基波);而)2sin(22ϕω+t A , )3sin(33ϕω+t A 依次称为二次谐波,三次谐波,等等。
为了下面讨论方便起见,我们将正弦函数)sin(n n t n A ϕω+按三角公式变形,得 t n A t n A t n A n n n n n n ωϕωϕϕωsin cos cos sin )sin(+=+, 令x t A b A a A a n n n n n n ====ωϕϕ,cos ,sin ,200,则上式等号右端的级数就可以改写成这个式子就称为周期函数的傅里叶级数。
1.函数能展开成傅里叶级数的条件(1) 函数)(x f 须为周期函数;(2) 在一个周期内连续或只有有限个第一类间断点;(如果0x 是函数)(x f 的间断点,但左极限)0(0-x f 及右极限)0(0+x f 都存在,那么0x 称为函数)(x f 的第一类间断点)(3) 在一个周期内至多只有有限个极值点。
若满足以上条件则)(x f 能展开成傅里叶级数,且其傅里叶级数是收敛的,当x 是)(x f 的连续点时,级数收敛于)(x f ,当x 是)(x f 的间断点时,级数收敛于)]0()0([21++-x f x f 。
第15章傅里叶级数§15.1傅里叶级数一 基本内容一、傅里叶级数 在幂级数讨论中1()nn n f x a x ∞==∑,可视为()f x 经函数系线性表出而得.不妨称2{1,,,,,}nx x x 为基,则不同的基就有不同的级数.今用三角函数系作为基,就得到傅里叶级数.1三角函数系函数列{}1, cos , sin , cos 2, sin 2, , cos , sin , x x x x nx nx 称为三角函数系.其有下面两个重要性质.(1)周期性每一个函数都是以2π为周期的周期函数; (2)正交性任意两个不同函数的积在[,]ππ-上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在[,]ππ-可积的函数系{}() [, ], 1,2, n u x x a b n ∈=:,定义两个函数的内积为(),()()()d bn m n m a u x u x u x u x x=⋅⎰,如果0 (),() 0 n m l m nu x u x m n ≠=⎧=⎨≠⎩,则称函数系{}() [, ], 1,2, n u x x a b n ∈=:为正交系.由于1, sin 1sin d 1cos d 0nx nx x nx x ππππ--=⋅=⋅=⎰⎰;sin , sin sin sin d 0 m nmx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;cos , cos cos cos d 0 m n mx nx mx nx x m n πππ-=⎧=⋅=⎨≠⎩⎰;sin , cos sin cos d 0mx nx mx nx x ππ-=⋅=⎰;2 1, 11d 2x πππ-==⎰,所以三角函数系在[],ππ-上具有正交性,故称为正交系.利用三角函数系构成的级数 称为三角级数,其中011,,,,,,n n a a b a b 为常数2以2π为周期的傅里叶级数定义1设函数()f x 在[],ππ-上可积,11(),cos ()cos d k a f x kx f x kx xππππ-==⎰0,1,2,k =;11(),sin ()sin d k b f x kx f x kx xππππ-==⎰1,2,k =,称为函数()f x 的傅里叶系数,而三角级数称为()f x 的傅里叶级数,记作()f x ~()01cos sin 2n n n a a nx b nx ∞=++∑.这里之所以不用等号,是因为函数()f x 按定义1所得系数而获得的傅里叶级数并不知其是否收敛于()f x .二、傅里叶级数收敛定理定理1若以2π为周期的函数()f x 在[,]ππ-上按段光滑,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-++=∑,其中,n n a b 为()f x 的傅里叶系数.定义2如果()[, ]f x C a b '∈,则称()f x 在[,]a b 上光滑.若[,),(0),(0)x a b f x f x '∀∈++存在;(,],(0)x a b f x ∀∈-,(0)f x '-存在,且至多存在有限个点的左、右极限不相等,则称()f x 在[,]a b 上按段光滑.几何解释如图.按段光滑函数图象是由有限条光滑曲线段组成,它至多有有限个第一类间断点与角点.推论如果()f x 是以2π,]ππ-上按 段光滑,则x R ∀∈,有()01()cos sin 2n n n a f x a nx b nx ∞==++∑.定义3设()f x 在(,]ππ-上有定义,函数称()f x 为的周期延拓.二 习题解答1在指定区间内把下列函数展开为傅里叶级数(1)(),(i) , (ii) 02f x x x x πππ=-<<<<;解:(i)、()f x =x ,(,)x ππ∈-作周期延拓的图象如下. 其按段光滑,故可展开为傅里叶级数. 由系数公式得011()d d 0a f x x x x ππππππ--===⎰⎰.当1n ≥时,11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰,1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰,所以11sin ()2(1)n n nxf x n ∞+==-∑,(,)x ππ∈-为所求.(ii)、()f x =x ,(0,2)x π∈作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220011()d d 2a f x x x x πππππ===⎰⎰.当1n ≥时,220011sin sin d 0|x nx nx x n n ππππ=-=⎰,2200112cos cos d |x nx nx x n n n ππππ--=+=⎰,所以1sin ()2n nxf x n π∞==-∑,(0,2)x π∈为所求. (2)2()(i) (ii) 02f x =x , -π<x <π,<x <π;解:(i)、()2f x =x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得220112()d d 3a f x x x x πππππππ--===⎰⎰.当1n ≥时,222224cos cos d (1)|n x nx nx x n n n ππππππ--=-=-⎰,2222sin sin d 0|x nx nx x n n ππππππ--=-=⎰,所以221sin ()4(1)3nn nxf x n π∞==+-∑,(,)x ππ∈-为所求.()2f x =x0a =当1n ≥时,222220224cos cos d |x nx nx x n n n ππππ=-=⎰,2222004224sin sin d |x nx nx x n n n n ππππππ=-+-=-⎰,所以22214cos sin ()43n nx nx f x n n ππ∞=⎛⎫=+- ⎪⎝⎭∑,(0,2)x π∈为所求.(3)0()(,0,0)0ax x f x a b a b bx x ππ-<≤⎧=≠≠≠⎨<<⎩.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得000111()()d d d 2b a a f x x ax x bx x ππππππππ---==+=⎰⎰⎰.当1n ≥时,所以21()2()1()cos(21)4(21)n b a b a f x n x n ππ∞=--=+--∑11sin ()(1)n n nxa b n ∞+=++-∑,(,)x ππ∈-为所求.2设f 是以2π为周期的可积函数,证明对任何实数c ,有2 11()cos d ()cos d ,0,1,2,c n c a f x nx x f x nx x n πππππ+-===⎰⎰, 2 11()sin d ()sin d ,1,2,c n cb f x nx x f x nx x n πππππ+-===⎰⎰.证:因为()f x ,sin nx ,cos nx 都是以2π为周期的可积函数,所以令2t x π=+有c+2 c+211()cos d ()cos d f t nt t f x nx xππππππ==-⎰⎰.从而2 1()cos d c n ca f x nx xππ+=⎰1()cos d f x nx xπππ-=⎰.同理可得2 11()sin d ()sin d c n cb f x nx x f x nx xπππππ+-==⎰⎰.3把函数04()04x f x x ππππ⎧--<≤⎪⎪=⎨⎪≤<⎪⎩展开成傅里叶级数,并由它推出(1)11114357π=-+-+;(2)111111357111317π=+--+-+;11111157111317=-+-+-+.解:函数()f x ,(,)x ππ∈-作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数. 由系数公式得00111()d d d 044a f x x x x πππππππππ---==+=⎰⎰⎰.当1n ≥时,0011cos d cos d 044n a nx x nx x ππππππ--=+=⎰⎰.11211[1(1)]202n n k nn n k+⎧=+⎪=--=⎨⎪=⎩,故11()sin(21),(,0)(0,)21n f x n x x n ππ∞==-∈--∑为所求.(1)取2x π=,则11114357π=-+-+;(2)由11114357π=-+-+得111112391521π=-+-+,于是111111341257111317πππ=+=+--+-+;(3)取3x π=,则111111457111317π⎫=-+-+-+⎪⎝⎭,11111157111317=-+-+-+.4设函数()f x 满足条件()()f x f x π+=-,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=-,所以(2)()()f x f x f x ππ+=-+=,即()f x 是以2π为周期的函数. 于是由系数公式得11()d ()d 0f t t f x x πππππ=++=⎰⎰.当1n ≥时,02()cos d 2102f x nx x n k n k ππ⎧=-⎪=⎨⎪=⎩⎰.02()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰,故当()()f x f x π+=-时,函数()f x 在(),ππ-内的傅里叶级数的特性是20k a =,20k b =. 5设函数()f x 满足条件:()()f x f x π+=,问此函数在(),ππ-内的傅里叶级数具有什么特性.解:因为()f x 满足条件()()f x f x π+=,所以(2)()()f x f x f x ππ+=+=,即()f x 是以2π为周期的函数.于是由系数公式得112()d ()d ()d f t t f x x f x xπππππππ=++=⎰⎰⎰.当1n ≥时,02()cos d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰. 02()sin d 2021f x nx x n k n k ππ⎧=⎪=⎨⎪=-⎩⎰,故当()()f x f x π+=时,函数()f x 在(),ππ-内的傅里叶级数的特性是210k a -=,210k b -=. 6试证函数系cos , 0,1,2,nx n =和sin , 1,2,nx n =都是[0, ]π上的正交函数系,但他们合起来的却不是[0, ]π上的正交函数系.证:就函数系{1,cos ,cos2,,cos ,}x x nx ,因为n ∀,1,1d x ππ==⎰,2001cos ,cos cos d (cos21)d 22nx nx nx x nx x πππ==+=⎰⎰,又1,cos cos d 0nx nx x π==⎰;,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=++-=⎰⎰.所以{1,cos ,cos2,,cos ,}x x nx 在[0, ]π上是正交系.就函数系{sin ,sin 2,,sin ,}x x nx ,因为n ∀,2001sin ,sin sin d (1cos2)d 22nx nx nx x nx x πππ==-=⎰⎰,又,m n ∀,m n ≠时,0011cos()d cos()d 022m n x x m n x x ππ=-++-=⎰⎰.所以{sin ,sin 2,,sin ,}x x nx 在[0, ]π上是正交系. 但{1,sin ,cos ,sin 2,cos2,,sin ,cos ,}x x x x nx nx 不是[0, ]π上的正交系.实因:1,sin sin d 10x x x π==≠⎰.7求下列函数的傅里叶级数展开式(1)(),022x f x x ππ-=<<;(),02x f x x ππ-=<< 0a 当1n ≥时,22001sin sin d 022|x nx nx x n n πππππ-=+=⎰,220011cos cos d 22|x nx nx x n n n πππππ-=--=⎰,所以1sin ()n nxf x n ∞==∑,(0,2)x π∈为所求.(2)()f x x ππ=-≤≤;解:()f x x ππ=-≤≤作周期延拓的图象如下.其按段光滑,故可展开为傅里叶级数.因为02()02x x f x x x ππ-≤<==⎨⎪≤≤⎪⎩,所以由系数公式得0sin d sin d 22x x x x ππ-=+=.当1n ≥时,sin cos d 2x nx x π==.0sin sin d sin sin d 022n x x b nx x nx x ππππ-=+=⎰.所以211()cos 41n f x nxnππ∞==--,(,)x ππ∈-.而x π=±时,(0)(0)()2f f f πππ±-+±+==±,故211()cos 41n f x nxnππ∞==--,[,]x ππ∈-为所求.(3)2(), (i) 02, (ii) f x ax bx c x x πππ=++<<-<<;解:(i)由系数公式得22218()d 223aax bx c x b cππππ=++=++⎰.当1n ≥时,24an =, 42a n n ππ=--, 故224()3a f x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑为所求.(ii)由系数公式得01()d a f x x πππ-=⎰2212()d 23aax bx c x c ππππ-=++=+⎰.当1n ≥时,24(1)nan =-, 12(1)n bn -=-, 故222()3af x ax bx c cπ=++=+2142(1)cos (1)sin ,(,)nn n a b nx nx x n n ππ∞=+---∈-∑为所求.(4)()ch , f x x x ππ=-<<;解:由系数公式得01()d a f x x πππ-=⎰12ch d sh x x πππππ-==⎰.当1n ≥时,222sh 1(1)nna n n ππ=--,所以22sh (1)(1)n n a n ππ=-+. 2211sh sin ch sin d |x nx x nx x n n ππππππ--=-+⎰21nb n =,所以0n b =,故21211()ch sh (1)cos 21n n f x x nx n ππ∞=⎡⎤==+-⎢⎥+⎣⎦∑, (,)x ππ∈-为所求.(5)()sh ,f x x x ππ=-<<.解:由系数公式得01()d a f x x πππ-=⎰1sh d 0x x πππ-==⎰. 当1n ≥时,1sh cos d 0n a x nx x πππ-==⎰.1221(1)sh n n b n n ππ+=--,所以122sh (1)(1)n n n xb n π+=-+, 故1212sh ()sh (1)sin (1)n n n f x x nxn ππ∞+===-+∑,(,)x ππ∈-为所求.8求函数221()(362)12f x x x ππ=-+的傅里叶级数展开式并应用它推出22116n n π∞==∑. 解:由224()3af x ax bx c b cππ=++=++21442cos sin ,(0,2)n a a bnx nx x n n ππ∞=++-∈∑得211cos n nx n ∞==∑,(0,2)x π∈.而2(00)(20)6f f ππ+=-=,故由收敛定理得22211(00)(20)11cos062n n f f n n ππ∞∞==++-===∑∑.9设()f x 为[],ππ-上光滑函数,()()f f ππ-=.且,n n a b 为()f x 的傅里叶系数,,n n a b ''为()f x 的导函数()f x '的傅里叶系数.证明00,,(1,2,)n n n n a a nb b na n '''===-= .证:因为()f x 为[],ππ-上光滑函数,所以()f x '为[],ππ-上的连续函数,故可积.由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.故结论成立.10证明:若三角级数01(cos sin )2n n n a a nx b nx ∞=++∑中的系数,n n a b 满足关系{}33sup ,n n nn a n b M≤,M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数.证:设0()2a u x =,()cos sin n n n u x a nx b nx =+,1,2,n =.则0n ∀≥,()n u x 在R 上连续,且0()0u x '=,()sin cos nn n u x na nx nb nx '=-+亦在R 上连续. 又x R ∀∈,()sin cos nn n u x n a nx n b nx '≤+ 22Mn ≤.而22Mn∑收敛,所以()()cos sin n n n u x nb nx na nx '=-∑∑在R 上一致收敛.故设01()(cos sin )2n n n a s x a nx b nx ∞==++∑,则且1()(cos sin )n n n s x na nx nb nx ∞='=-+∑在R 上连续.§15.2以2l 为周期的函数的展开一 基本内容一、以2l 为周期的函数的傅里叶级数 设()f x 是以2l 为周期的函数,作替换ltx π=,则()lt F t f π⎛⎫= ⎪⎝⎭是以2π为周期的函数,且()f x 在(, )l l -上可积()F t ⇔在(,)ππ-上可积.于是()01()cos sin 2n n n a F t a nt b nt ∞=++∑,其中 1()cos d ,n a F t nt t πππ-=⎰1()sin d n b F t nt tπππ-=⎰.令xt l π=得()()lt F t f f x π⎛⎫== ⎪⎝⎭,sin sin ,cos cos n x n xnt nt l l ππ==, 从而01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫++ ⎪⎝⎭∑.其中1()cos ,l n l n x a f x dx l l π-=⎰ 1()sin l n l n xb f x dx l l π-=⎰.上式就是以2l 为周期的函数()f x 的傅里叶系数.在按段光滑的条件下,亦有01(0)(0)cos sin 22n n n a f x f x n x n x a b l l ππ∞=++-⎛⎫=++ ⎪⎝⎭∑. 其只含余弦项,故称为余弦级数. 同理,设()f x 是以2l 为周期的奇函数,则()cos f x nx 奇,()sin f x nx 偶.于是1()cos d 0l n l n xa f x x l l π-==⎰,012()sin d ()sin d l l n l n x n xb f x x f x x l l l l ππ-==⎰⎰. 从而01()2n n a f x a ∞=+∑由此可知,函数偶延拓() (0,()() (,0)f x x l f x f x x l ∈⎧=⎨-∈-⎩函数(),(0,)f x x l ∈要展 开为正弦级数必须作奇延拓. 奇延拓() (0,) ()() (,0)f x x l f x f x x l ∈⎧=⎨--∈-⎩.二 习题解答1求下列周期函数的傅里叶级数展开式 (1)()cos f x x =(周期π);解:()cos f x x =,22x ππ⎡⎤∈-⎢⎥由于(f ()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得22002244cos d cos d a x x x x ππππππ-===⎰⎰.当1n ≥时,1(1)2(1)2(21)(21)n n n n ππ+-⋅-⋅=++-124(1)(41)n n π+=--. 222cos sin d 0n b x nx x πππ-==⎰.故121241()cos (1)cos241n n f x x nxn ππ∞+===+--∑,(,)x ∈-∞+∞为所求.(2)()[]f x x x =-(周期1);解:函数()[]f x x x =-,11,22x ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数.因12l =,所以由系数公式得()()111210022[]d 2[]d 2d 1a x x x x x x x x -=-=-==⎰⎰⎰.当1n ≥时,110011sin 2sin 2d 0|x n x n x x n n ππππ=-=⎰.110011cos2cos2d |x n x n x x n n ππππ-=+⎰1n π-=. 故1111()[]sin 22n f x x x n xn ππ∞==-=-∑,(,)x ∈-∞+∞为所求. (3)4()sin f x x =(周期π);2222解:函数4()sin f x x =,,22x ππ⎡⎤∈-⎢⎥⎣⎦延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因2l π=,所以由系数公式得 204311cos 2cos 4d 828x x x ππ⎛⎫=-+ ⎪⎝⎭⎰34=.当1n ≥时,11201,2128n n n n ⎧-=⎪⎪=≠≠⎨⎪⎪=⎩. 222cos sin d 0n b x nx x πππ-==⎰.故4311()sin cos2cos4828f x x x x==-+,(,)x ∈-∞+∞为所求.(4)()sgn(cos )f x x =(周期2π).解:函数()sgn(cos )f x x =,(,)x ππ∈-延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l π=,所以由系数公式得0012sgn(cos )d sgn(cos )d 0a x x x x πππππ-===⎰⎰.当1n ≥时,02sgn(cos )cos d n a x nx xππ=⎰4sin 2n n ππ=024(1)21(21)kn k n k k π=⎧⎪=⎨-=-⎪+⎩.2sgn(cos )sin d 0n b x nx x πππ-==⎰.故14cos(21)()sgn(cos )(1)21nn n xf x x n π∞=+==-+∑,(,)x ∈-∞+∞.2求函数 01() 1 123 23x x f x x x x ≤≤⎧⎪=<<⎨⎪-≤≤⎩的傅里叶级数并讨论其收敛性.解:函数()f x ,(0,3)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因32l =,所以由系数公式得31230001222224()d d d (3)d 33333a f x x x x x x x ==++-=⎰⎰⎰⎰. 当1n ≥时, 2222323cos 3n n n πππ=-.2()sin d 0n b f x nx x πππ-==⎰.故2221231122()cos cos333n n n xf x n n πππ∞=-⎡⎤=++⎢⎥⎣⎦∑,(,)x ∈-∞+∞为所求. 3将函数()2f x xπ=-在[0,]π上展开成余弦级数.解:函数()2f x xπ=-,[0,]x π∈作偶延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得20021d 0222a x x x x πππππ⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭⎰.当1n ≥时,242102n k n n kπ⎧=-⎪=⎨⎪=⎩.0n b =.故2141()cos(21),[0,]2(21)n f x x n x x n πππ∞==-=-∈-∑.4将函数()cos2xf x =在[0,]π上展开成正弦级数.解:函数()cos2xf x =,[0,]x π∈作偶延拓后的函数如下图. 由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.28(41)nn π=-.故在[0, ]π上218()cos sin 241n x nf x nxn π∞===-∑为所求.5把函数102()324x x f x x x -<≤⎧=⎨-<<⎩ 在(0, 4)上展开成余弦级数.解:函数()f x ,(0,4)x ∈延拓后的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因4l =,所以由系数公式得4240002211()d (1)d (3)d 0422a f x x x x x x ==-+-=⎰⎰⎰.当1n ≥时,402()cos d 44n n xa f x x π=⎰所以102()324x x f x x x -<≤⎧=⎨-<<⎩22181(21)cos(21)2n n xn ππ∞=-=-∑为所求.6把函数()2()1f x x =-在(0, 1)上展开成余弦级数,并推出222116123π⎛⎫=+++⎪⎝⎭.解:函数()f x ,(0,1)x ∈延拓为以2为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.因l=0.5,所以由系数公式得11200022()d 2(1)d 3a f x x x x ==-=⎰⎰.当1n ≥时,1202(1)cos d n a x n x xπ=-⎰224n π=.0n b =.所以2221141(1)cos ,[0,1]3n x nx x n π∞=-=+∈∑.令0x =得22114113n n π∞==+∑,即22116n n π∞==∑. 7求下列函数的傅里叶级数展开式 (1)()arcsin(sin )f x x =;解:函数()arcsin(sin )f x x =是以2π为周期的函数如下图.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是奇函数,故其展开式为正弦级数.由系数公式得0,0,1,2,n a n ==.所以214(1)()arcsin(sin )sin(21)(21)nn f x x n x n π∞=-==--∑,x R ∈.(2)()arcsin(cos )f x x =.解:函数()arcsin(cos )f x x =是以2π为周期的函数如下图.由于()f x 是偶函数,故其展开式为余弦级数.002arcsin(cos )d 0a x x ππ==⎰,当1n ≥时,202421n k n k n π=⎧⎪=⎨=-⎪⎩.0,1,2,n b n ==.所以2141()arcsin(cos )cos(21)(21)n f x x n x n π∞===--∑,x R ∈. 8试问如何把定义在0,2π⎡⎤⎢⎥⎣⎦上的可积函数()f x 延拓到区间(),ππ-内,使他们的傅里叶级数为如下的形式(1)211cos(21)n n an x∞-=-∑;(2)211sin(21)n n bn x∞-=-∑.解:(1)先把()f x 延拓到[0,]π上,方法如下:()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪--<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下:()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨-<≤⎩.其图象如下.由于()f x 按段光滑,所以可展开为傅里叶级数,又()f x 是偶函数,故其展开式为余弦级数.由系数公式得002()d 0a f x x ππ==⎰,当1n ≥时,201()sin d 0n b f x nx x ππ==⎰.204()cos d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()cos(21)0,2n n f x a n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. (2)先把()f x 延拓到[0,]π上,方法如下.()02()()2f x x f x f x x ππππ⎧≤≤⎪⎪=⎨⎪-<≤⎪⎩;再把()f x 延拓到[0,2]π上,方法如下.()0ˆ()(2)2f x x f x f x x ππππ⎧≤≤=⎨--<≤⎩.()f x 是偶函数,故其展开式为余弦级数.002()d 0a f x x ππ==⎰,当1n ≥时,201()cos d 0n a f x nx x ππ==⎰204()sin d 2102f x nx x n k n kππ⎧=-⎪=⎨⎪=⎩⎰. 所以211()sin(21)0,2n n f x b n x x π∞-=⎛⎫=-∈ ⎪⎝⎭∑. §15.3收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理1 设()f x 在[,]ππ-上可积,则()2222011()d 2n n n a a b f x x πππ∞-=++≤∑⎰,其中,n n a b 为()f x 的傅里叶系数.推论1设()f x 在[,]ππ-上可积,则lim ()cos d 0n f x nx x ππ-→∞=⎰, lim ()sin d 0n f x nx x ππ-→∞=⎰.推论2设()f x 在[,]ππ-上可积,则01lim ()sin d 02n f x n x x π→∞⎛⎫+= ⎪⎝⎭⎰,1lim ()sin d 02n f x n x x π-→∞⎛⎫+= ⎪⎝⎭⎰.定理2设以2π为周期的函数()f x 在[,]ππ-上可积,则1sin 12()d 2sin2n tf x t tt πππ-⎛⎫+ ⎪⎝⎭=+⎰,此称为()f x 的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理3(收敛性定理) 设以2π为周期的函数()f x 在[,]ππ-上按段光滑,则(0)(0)lim ()022n n f x f x S x →∞-+⎡⎤+-=⎢⎥⎣⎦,定理4如果()f x 在[,]ππ-上有有限导数,或有有限的两个单侧导数,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.定理5如果()f x 在[,]ππ-按段单调,则()01(0)(0)cos sin 22n n n a f x f x a nx b nx ∞=++-=++∑.二 习题解答1设()f x 以2π为周期且具有二阶连续的导函数,证明()f x 的傅里叶级数在(,)-∞+∞上一致收敛于()f x .证:由题目设知()f x 与()f x '是以2π为周期的函数,且光滑,故 01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,且1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是2222111122n nn n nn a b a b a b nn n n ''⎛⎫⎛⎫''+=+≤+++ ⎪ ⎪⎝⎭⎝⎭22211()2n n a b n ''=++.由贝塞尔不等式得221()nn n a b ∞=''+∑收敛,又211n n ∞=∑收敛,从而()012n n n a a b ∞=++∑收敛, 故01(cos sin )2n n n a a nx b nx ∞=++∑在(,)-∞+∞上一致收敛.2设f 为[],ππ-上可积函数,证明:若f 的傅里叶级数在[,]ππ-上一致收敛于f ,则成立贝塞尔(Parseval)等式()2 2220 11()d 2n n n a f x x a b πππ∞-==++∑⎰, 这里,n n a b 为f 的傅里叶系数.证:设()01cos sin 2mm n n n a S a nx b nx ==++∑,因为()f x 的傅里叶级数在[,]ππ-上一致收敛于()f x ,所以0,0N ε∀>∃>,,[,]()m m N x f x S ππε∍>∀∈-⇒-<“”.于是2(),()m m f x S f x S ε--<.而()2 2221()d 2mn n n a f x x a b ππππ-==--+∑⎰.所以m N >时,()222221()d 2mn n n a f x x a b ππππε-=--+<∑⎰,故()2222011()d 2n n n a a b f x x πππ∞-=++=∑⎰.3由于贝塞尔等式对于在[,]ππ-上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式. (1)22118(21)n n π∞==-∑;(2)22116n n π∞==∑;(3)44190n π=∑. 解:(1) 取04()04x f x x ππππ⎧--<<⎪⎪=⎨⎪≤<⎪⎩,由§1习题3得1sin(21)(),(,0)(0,)21n n xf x x n ππ∞=-=∈--∑.由贝塞尔等式得22111d 16(21)n x n ππππ∞-==-∑⎰,即22118(21)n n π∞==-∑.(2) 取(),(,)f x x x ππ=∈-,由§1习题1(1)得11sin ()2(1),(,)n n nxf x x n ππ∞+==-∈-∑.由贝塞尔等式得21211(1)2d n n x x n πππ+∞-=⎛⎫-= ⎪⎝⎭∑⎰,故22116n n π∞==∑.(3) 取2(),[,]f x x x ππ=∈-,由§1习题1(2)得 2221cos 4(1),(,)3nn xx x n πππ∞==+-∈-∑.由贝塞尔等式得22242111(1)4d 23n n x x n ππππ∞-=⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭∑⎰, 故44190n π=∑. 4证明:若,f g 均为[,]ππ-上可积函数,且他们的傅里叶级数在[,]ππ-上分别一致收敛于f 和g ,则00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.其中,n n a b 为f 的傅里叶系数,,n n αβ为g 的傅里叶系数.证:由题设知01()(cos sin )2n n n a f x a nx b nx ∞==++∑,1()(cos sin )2n n n g x nx nx ααβ∞==++∑.于是 1()()d (),()f xg x x f x g x πππ-=⎰而001(),cos sin ,222n n n a f x a nx b nx αα∞==++∑ cos ,cos n n n n a nx nx a αα==, cos ,cos n n n n b nx nx b ββ==,所以 00 11()()d ()2n n n n n a f x g x x a b ππααβπ∞-==++∑⎰.5证明若f 及其导函数f '均在[,]ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,且成立贝塞尔等式,则22()d ()d f x x f x xππππ--'≥⎰⎰.证:因为()f x 、()f x '在[],ππ-上可积,()d 0f x x ππ-=⎰,()()f f ππ-=,设01()(cos sin )2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn n a f x a nx b nx ∞=''''=++∑,由系数公式得1()d a f x x πππ-''=⎰()1()()0f f πππ=--=.当1n ≥时,1()cos d na f x nx x πππ-''=⎰1()cos ()sin d |nnf x nx f x nx x nb ππππππ--'=+=⎰.于是由贝塞尔等式得2()d f x xππ-=⎰.总练习题151试求三角多项式的傅里叶级数展开式.解:因为01()(cos sin )2nn k k k A T x A kx B kx ==++∑是以2π为周期的光滑函数,所以可展为傅里叶级数,由系数公式得001(),1(cos sin ),12nn k k k A a T x A kx B kx A ===++=∑,当1k ≥时,1(cos sin ),cos 02nkk k k A k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,1(cos sin ),sin 02nkk k k B k n A A kx B kx kx k n =≤⎧=++=⎨>⎩∑,故在(,)-∞+∞,01()(cos sin )2nn k k k A T x A kx B kx ==++∑的傅里叶级数就是其本身.2设f 为[,]ππ-上可积函数,0,,(1,2,,)k k a a b k n =为f 的 傅里叶系数,试证明,当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 上述()n T x 是第1题中的三角多项式,0,,k k A A B 为它的傅里叶系数.证:设()01()cos sin 2n n n a f x a nx b nx ∞==++∑, 01()(cos sin )2nn k k k A T x A kx B kx ==++∑,且00,,(1,2,,)k k k k A a A a B b k n ====, 因为[]2()()d n f x T x xππ--⎰22 ()d 2()()d ()d n n f x x f x T x x T x xππππππ---=-+⎰⎰⎰,而()001()()d 2nn k k k k k A a f x T x x A a B b ππππ-==++∑⎰, () 22201()d 2nnk k k A T x x A B πππ-==++∑⎰,所以[]2()()d n f x T x xππ--⎰故当00,,(1,2,,)k k k k A a A a B b k n ====时, 积分[]2()()d n f x T x xππ--⎰取最小值,且最小值为[]22220 1()d ()2nk k k a f x x a b πππ-=⎡⎤-++⎢⎥⎣⎦∑⎰. 3设f 为以2π周期,且具有二阶连续可微的函数,11()sin d , ()sin d n nb f x nx x b f x nx xππππππ--''''==⎰⎰,若级数n b ''∑绝对收敛,则11122n n n b ∞∞==⎛⎫''+ ⎪⎝⎭∑.证:因为()f x 为以2π周期,且具有二阶连续可微的函数, 所以1()sin d n b f x nx x πππ-''''=⎰2 2 ()cos ()sin d nn n f x nxf x nx x n b ππππππ--=-+=⎰. 即211,n n n b b n ''∀≥=⋅,从而2111,2n n b n ⎛⎫''∀≥+ ⎪⎝⎭又n b ''∑绝对收敛,21n ∑收敛,所以n ∞=1122n n b ∞=⎛⎫''<+ ⎪⎝⎭∑.故结论成立.4设周期为2π的可积函数()x ϕ与()x ψ满足以下关系式(1)()()x x ϕψ-=;(2)()()x x ϕψ-=-.试问ϕ的傅里叶系数,n n a b 与ψ的傅里叶系数,n n αβ有什么关系?解:设()01()cos sin 2n n n a x a nx b nx ϕ∞==++∑,()1()cos sin 2n n n x nx nx αψαβ∞==++∑,(1)则当()()x x ϕψ-=时,0n ∀≥,n α=.1n ∀≥,n β=-.(2)当()()x x ϕψ-=-时,0n ∀≥,n α=-.1n ∀≥,n β=.5设定义在[,]a b 上的连续函数列{}()n x ϕ满足关系0 ()()d 1 bn m a n mx x x n m ϕϕ≠⎧=⎨=⎩⎰,对于在[,]a b 上的可积函数f ,定义()()d , 1,2,b n n a a f x x x n ϕ==⎰,证明21n n a ∞=∑收敛,且有不等式 22 1[()]d b n a n a f x x ∞=≤∑⎰.证:在[,]a b 上的所有可积函数构成的集合中定义内积为(),()()()d b a f x g x f x g x x =⎰,则函数列{}()n x ϕ为标准正交系.令1()(),1,2,m m n n n S x a x m ϕ===∑,则,(),()n n n a f x x ϕ∀=, 又 2 [()()]d bm a f x S x x -⎰22 ()d 2()()d ()d n n f x x f x S x x S x x ππππππ---=-+⎰⎰⎰,而11(),()(),()(),()m m n n n n n n n f x S x f x a x a f x x ϕϕ====∑∑ 21m nn a ==∑. 211(),()m mk k k k k k k a a x x a ϕϕ====∑∑,于是 222 1()d [()()]d 0m b n m an f x x a f x S x x ππ-=-=-≥∑⎰⎰, 所以22 11,[()]d m b n a n m a f x x =∀≥≤∑⎰,即{}()m S x 有上界. 故 21n n a∞=∑收敛,且 22 1[()]d b n a n a f x x∞=≤∑⎰.。
傅里叶级数的性质及其在信号处理中的应用1. 傅里叶级数的概念和基本性质傅里叶级数是指任意周期函数可以表示为一组正弦和余弦函数的无穷级数。
其基本性质包括:(1) 周期性:傅里叶级数适用于周期函数,具有相同周期的函数可以进行傅里叶级数分解。
(2) 奇偶对称性:若函数f(t)是周期为T的偶函数,那么其傅里叶级数中只包含余弦项;若函数f(t)是周期为T的奇函数,则其傅里叶级数中只包含正弦项。
(3) 线性叠加性:两个函数的傅里叶级数之和等于它们分别的傅里叶级数之和。
(4) 傅里叶级数解析式:傅里叶级数的解析式可以通过计算求得,其中包含一系列系数,称为傅里叶系数。
2. 傅里叶级数的应用(1) 信号分析:傅里叶级数可以将一个周期信号分解为一系列正弦和余弦函数的叠加,从而揭示了信号的频谱特性。
通过傅里叶级数的分析,我们可以得到信号的幅度谱、相位谱等信息,进而进行频域滤波、频率分析、谱估计等处理。
(2) 信号合成:傅里叶级数可以将一组频域上的若干分量信号合成为一个周期性信号。
这对于合成音频信号、图像信号、视频信号等具有重要意义,可以实现信号的压缩和还原。
(3) 信号滤波:傅里叶级数允许我们将信号在频域上进行滤波处理,通过消除或削弱特定频率成分,实现降噪、去除干扰和信号增强等目的。
傅里叶滤波器在音频处理、图像处理、通信系统等领域得到广泛应用。
(4) 信号压缩:通过傅里叶级数的分析,我们可以得到信号的频域表示,进而根据频域系数的大小选择保留重要的频率成分,舍弃次要的频率成分,从而实现信号的压缩。
傅里叶级数压缩在图像和音频压缩领域有广泛的应用。
(5) 信号重构:傅里叶级数的逆变换可以将信号从频域重构到时域,从而实现信号的还原。
通过选择适当的傅里叶系数,可以恢复出原始信号,实现信号的解压缩或恢复。
(6) 信号处理算法:傅里叶级数为很多信号处理算法提供了基础。
例如,快速傅里叶变换(FFT)是一种高效计算傅里叶级数的方法,广泛应用于信号处理、图像处理、语音识别等领域。
傅里叶级数的定理傅里叶级数是一种将周期函数表示为三角函数的级数展开形式的数学工具。
它是由法国数学家傅里叶在18世纪提出的,被广泛应用于物理学、工程学和信号处理等领域。
傅里叶级数的定理提供了一种将任意周期函数分解为正弦和余弦函数的方法,使得我们可以更好地理解和分析周期性的现象。
傅里叶级数的定理可以简单地表述为:任意一个周期为T的函数f(x)可以表示为一系列正弦和余弦函数的线性组合,即f(x) = a0 + Σ(an*cos(nωx) + bn*sin(nωx))其中an和bn是傅里叶系数,表示了函数f(x)中各个频率分量的振幅,ω=2π/T是角频率。
a0是直流分量,对应于频率为0的分量。
傅里叶级数的定理是基于正交函数的思想而来。
正交函数是指在某个区间上两两内积为0的函数。
在傅里叶级数中,正弦和余弦函数是互相正交的,因此可以通过内积运算来确定各个傅里叶系数的值。
傅里叶级数的定理在实际应用中具有重要意义。
首先,它可以将复杂的周期函数分解为一系列简单的正弦和余弦函数,使得我们能够更好地理解函数的频域特性。
其次,傅里叶级数的定理为信号处理提供了一种便捷的方法,可以对信号进行频谱分析和滤波处理。
此外,傅里叶级数还被广泛应用于图像处理、音频处理和通信系统等领域。
傅里叶级数的定理具有一些重要的性质。
首先,对于一个具有奇对称性或偶对称性的函数,其傅里叶级数只包含正弦函数或余弦函数。
其次,傅里叶级数的收敛性得到了严格的数学证明,即对于一个光滑的函数,其傅里叶级数可以收敛到原函数。
此外,傅里叶级数还满足线性性质,即两个函数的傅里叶级数之和等于它们的傅里叶级数之和。
傅里叶级数的定理虽然强大,但也有一些限制。
首先,傅里叶级数只适用于周期函数,对于非周期函数需要进行适当的处理才能使用傅里叶级数展开。
其次,傅里叶级数的展开系数需要通过积分计算,对于一些复杂的函数可能无法得到解析解,需要使用数值方法进行近似计算。
傅里叶级数的定理为我们理解和分析周期函数提供了一种有效的工具。
傅里叶级数本文意在阐述傅里叶级数是什么,如何通过数学推导得出,以及傅里叶级数代表的物理含义。
1.完备正交函数集要讨论傅里叶级数首先得讨论正交函数集。
如果n个函数,…构成一个函数集,若这些函数在区间上满足如果是复数集,那么正交条件是为函数的共轭复函数。
有这个定义,我们可以证明出一些函数集是完备正交函数集。
比如三角函数集和复指数函数集在一个周期内是完备正交函数集。
先证明三角函数集:设,,把代入(1)得当n时===0 (n,m=1,2,3,…,n)当n=m时==再证两个都是正弦的情况设,,把代入(1)得当n时===0 (n,m=1,2,3,…,n)当n=m时==最后证明两个是不同名的三角函数的情况设,,把代入(1)得===0 (n,m为任意整数)因为两个三角函数相乘只有以上三种情况:两个皆为余弦函数相乘;两个皆为正弦函数相乘;一个为正弦函数,另一个为余弦函数相乘;三种情况皆满足正交函数集的定义,所以三角函数集为正交函数集。
至于三角函数集的完备性可以从n,m的取值为任意整数可以得出,三角函数集是完备正交函数集。
证毕。
由于三角函数集是完备正交函数集,而根据欧拉公式,我们容易联想到复指数函数集是否也是完备正交函数集呢。
接着是复指数函数集的证明设,,则把代入(2)得当n时,根据欧拉公式==0 (n,m=1,2,3,…,n)当n=m时,=1 (n,m=1,2,3,…,n)所以,复指数函数集也是正交函数集。
因为n,m的取值范围是所有整数,所以复指数函数集是完备的正交函数集。
明明是讨论傅里叶级数,为什么第一部分在阐述完备正交函数集呢。
因为,在自然界中,没有规则的信号,比如说找一个正弦信号,是完全不可能找到的。
有的是一堆杂乱的信号,无规律的波形。
我们要研究它,基本的思想是把它拆分,分解成一个一个有规律的可研究的波形,这些波形能用数学表达式准确表达出来。
把一个复杂的信号分解的过程,可以理解成用已知的可以准确表达的函数表示他,比如一个复杂的信号把它分解,就是其中,…是我们所熟悉的函数,比如二次函数,一次函数,三角函数,指数函数等等。
第十5章 傅里叶级数1傅里叶级数一、三角级数·正交函数系概念1:由正弦函数y=Asin(ωx+φ)表示的周期运动称为简谐振动,其中A 为振幅,φ为初相角,ω为角频率,其周期T=ω2π.常用几个简谐振动y k =A k sin(k ωx+φk ), k=1,2,…,n 的叠加来表示较复杂的周期运动,即:y=∑=n 1k k y =∑=n1k k k )φ+ x sin(k ωA ,其周期为T=ω2π.若由无穷多个简谐振动叠加得函数项级数A 0+∑∞=1n n n )φ+ x sin(n ωA 收敛,当ω=1时,sin(nx+φn )=sin φn cosnx+cos φn sinnx ,所以 A 0+∑∞=1n n n )φ+sin(nx A = A 0+∑∞=1n n n n n sinnx )cos φA +cosnx sin φ(A ,记A 0=2a 0,A n sin φn =a n ,A n cos φn =b n ,n=1,2,…,则该级数可以表示为: 2a 0+∑∞=1n n n sinnx )b +cosnx (a . 它是由三角函数列(或称为三角函数系) 1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…构成一般形式的三角级数.定理15.1:若级数2a 0+∑∞=+1n n n |)b ||a (|收敛,则三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上绝对收敛且一致收敛.证:对任何实数x ,∵|a n cosnx+b n sinnx|≤|a n |+|b n |, 由魏尔斯特拉斯M 判别法得证.概念2:若两个函数φ与ψ在[a,b]上可积,且⎰ba φ(x )ψ(x )dx=0,则 称函数φ与ψ在[a,b]上是正交的, 或称它们在[a,b]上具有正交性,若有一系列函数两两具有正交性,则称其为正交函数系.注:三角函数列:1,cosx,sinx,cos2x, sin2x,…,cosnx,sinnx,…有以下性质: 1、所有函数具有共同的周期2π;2、任何两个不相同的函数在[-π, π]上具有正交性,即为在 [-π, π]上的正交函数系. 即有:⎰ππ-cosnx dx=⎰ππ-sinnx dx=0;⎰ππ-cosmx cosnx dx=0 (m ≠n);⎰ππ-sinmx sinnx dx=0 (m ≠n);⎰ππ-cosmx sinnx dx=0 (m ≠n).3、任何一个函数的平方在[-π, π]上的积分都不等于零,即⎰ππ-2nx cos dx=⎰ππ-2nx sin dx=π;⎰ππ-21dx=2π.二、以2π为周期的函数的傅里叶级数定理15.2:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则:a n =⎰ππ-f(x)cosnx π1dx, b n =⎰ππ-f(x)sinnx π1dx, n=1,2,…. 证:由定理条件可知,f(x)在[-π, π]上连续且可积,∴⎰ππ-f(x )dx=2a⎰ππ-dx +∑⎰⎰∞=1n ππ-n ππ-n )sinnx dx b +dx cosnx (a =2a 0·2π=a 0π.即a 0=⎰ππ-f(x)π1dx. 对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以coskx(k 为正整数),可得:f(x)coskx=2a 0coskx +∑∞=1n n n )sinnx coskx b +cosnx coskx (a ,则新级数收敛,有coskx f(x )ππ-⎰dx=2a 0⎰ππ-coskx dx +∑⎰⎰∞=1n ππ-n ππ-n )dx sinnx coskx b +coskx dx cosnx a (.由三解函数的正交性,等式右边除了以=a k 为系数的那一项积分kx cos a 2ππ-k ⎰dx= a k π外,其余各项积分都为0,∴coskx f(x )ππ-⎰dx= a k π,即a k =⎰ππ-f(x)coskx π1dx (k=1,2,…). 同理,对f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a两边同时乘以sinkx(k 为正整数),可得:b k =⎰ππ-f(x)sinkx π1dx (k=1,2,…).概念3:若f 是以2π为周期且在[-π, π]上可积的函数,则按定理15.2中所求a n , b n 称为函数f(关于三角函数系)的傅里叶系数,以f 的傅里叶系数为系数的三角级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 称为f(关于三角函数系)的傅里叶级数,记作f(x)~2a 0+∑∞=1n n n sinnx )b +cosnx (a .注:若2a 0+∑∞=1n n n sinnx )b +cosnx (a 在整个数轴上一致收敛于f ,则,f(x)=2a 0+∑∞=1n n n sinnx )b +cosnx (a .三、收敛定理概念4:若f 的导函数在[a,b]上连续,则称f 在[a,b]上光滑. 若定义在[a,b]上除了至多有限个第一类间断点的函数f 的导函数在[a,b]上除了至多有限个点外都存在且连续,在这有限个点上导函数f ’的左右极限存在,则称f 在[a,b]上按段光滑.注:若函数f 在[a,b]上按段光滑,则有: 1、f 在[a,b]上可积;2、在[a,b]上每一点都存在f(x ±0),且有t 0)f(x -t)f(x lim 0t +++→=f ’(x+0),t-0)f(x -t)f(x lim 0t ---→=f ’(x-0);3、补充定义f ’在[a,b]上那些至多有限个不存在点上的值后,f ’在[a,b]上可积.定理15.3:(傅里叶级数收敛定理)若周期为2π的函数f 在[-π, π]上按段光滑,则在每一点x ∈[-π, π],f 的傅里叶级数2a 0+∑∞=1n n n sinnx )b +cosnx (a 收敛于f 在点x 的左右极限的算术平均值,即20)-f(x 0)f(x ++=2a 0+∑∞=1n n n sinnx )b +cosnx (a ,其中a n , b n 为傅里叶系数.注:当f 在点x 连续时,则有20)-f(x 0)f(x ++=f(x),即f 的傅里叶级数收敛于f(x).推论:若周期为2π的续连函数f 在[-π, π]上按段光滑,则f 的傅里叶级数在(-∞,+∞)上收敛于f.注:由f 周期为2π,可将系数公式的积分区间[-π, π]任意平移,即:a n =⎰+2πc c f(x)cosnx π1dx, b n =⎰+2πc c f(x)sinnx π1dx, n=1,2,….c 为任意实数. 在(-π, π]以外的部分,按函数在(-π, π]上的对应关系作周期延拓,如 f 通过周期延拓后的函数为:,2,1k ],1)π(2k , 1)π-(-(2k x ,) 2π-f(x ]π, (-πx ,f(x)(x)f ˆ⎩⎨⎧⋯±±=+∈∈= 函数f 的傅里叶级数就是指函数(x)fˆ的傅里叶级数.例1:设f(x) )0, (-πx ,0]π[0,x x ,⎩⎨⎧∈∈=,求f 的傅里叶级数展开式.解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰ππ-f(x)π1dx=⎰π0x π1dx=2π. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx=⎰π0xcosnx π1dx=⎰-π0π0sinnx n π1|xsinnx n π1dx=π2|cosnx πn 1 =πn 12(cosn π-1)=πn 1(-1)2n -;b n =⎰ππ-f(x)sinnx π1dx=⎰π0xsinnx π1dx=-⎰+π0π0cosnx n π1|xcosnx n π1dx=n (-1)1n +.∴在(-π, π)上,f(x)=4π+∑∞=⎥⎦⎤⎢⎣⎡+-1n n2n sinnx n (-1)cosnx πn 1-)1(.当x=±π时,该傅里叶级数收敛于20)πf(0)πf(+±+-±=20π+=2π.∴f 在[-π, π]上的傅里叶级数图象如下图:例2:把函数f(x)= π2x πx πx 0πx 0 x 22⎪⎩⎪⎨⎧≤<-=<<,,,展开成傅里叶级数. 解:f 及其周期延拓后图象如图:可见f 按段光滑.由收敛定理,有a 0=⎰2π0f(x)π1dx=⎰π02x π1dx-⎰2ππ2x π1dx =-2π2. 当n ≥1时,a n =nx cos f(x)π1ππ-⎰dx =⎰π02cosnx x π1dx-⎰2ππ2cosnx x π1dx ; 又⎰π02cosnx x π1dx=⎰-π0π02xsinnx n π2|sinnx x n π1dx=21n n 2(-1)+-;⎰2ππ2cosnx x π1dx=⎰-2ππ2ππ2xsinnx n π2|sinnx x n π1=21n 2n 2(-1)n 4++; ∴a n =21n 221n n 2(-1)n 4n 2(-1)++---=2n4[(-1)n -1]. b n =⎰2π0f(x)sinnx π1dx=⎰π02sinnx x π1dx-⎰2ππ2sinnx x π1dx ;又⎰π02sinnx x π1dx=-⎰-π0π02xcosnx n π2|cosnx x n π1dx=πn ](-1)-2[1n π)1(3n 1n --+;⎰2ππ2sinnx x π1dx=-⎰-2ππ2ππ2xcosnx n π2|cosnx x n π1dx=-πn ](-1)-2[1n π)1(n 4π3n 1n +--+; ∴b n =πn ](-1)-2[1n π)1(3n 1n --++πn ](-1)-2[1n π)1(n 4π3n 1n --++ =πn ](-1)-4[1n 2π)1(n 4π3n n ---=πn ](-1)-4[1n (-1)]-[1 2πn 2π3n n -+ =⎪⎭⎫ ⎝⎛-+πn 4n 2π](-1)-[1n 2π3n ;∴当x ∈(0, π)∪(π, 2π]时, f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4 .当x=π时,该傅里叶级数收敛于20)f(π0)f(π++-=2)π(π22-+=0;当x=0或2π时,该傅里叶级数收敛于20)f(00)f(0++-=204π-2+=-2π2.注:由当x=2π时,有f(x)= -π2+∑∞=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-++1n 3n n 2sinnx πn 4n 2π](-1)-[1n 2π1]cosnx -[(-1)n 4=-π2+∑∞=1n n 21]-[(-1)n4=-π2-8∑∞=+0n 21)(2n 1=-2π2. 可求得∑∞=+0n 21)(2n 1=8π2.例3:在电子技术中经常用到矩形波,用傅里叶级数展开后,就可以将巨形波看成一系列不同频率的简庇振动的叠加,在电工学中称为谐波分析。
第 15 章 傅里叶级数§15.1 傅里叶级数一 基本内容一、傅里叶级数f (x)a n x n在幂级数讨论中 n 1 ,可视为 f (x)经函数系 1, x, x 2 , L , x n , L线性表出而得.不妨称{1,x,x ,L ,x ,L } 为基,则不同的基就有不同的级数.今用三角函数 系作为基,就得到傅里叶级数.1 三角函数系函数列 1, cosx, sinx, cos2x, sin 2x, L , cosnx, sin nx, L称为三角函数系. 其有下 面两个重要性质. (1) 周期性 每一个函数都是以 2 为周期的周期函数;(2) 正交性 任意两个不同函数的积在 [ , ]上的积分等于 零,任意一个函数的平方在上的积分不等于零.对于一个在 [ u n (x),u m (x) 为 , ] 可积的函数系 u n (x): x [a, b], n 1,2,L ,定义两个函数的内积 b u n (x) u m ( x)d x ,u n (x),u m (x) 如果 mn m n ,则称函数系 u n (x): x [a, b], n 1,2,L 为正交系. 由于 1, sinnx sin nxd x m sin mx,sinnx sinmx 0 m cosnxdx m cosmx, cosnx cosmx 0 m sin mx,cosnx sinmx cosnxdx 0 ;1, 1 12dx 21 n n ; ; n ; ; sin nx d x 1 cosnxdx 0 所以三角函数系在 上具有正交性,故称为正交系. 利用三角函数系构成的级数f ?(x)称为三角级数,其中 a 0 , a 1, b 1 ,L ,a n ,b n ,L 为常数2 以 2 为周期的傅里叶级数称为函数 f (x)的傅里叶系数,而三角级数 a 0 称为 f (x) 的傅里叶级数,记作这里之所以不用等号,是因为函数其是否收敛于 f(x) . 二、傅里叶级数收敛定理定理 1 若以 2 为周期的函数 f (x) 在[ , ]上按段光滑,则 其中 a n ,b n 为 f ( x)的傅里叶系数. 定义 2 如果 f (x) C[a, b] ,则称 f(x) 在[a,b] 上光滑.若x [a,b), f ( x 0),f (x 0)存在; x (a,b], f (x 0), f (x 0) 存在,几何解释如图.按段光滑函数图象是由有限条 光滑曲线段组成,它至多有有限个 第一类间断点与角点.推论 如果 f(x)是以 2 为周期的连O 续函数,且在 [ ,x ]上按 段光滑,则 x R ,f (x) 0 a n cosnx b n sin nx 2 n 1定义 3 设 f(x)在( , ] 上有定义,函数x ( , ]x (2k ,2k ],k 1, 2,La 0 2 n1 a n cosnxb n sinnx 定义 1 设函数 f (x) 在 a k 上可积, 1 f ( x),cos kx 1 f (x)coskxdx k 0,1,2,L ;b k 1 f (x),sin kx f(x)sinkxdx k 1,2,L, a 0 f (x) ~ 2a n cosnxb n sinnx 1 且至多存在有限个点的左、右极限不相等,则称 f (x) 在[a,b]上按段光滑. a n cosnx b n sinnxf (x) 按定义 1 所得系数而获得的傅里叶级数并不知a 02a n cosnxb n sinnx n1 f(x 0) f (x 0) 2f(x) f(x 2k )y称 f (x)为的周期延拓.习题解答1 在指定区间内把下列函数展开为傅里叶级数(1) f(x) x, (i) x , (ii) 0 x 2sin nxd x 0由系数公式得1 2 1 2a0 f (x)d x xdx 20 0当n其按段光滑,故可展开为傅里叶级数.由系数公式得11a0 f (x)d x xdx 01时,a n x cosnx d xnx d(sin nx)b n x sin nx dxx d(cosnx)x cosnx|cosnx d x ( 1)n 12 n,所以f(x) 2 (n1(ii)1)n 1 sin nxn ,x (, )为所求.其按段光滑,故可展开为傅里叶级数.当n 1 时,x cosnx d x 2 32a n 0 2 x d(sin nx)b n 所以 (2) xsin 2 nx |0 12 n 0sin nx d x 0 xsinnxdxx cos nx n f(x)f (x)= 2 x d(cosnx) 2 |20 sinnx cosnxdx ,x n , (0,2 ) 为所求. 2 x, - π< x< π,(ii) 0 < x< 2π; ; 1 n (i) 由系数公式得22 a 0 f (x)d x 1 dx 1时, x 2 cosnxdxx 2 d(sin nx) b n所以 x 2 sin nx | xd(cosnx) xcosnx | 2x sin nx dx x 2 sin nxd x 2 cosnx | x d(sin nx) xsin nx |f(x) cosnx d x ( x 2 d(cosnx) xcosnxdx 1) n 4 2 n , 1)n sinnxdx sinnx 2 n , ) 为所求.a 0 当 n 1 时,a 0 当nb n所以 解:其按段光滑,故可展开为傅里叶级数. 由系数公式得 12 0 1时, 12 0 f (x)d x 2 x 2 dx 82 3 x 2 cosnx d x 12 x n 2 sin nx | 2 x d(sin nx) 2xsin nxd x xd(cosnx) 2 xcosnx | x 2 sin nx d x 12 x n 2 cosnx | 0 f (x) f (x) 42 2 cosnxdx 42 0 n 2 , 22 x d(cosnx) 2 x cosnx d x 0 x d(sin nx) 2 xsinnx |0 2 sin nxd x 0n , cosnx sinnx x (0,2 ) 为所求. ax bx (3) 解:函数 f(x), x (a b,a 0,b 0) ( , ) 作周期延拓的图象如下. y 3O 其按段光滑3 ,故可展开为傅里叶级数. 由系数公式得 1f (x)d x 1 0 axdx 1 bxdx (b a)02a n 1 0 ax 2 cosnxdx1 111135740 bxcosnxdx [1 ( 1)n ]a 2 bn1 0 1 b n axsin nx d x bxsinnxdxn 0 n 1 sinnx1)n I n , x ( , ) 为所求.2 设f 是以2 为周期的可积函数,证明对任何实数 c ,有 1 c 2 1 a nc f(x)cosnxdx f ( x)cos nxd x,n 0,1,2,L 1 c 2 1 b nf (x)sin nxdx f (x)sin nxdx,n 1,2,L cf (x)f (x)cos nxd x同理可得b n 1 f (x)sin nxd x f ( x)sin nxdx3 把 函数 0x4 展开成傅里叶级 数,并由 它推出(1)( 1)f(x)所以n (b a) 4 2(b a) 1 2 cos(2n 1)x1 (2n 1)2 (a b) ( n1 证: 因为 f(x),sin nxcosnx 都是以 2 为周期的可积函数,所以令 1 f (x)cos nxd x c 2 f (t 2 )cos n(t 2 )d(t 2 )从而 a n a n 1 c+2 1 f (t)cosntdtc2f (x)cosnxdx cf (x)cosnxdx 1 f ( x)cosnx dx c1 f (x)cos nxd xc+2 c+2 f ( x)cos nxd x f (x)cos nxd x11 1 (3)1时,(2)什么特性.(2)1 1 1 L13 17 11(3)111L11 13 17解:(, )作周期延拓的图象如下.x其按段光滑,故可展开为傅里叶级数. 函数f (x),由系数公式得a 0f (x)d xdx 14dx4a nb n[1f (x)(1)cosnx d x 4sinnxdx41)n 1]21nn11sin(2n 2n 12 ,则 4cosnxdx 0 04sin nxd x41)x, 2k 2k,0) U(0,)为所求.1215 21121113 17所以x取36 3 ,则1154 设函数1111 13 1713 17f ( x)满足条件 f (xf (x) ,问此函数在内的傅里叶级数具有11解: 因为 f(x)满足条件所以f(x 2 ) f (xf(x ) f(x),) f(x),即 f (x)是以 2 为周期的函数.于是由系数公式得1af (x)d x 1f (x)d x 1f (x)d xf (t )dt0 f (x)d xf (t )dt 10 f(x)d xf (t)dt0 f (x)d x 0当n1时,10a nf (x)cos nx d x f (x)cos nxd x b n故当 b 2k 0 .1f (t )cos(nx1)d x f(x)cosnxdx1 ( 1)n 1f(x)cosnxdx2f (x)cosnxdx10f(x 2k 1 2kf ( x)sin nx d x0 f (x)sin nxd x ) f(x) 时,函数 5 设函数 f ( x)满足条件: f (x 什么特性.解: 因为所以 f (x 1 f(x) 满足条件 2 ) f (x a 0f (x)d x 1f (t )dt f (tf (x)sin nx d x2k 1 2k , f(x) 在 内的傅里叶级数的特性是 a 2k 0 , ) f (x) ,问此函数在 内的傅里叶级数具有 f(x), f(x),即 f(x)是以 2 为周期的函数.于是由系数公式得 1 f (x)d x f (x)d x f (x ) 2 )dt0 f (x)d x 10 f(x)d x1 1 20 f(t )dt 0 f(x)dx 0 f(x)d x1 ( 1)nf (x)cosnxd x2k 12k 1 ,当n a n1时,1 01f (x)cos nx d x 0f (x)cos nxd x1f (t )cos( nx n )d x1f (x)cos nx d x2 f ( x)cos nxdx2k b n10f ( x)sin nx d xf (x)sin nx d xf (x)sin nxd x 2k故当 0 f(x f (x) 时,函数 f(x)在 内的傅里叶级数的特性是 a 2k 1 0 , cosnx, n 0,1,2,L 和sin nx, n 1,2,L 都是[0, ]上的正交函数系,但 [0, ] 上的正交函数系. 证:就函数系 {1, cosx,cos2x,L , cosnx, L 6 试证函数系 他们合起来的却不是 }, 因为 n ,1,1 0 dx , cosnx,cos nx 0 cos2nxdx 10 (cos2 nx1)dx2,1,cosnx cosnxdx 0 又0;m, n ,m n时,cosmx,cosnx cosmxcosnx d x 11cos(m n)xdx cos(m n)xdx所以{1, cosx, cos2 x, L , cosnx, L } 在[0,就函数系{sinx, sin 2x, L , sin nx, L } ,因为 n ,]上是正交系.sin nx,sin nx210sin 2nxdx 2 0 (1 cos2nx)d x 2又m, n,m n 时所以{sin x, sin 2x, L , sinnx, L } 在[0, ]上是正交系.但{1, sin x, cosx, sin 2x,cos2 x, L , sinnx, cosnx, L } 不是[0,7 求下列函数的傅里叶级数展开式xf (x) , 0 x 2(1) 2 ;xf (x) , 0 x 2解: 2 y作周期延拓的图象如下.2其按段光滑,故可展开为傅里叶级数.由系数公式得12a0 f (x)d x xdx 02当n 1时,12x cosnxdx21 2 xd(sin nx)n02b n所以(2)解:x2n122nf (x)2 sin nx|12nxsin nxd x2x cosnx |2sinnx2sinnxdx 02xd(cosnx)12ncosnxdxn,xf (x) 1 cosx,(0,2 )为所求.x;f (x) 1 cosx,x作周期延拓的图象如下.sin mx,sin nx 0 sin mxsin nxd x0 cos(m n)xdx cos(m n)xdx 0]上的正交系.实因:1,sin x 0 sin xdx 1 0b)sin nxdx其按段光滑,故可展开为傅里叶级数.f(x) 1 cosx 2sin2 x2sin2xx0因为 2sin x2所以由系数公式得 1a0 f (x)d x sin x dx2sin 2xd x42当n 1时, 2 x sin cosnx d x2b n 22 f(x) 所以 而x f (x)故(3)解: a 0 当n a n b nsin xcosnxdx2 sin xsin nx d x2n1x sin cosnxdx2 42 2 (4n 21) .2sin xsinnxdx 0212 cosnx 4n 2 1f ( 0) 2时, 2 2 4 2f(x) ax 2bx (i) 由系数公式得 11时,1f (x)d2(ax (ax 2(ax2n 4a 2 nbx bx f ( 0)1 n 14n 2c, (i) 0 c)d x,xf(,)cosnx 1 ,x]为所求. , (ii)x;2b 2cc)cos nxd xbx c)sin nx |20 (2ax22(ax 2 bx c)sin nxdx212n,(ii)由系数公式得当 n 1 时, 12a n(ax bx c)cos nx d x(ax2bx c)cos nx(2ax b)cos nxd xn 0当n 1时, an 1chxcosnxdx11 ch xsin nx | nn sh xsin nx dx1 2 sh xd(cosnx) n 2chxdx2shf (x) ax 2 bx c 故4 2a4a 2 cosnxn1n4 a 2b sin nx, x n (0,2)为所求.a 0f (x)d x(ax 2 bx c)d x2cb n1(ax 2 bx n( 1) (ax2bx (ax 2bx1 2bn2 axbx c)sin nx |(2ax (2ax b)sin nxdxb)cos nxd x2 2a31)n4a 2 cosnx( 1)n 2bsin nx,n)为所求.(4) f (x) chx,解: 由系数公式得11 a 0 f (x)d x x;c)sin nxdx1 c)cos nx|nf (x)c( 1)n 4a 2 n,sh xsin nxd xsh xd(sin nx)1sh x cos nxchxcosnxdxn 12nshx 1)n 1(n 22nsh 1x)1)n 1)n1)n2sh n 2shn1 2sh nch x d(sinnx)21 ch xsin nx | n 212 b n n,所以b nn 1 112 shxcosnx|chxcosnxdx( 1) n2sh 2n12 a nna n1)n2sh (n 2 1)chxsinnxdx ch x d(cosnx) chxcosnx |shxcosnxdx所以b nf (x) 故(5)解: a 0shxsinnx |chxsinnxdx 1shxsinnx |chxsinnxdx12 b n n,,chx 2sh f (x) shx,由系数公式得f (x)d x(n11)n12 cosnx n 21x ( , )为所求.sh xdx所以b n1f ( x)sin nx d x4a 4 a 2b2 cosnx sin nx, n 2故由收敛定理得f (x) shx1)n 1 2nsh (n 21)sinnx x(, )为所求.解:求函数f(x)1 12(3x2)的傅里叶级数展开式并应用它推出122 n1nf (x)ax 2 bx c4 2a3f(x)1(3x 2 6 x122)n1 12 cosnxn 2n1n12 cosnx (0,2 ) 而f (0 0) f (20)6,x (0,2f (0 0)f (20)12 cos0 1 n 2f (x)cos nx d x b n1f ( x)cos nx|f ( x)sin nxdx nb n1f (x)sin nx |f ( x)cos nxd x na n1f ( x)sin nx d x当 n 1 时,故结论成立.9设f (x)为,上光滑函数, f ( ) f( ).且 a n , b n为 f (x)的傅里叶系数,a n ,b n 为 f(x) 的导 函数f (x)的傅里叶系数 .证明a 0 0,a n nb n , b nna n(n 1,2,L ) .证:因为f(x) 为上光滑函数,所以f (x) 为,上的连续函数,故可积.由系数公式得a 01f (x)d x1f( ) f ( )0a n115. 2 以2l为周期的函数的展开基本内容、以2l 为周期的函数的傅里叶级数x lt设 f (x)是以2l 为周期的函数,作替换x,则F(t)f lt是以 2 为周期的函数,且 f (x) 在( l, l) 上可积F(t)在( , ) 上可积F(t) : a0a n cosnt b n sinnt于是 2 n1其中1 a n 1F (t )cos nt d t , b nF (t)sin ntdt3na证:, n3b nu0(x) 设0Ma02,(x) 在M 为常数,则上述三角级数收敛,且其和函数具有连续的导函数u n(x) a n cosnx b n sin nx ,n 1,2,L .R上连续,且n 0,u nu0 (x) 0,u n(x) na n sin nx nb n cosnx亦在R上连续.又x R,u n(x) n a n sinnx n b n cosnxn a n n b n2M2 n.2M而2 n收敛,所以u n(x)nb n cos nx na n sin nx在R上一致收敛.s(x) a0 (a n cosnx b n sin nx)故设2 n1 ,则s(x) ( na n cosnx nb n sin nx) u n (x)n1 n 1s(x) (na n cosnx nb n sin nx)且n 1 在R 上连续.a0supn(a n cosnx b n sin nx)10 证明:若三角级数2 n 1 中的系数a n,b n 满足关系f (x) x (0,l) f ( x) x ( l,0)习题解答1 求下列周期函数的傅里叶级数展开式t 令x l 得F(t)f lt f (x) n x n xsinnt sin ,cosnt cos ll: a 0nxnxf (x)an cosb n sin从而2n1l l.a n1lf (x)cosnx dx,其中l llb n1lf (x)sin nxdxl ll .上式就是以 2l 为周期的函数 f (x)的傅里叶系数.在按段光滑的条件下,亦有f(x 0) f(x 0) a 0n x n x a n cos b nsin n l nl其只含余弦项,故称为余弦级数. f(x)是以 2l 为周期的奇函数,则 f( x)cos nx奇,同理,设f ( x)sin nx偶.lla nl f (x)cos n l x dx是f %(x) f (x) x (0,l)偶延拓 f(x) f( x) x ( l,0) 函数 f(x),x (0,l) 要展开为正弦级数必须作奇延拓.奇延拓lyO l xf %(x)(1)f (x) cosx(周期 ) ;解: f (x) 按段光滑,所以可展开为傅里叶级数,又 由于 级数. f (x)是偶函数, 故其展开式为余弦2 ,所以由系数公式得 a 02 2 cosx dx 4 2cosxdx 4 20 当n1时,22cosx cos2nxdx 422cosxcos2nxdxb n222[cos(2n 1)x cos(2n1sin(2n 1)x(2n 1)( 1)n 2 ( 1)n 1 2 (2n 1) (2n 1)1)x]d x 1sin(2n 1)x | 02 (2n 1)141)n2 (4n 21)222cosx sin nx d xf (x) cosx 故24( 1)n 1n121 cos2nx 4n 21( , )为所求.(2)f (x) x1 1解:f (x)按段光滑,所以可展开为傅里叶级数.12 ,所以由系数公式得[x](周期 1) ;由于1223 48a 0 2 21 x [x]2dx 2 10 x [x] dx1 xdx 1a n1时,121 x [x]2 cos2n 1xdx 2 x0 [x] cos2n xdxb n1 x cos2n 0xsin2n 1 22 1 2x [x]xdx1x |101x d(sin 2n x)1 sin2n xdx 0sin2n xdx10 x d(cos2n1xcos2n x |0f (x) x[x]1 xsin2n 0xdx(3)f (x)4sin 解: 由于 级数. a 0a nx)x(周期4函数f (x) sin x,0 cos2n 1sin2n n);xdx,x222 )为所求.延拓后的函数如下图.f (x) 按段光滑,所以可展开为傅里叶级数,又 ,所以由系数公式得2sin 4xdx4 1时,42f (x)是偶函数,故其展开式为余弦2sin 4xdx4 2 1 cos2x2dx1cos2x2 1cos2x 21 cos4 x dx 3841cos4x cos2nxd x 821,n 2bn 2 2cosx sin nx d x 04f (x) sin 4 x 故3 1cos2x 1cos4x x (8 2 8 , x ()为所求.(4)解:f (x) sgn(cosx) (周期2 ).函数 f(x) sgn(cosx) ,x ( , )延拓后的函数如下图.y3322Ox22f (x)按段光滑,所以可展开为傅里叶级数,又 由于 级数.因l f (x)是偶函数,故其展开式为余弦a 0,所以由系数公式得2sgn(cosx)d x 0 sgn(cosx)d x 0 当n1时,a nsgn(cosx)cos nx d x02cosnxdxcosnxdx24n sin n2kb n 4n sin2f (x) 1)k(2k 1)2ksgn(cosx)sin nx d x 0sgn(cosx)4(n11)ncos(2n 1)x 2n 1,xf (x)求函数 解:函数 f(x),3的傅里叶级数并讨论其收敛性.yOx (0,3)延拓后的函数如下图.1由于 f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x) 是偶函数,故其展开式为余弦 级数. 2 ,所以由系数公式得 a 0 2332 0 f(x)d x 1 xdx 0 2 dx 13 2 (3 x)d x 1时,12n xcos 0x dx 32 cos12n xd x b n1 xd 02n 1 sin n31 4n sin n332 (3 2n x)cos xdx32n xsin2n2 2 cos 2n 2 2 33 2n2cos 23sin sin2n32 (3 x)d2n x sin 32n x dx 3 1 2n sinn3 2 2 cos2n2 23222n 322n.f (x)sin nxdx3222n x32n 2 21 4n sin n cos2n31 (3 n 32n 2 22n x x)sin 31 4n sin n34n cos 31 2n 2n x2 cos cos n 23 3 ,x ()为所求.1 3 2n x sin dxn 22n x2 2 cos2n 2 2 33 将函数 f (x) 2 x 在 [0, ]上展开成余弦级数.由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦 级数.由系数公式得1时,22a 022dx12x 2n2 sinnxsinnxdxn 022 cosnx n 2b n级数. 4 2n 02k 2kf (x) 21 2cos(2n 1)x, n 1 (2n 1)2x [0, ]解:函数,故其展开式为正弦由于 由系数公式得 a n 0, n x cos[0, ]2在 [0, ]上展开成正弦级数.将函数f (x) 0,1,2,L b n 2 0 n 0cos x sin nx d x2sin sinx dx cos1 x2 1 n2cos1 21 n 2当ncosnx d x18n2(4n 2 1)f (x)5 把函数 在(0, 4)上展开成余弦级数.2x 1在(0, 1)上展开成余弦级数,并推出6 1 22 312 L解:函数 f(x),x (0,1)延拓为以 2为周期的函数如下图.由于 级数.因la 0当n所以解:f (x)按段光滑,所以可展开为傅里叶级数,又,所以由系数公式得 4f(x)d20 (1 x)d x 42(x3)d x1时,a n40 f ( x)cos nx4dxn (1x)sin nx42 sin822 nf (x)nx cos 42cos n2 cosnx 4 1)nf (x)是偶函数, 20 (1 x)cosnx dx4故其展开式为余弦42(x3)cos n xdx4x dx20 16 22 n2 (x n3)sin4422n4n x sin dx 242 cos 1(2n 1)24k 4k(2n 1) x 2为所求.6 把函数 f (x)f(x)故在[0, ] 上x cos 2n2 sinnx 1 4n 1为所求.22由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是偶函数,故其展开式为余弦级数.因 l=0.5 ,所以由系数公式得122 0(x 1)3 4dx1 cosn xdx422nb n12 n 1 n,即1 n 1 n2 67 求下列函数的傅里叶级数展开式(1) f(x) arcsin(sin x) ;由于 f (x)按段光滑,所以可展开为傅里叶级数,又f (x)是奇函数,故其展开式为正弦级数.由系数公式得 a n 0, n 0,1,2,L .2b narcsin(sin x)sin nxdx3 令 x 0得4xsinnxdx21当n1时, a n10(x1) 2cosn xdx2(x n1)2sin n x1(x 1)sin n xdx(x所以 1)212cosnx, 1nx [0,1]12 0 f (x)d xa 0222 n (x 1)cos n 解:函数f(x) arcsin(sin x)是以 2 为周期的函数如下图.x)sin nxdx222x cos nxn 02cosnxdx220 arcsin(cosx)cos nx d x 0 2 x cosnxdx2cos nxd x4n 2 sinn 22k 所以(2) 由于 级数. x)cos nx2 cosnxd xn 22( 1)kn42 n2k 14f (x) arcsin(sin x)( 1)n 2 sin(2n1(2n 1)21)x, x Rf(x) arcsin(cosx)解: f (x) 按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦由系数公式得 a 02 0 arcsin(cosx)d x 0当n1时,b n2 sinnxn0, n f (x)所以1,2,L 2sin nxd x2k 2k4arcsin(cosx)1 2 cos(2n 1)x1(2n 1)2,x R0,8 试问如何把定义在 2叶级数为如下的形式上的可积函数 f (x)延拓到区间内,使他们的傅里a2n 1 cos(2n 1)x b2n 1 sin(2 n 1)x(1) n 1;(2) n 1解:(1)先把 f (x)延拓到[0, ]上,方法如下:f (x) 0 x2f (x) 2f ( x) x2再把 f (x)延拓到[0,2 ]上,方法如下:f?(x) f (x) 0 xf(2 x) x 2 其图象如下.y y f(x)2 O3 2 x232由于 f (x)按段光滑,所以可展开为傅里叶级数,又 f (x)是偶函数,故其展开式为余弦级数由系数公式得20 f (x)d xa0当n1b n1时,n20 f(x)cosnxd x2f (x)sin nxdx 02 2 22 f (x)cosnxdx f (x)cos nx d x2222 f (x)[cos nx cos(n nx)]d x422 f ( x)cos nx d x n 2k 1n 2k所以f (x) a2n 1 cos(2n 1)x x 0,n 1 2(2) 先把 f (x)延拓到[0, ]上,方法如下.f (x) f (x)f ( x) 0x2再把 f (x)延拓到[0,2 ]上,方法如下.§15. 3 收敛定理的证明一 基本内容一、贝塞尔(Bessel)不等式定理 1 设 f(x) 在 [ , ] 上可积,则2a 022 21 a n2 b n 2f 2(x)d x2 n 1其中a n ,b n 为f (x)的傅里叶系数.推论 1设f(x) 在 [ , ] 上可积,则lim f (x)cos nxd x 0 limf ( x)sin nxdx 0f (x)是偶函数,故其展开式为余弦级数.由系数公式得 a0 f (x)d x当nb n1时, 21a n20 f (x)cos nx d x 0f ( x)sin nxdx222f (x)sin nxdx f ( x)sin nxdx22f (x)[sin nx sin(nnx)]d x 42f ( x)sin nxdx n2k 2kf (x) 所以b 2n 1 sin(2 n 1)x x n10,2由于 f (x)按段光滑, 所以可展开为傅里叶级数,又推论 2 设 f(x)在[ , ]上可积,则k11t t 2 tdt2sin 2t此称为 f (x)的傅里叶级数的部分和的积分表达式.二、收敛性定理的证明定理 3 (收敛性定理 ) 设以 2 为周期的函数 f(x)在[ , ]上按段光滑,则 limf (x 0) f(x 0)S n (x) 0 n 2 2 n,定理 4 如果 f(x)在[ , ]上有有限导数,或有有限的两个单侧导数,则f(x 0) f (x 0) a 0a n cosnxb n sinnx n122定理 5 如果 f(x)在[, ]按段单调,则f(x 0) f (x 0) a 0a n cosnxb n sinnx22n1习题解答1 设 f (x)以 2 为周期且具有二阶连续的导函数,证明( , )上一致收敛于 f(x).证:由题目设知 f(x)与 f (x)是以2 为周期的函数,且光滑,f (x) a 0(a n cosnx b n sin nx)故21f (x)a 0(a n cosnxb n sin nx)2n111a 0 1f (x)d x 1f( ) f ( ) 0 且1 a n f (x)cos nx d x当 n 1 时,lim f (x)sin nn 01xdx 0 2limn1f ( x)sin n xdx 02定理 2 设以 2 n为周期的函数 f (x) 在 [ ]上可积,则S n (x)a 0a k coskxb k sinkxsinf(x t)f (x)的傅里叶级数在1 nf ( x)sin nxdx nb nf ( x)cos nx|b n1nf ( x)sin nx d x1f (x)sin nx| f ( x)cos nxd x nana n 是a nnb n 122an2b n212(a nb n2)由贝塞尔不等式得a0 从而2a nn1(an1b n2)收敛,又12n 1 n收敛,bn收敛,(a n cosnx b n sin nx)n在(2 设f为,上可积函数,证明:若f的傅里叶级数在[, ]上一致收敛于则成立贝塞尔(Parseval) 等式1 f2 (x)d x2a02 2an2b n2 2 n1这里a n ,b n 为f的傅里叶系数.S m a0a n cosnx b n sinnx证:设 2 n 1,因为 f (x)的傅里叶级数在[ , ]上一致收敛于f(x),所以0, N 0 ,“m N, x [ , ]f(x) S m ”.)上一致收敛.1na0故22.而于是f(x) S m, f(x) S mf(x) S m,f (x) S m f (x), f ( x)f 2(x)dx 2 a02 m a n2 n12 f ( x), S m S m,S ma022n1a n2b n2nna n2b n2n12f 2(x)d x所以m N 时,2f2(x)d x 22 a n b n2n11 f 2(x)d x4 其中 an , bn 为 f的傅里叶系数,n , n为 g 的傅里叶系数.2a 022a n 2b n 2 故2 n 13 由于贝塞尔等式对于在, ]上满足收敛定理条件的函数也成立.请应用这个结果证明下列各式.2(1) 8n 1(2n11); (2)121n 2(3) 90f (x)解: (1) 取由贝塞尔等式得212即8 n 1 (2n 1)(2) 取 f(x) x, xf(x)2dx16f (x)x 2dx,由§1 习题 3 得sin(2 n 1)x , x ( 2n 1 ,0) U(0, )1 1 (2n 1)2,由§1 习题 1 (1) 得 2 ( 1)n 1 sinnx, x n 1 n( 1)n 12由贝塞尔等式得212故6 n 1nn1(3) 取f (x) 2x,], 2由§1 习题 1 (2) 得x 21)ncosx 2 , x n,)x 4dx由贝塞尔等式得 4( 1)n 4n190收敛于 证明: f和 g,则若 f,g 均为 []上可积函数,且他们的傅里叶级数在[ , ]上分别一致f(x)g(x)d x a020(a n n b n n )n1f (x)f (x)g(x)df(x),g(x)当 n 1 时,a 0证: 由题设知(a n cosnx b n sin nx)1g(x) ( n cosnx n1 nsin nx)f (x), 所以f(x), 20 f (x), 20(n1ncosnx n sin nx)f (x), n cosnx f (x), n sin nx1n 2f (x),a n cosnx na 0 0f (x), 而cosnx b n sin nx, 02b n sinnx ,ncosnxa n cosnx,ncosnxan n,n sinnxa 0a n cosnx 2 n 1 nb n cosnx, n cosnxf (x)g(x)d xa 0 02n(a n1b n sinnx ,n sinnxb nn,b nn)f (x) 2 dxf (x) 2dx .证: 因为 f(x)、f (x) 在,上可积,f(x)dx 0,f( ) f( )f (x) a 0(a n cosnx b n sin nx)设2 n 1a 0f (x)(a n cosnx b n sin nx)2n1由系数公式得a 01f (x)d x 1 f () f ( ) 05 证明若 f 及其导函数 f 均在[ , ]上可积 ,f(x)dx 0 f( ) f( ),且成立贝塞尔等式,则1f (x)cos nx d x1 nf ( x)sin nxdx nb nf ( x)cos nx |傅里叶级数,由系数公式得a 0T n (x),1A2n (A k coskx k1B k sin kx),1A 0当ka k1时, T n (x),coskxn(A k coskx B k sin kx),cos kx k1A kn,b kT n (x),sin kxA20n(A k coskx B k sin kx),sin kx k1B k 0n,故在 () ,T n (x) A 20k(A k coskx B k sinkx) 1的傅里叶级数就是其本身.a 0,a k ,b k (k 1,2,L ,n)为f的傅里叶系数,试证明,当A 0 a 0,A k a k ,B k b k (k 1,2,L ,n) 时,2 设 f为[ , ]上可积函数,b n1nf ( x)sin nx d x1f (x)sin nx |f ( x)cos nxd xna n于是由贝塞尔等式得2f (x) 2dx2 a n 2b n 2 n122n 2an 22an2b n 2n12f (x)2 dx总练习题 151 试求三角多项式A 0T n (x)2n(A k coskx B k sin kx) k1的傅里叶级数展开式.A 0T n (x) 20 解: 因为 2(A k coskx k1B k sin kx)是以 2为周期的光滑函数,所以可展为2f (x) T n(x) dx积分n取最小值,且最小值为2 a 2 nf (x) d x 0(a k2 b k2 )2 k 1上述T n (x)是第1题中的三角多项式, A0, A k ,B k为它的傅里叶系数.f(x) 证:设a02 a n cosnxn1b n sinnxT n(x) A02 (A k coskxk1B k sin kx)且A0a0, A k a k , B k b k (k 1,2,L ,n) ,因为2 f (x) T n(x) dx所以22f 2 (x)d x 2 f ( x)T n ( x)d x T n2(x)d xA anf (x)T n(x)d x A k a k B k b k2 k 1 ,T n2(x)d x A0nA k2B k2n2 k 1,2f (x) T n (x) d x而故当A0积分f 2 (x)d x 2 A0a0222nA k a kk1 B k b kA0n2 2A k2B k22 k12 2 nf(x) dx a0 (a k2b k2)2 k1(A0 a0)2n(A k2 k12 a2 nf (x) dx a0 (a k2b k2)2 k1a0, A k a k,B k b k(k 1,2,L ,n)时,2(x) Tn(x) dx取最小值,且最小值为a k )2 (B kb k)22f (x) d x2 a02k1(a k2b k2)3 设f为以2 周期,且具有二阶连续可微的函数,11b n f ( x)sin nxdx, b n f (x)sin nxdx1 1若级数 bn 绝对收敛,则1b n2 2b nn 1 2 n 1证:因为 f(x)为以 2 周期,且具有二阶连续可微的函数, 1b n f ( x)sin nxdx 所以1 b nsinnx d f (x)1f ( x)sin nx ( x)cos nxd xn cosnx d f (x)b nn1故结论成立.(x)a 0a n cosnxb n sinnx解:设2 n1(x) 0ncosnxnsinnx2n1(1) 则当(x)(x) 时,n,11a n(x)cosnxdx ( t)cos( nt)d( t) 试问 的傅里叶系数a n ,b n与 的傅里叶系数( t)cos nt dt(t)cos nt d tnf ( x)cos nxf (x)sin nxdxn 2b n所以 1 n 1, b n2 n bn绝对收敛,n1b nn1b n ,从而12n 收敛,1, b n2 b nnbn收敛,且b n 1b n4 设周期为 (1)( x)的可积函数 (x);(x)与 (2)(x)满足以下关系式( x) (x).n , n有什么关系?nb n(2)b nn11(x)sin nxdx( t)cosntdt( t)sin( nt)d( t)(t)cos ntdtn1x) (x) 时,(x)cosnxdx( t)cosntdt(x)sin nxdx( t)cos nt dt0,设定义在[a,b]上的连续函数列( t)cos( nt)d( t)(t)cos ntdt( t)sin( nt)d( t)(t)cos nt d tn (x)满足关系bn(x)m(x)d x 1nm对于在[a,b]上的可积函数f,定义a n ba f(x) n(x)d x, n a 1,2,L ,2 a n2 证明n 1 b2 a[ f(x)]2dx a证:2a n2收敛,且有不等式n 1在[a,b]上的所有可积函数构成的集合中定义内积为bf (x)g(x)d xa,f (x), g(x)则函数列n (x)为标准正交系.m a n n (x), m 1,2,Ln 1,则S m(x) 令b2a[ f(x) S m(x)]2dx 又 a mn, a n f (x), n(x) ,2f 2 (x)d x 22f(x)S n(x)d x S n2(x)d xf 2(x)d x 2 f ( x), S n (x) S n(x),S n(x)m m1 x sin nx |f (x), S n ( x) f (x), a n n (x) 而 n 1 a n f (x), n (x) n1 m 2 a n 2n1 S n (x),S n (x) S n (x), a k k (x)k1 m ma k a k k (x), k (x) k1 所以 k 1 , 2 m 2b f 2(x)d x a n 2 a [ f(x) a n1 m m 1, n1 2 S m ( x)]2 dx 0 b 2 a [ f(x)]2dx a 2 2 b a n a n a 1 收敛,且 n 1 a ,即 S m (x) 有上界. [ f (x)]2dx。
第十五章 傅里叶级数§1 傅里叶级数傅里叶是法国最伟大的科学家之一.他对数学、科学以及我们当代生活的影响是不可估量的。
然而,他并不是一位职业数学家或科学家,他所做的巨大贡献都是忙里偷闲完成的。
傅里叶于1768年生于法国,幼年父母就去世了。
13岁时他开始对数学十分着迷,常常一个人爬进教室,点着蜡烛研究数学问题到深夜。
后来,法国革命暴发,傅立叶于1793年参加了革命委员会,1795年先后两次被捕。
法国革命结束后,傅立叶到巴黎教书,之后随拿破仑到埃及并成为埃及研究院的长久负责人,在那里他写了一本关于埃及的书。
直到今天,仍然有人认为他是一位埃及学家,并不知道他对数学和物理学的重大贡献。
1802年,傅立叶回到法国,拿破仑任命他为巴黎警察局长长达14年之久,他作为行政官员,工作十分出色,在政界享有崇高威望。
1817年,傅立叶被送入法国科学院,从此步入较为正规的学术研究阶段。
多年的政治生涯及颠簸不定的生活,并没有使傅里叶放弃研究数学的强烈兴趣。
事实上,早在1807年他就研究了现在称之为傅里叶分析的核心内容。
目前,傅里叶的思想和方法被广泛用于线性规划、大地测量以及电话、收音机、X射线等难以计数的科学仪器中,是基础科学和应用科学研究开发的系统平台。
所以,有的科学家称赞傅里叶分析是一首伟大的数学史诗。
傅里叶分析的贡献在于两点:(1)他用数学语言提出任何一个周期函数都能表示为一组正弦函数和余弦函数之和,这一无限和,现称之为傅里叶级数。
也就是说,任何一条周期曲线,无论多么跳跃或不规则,都能表示成一组光滑曲线之和。
这种表达方式实际上是将信号函数投影在由正弦函数和余弦函数组成的正交基上,实施对信号的傅里叶变换。
(2)他解释了为什么这一数学论断是有用的。
1807年,傅立叶显示任何周期函数是由正弦和余弦函数叠加而成。
傅里叶分析从本质上改变了数学家对函数的看法,提供了某些微分方程的直接求解方法,为计算机和CD等数字技术的实现铺平了道路。
我们的提纲如下:1. 为什么我们要分解一个函数2. 傅里叶级数就是三角级数2.1 傅里叶级数就是把周期函数展开成基频和倍频分量2.2 每个分量的大小我们用投影的方法来求。
————————————————————————你是大学生吗?你学理工科吗?你还不知道傅里叶级数吗?你以为傅里叶和泰勒有什么亲戚关系吗?你一定听说过傅里叶展开和泰勒展开吧?展开的结果就是傅里叶级数和泰勒级数。
他们是对一个函数的不同的【展开】方法。
【相信我,傅里叶分解其实巨简单!】#【但是最开始的问题一定是:我们为什么要展开一个函数一个函数:y=1他的泰勒展开是神马?还是y=1。
那么y=x的展开呢?是y=x。
我们知道,泰勒展开是把函数分解成1, x, x^2, x^3, …等等幂级数的【和】。
就是【把一个函数变成几个函数的和】啊这个展开的式子就是泰勒级数啊对函数的展开和5 = 2+3 一样一样一样的啊要多简单有多简单有木有啊但是你要注意啊:【展开的很多时候是有无限项不能穷尽的呀!】你还记得sinx 的泰勒展开是什么吗?sinx = 0+ x – 1/3!x^3 + 1/5!x^5 -…(如果系数错了可千万不要吐槽啊啊啊,lz是学渣记系数记不住啊)【那么现在提问:】你知道为什么要展开成幂级数的和吗?请看这里:因为我们把y展开成泰勒级数y = 1+x+x^2+x^3+x^4+…的时候我们可以无限细分得到函数在每个点的【【变化】】呀呀呀!这和你把3234.352拆成3000+200+30+4+0.3+0.05+0.002一样一样一样的啊所谓对函数的无限细分,就是不断求导,得到123456789阶变化率,从而得到这个函数到底在各个点【精细】【变化】的有多剧烈啊!还记得神马叫变化吗?位移的变化是速度,速度的变化是加速度,加速度的变化是加加速度的。
一句话,【变化就是导数啊】【泰勒级数的每一阶的系数(主值)就是各阶导数啊!!】所以泰勒级数就是在描述一个函数的各个点的变化啊啊啊——————————————————————————喂不要再跑题啦啦!!我们是要说傅里叶级数的好不好!你不认识傅里叶?没有任何关系,但是你见过三角形吗?知道三角函数吗?傅里叶级数又叫三角级数啊。
五种傅里叶变换解析标题:深入解析五种傅里叶变换引言:傅里叶变换是一种重要的数学工具,它在信号处理、图像处理、频谱分析等领域发挥着重要的作用。
其中,傅里叶级数、离散傅里叶变换、傅里叶变换、快速傅里叶变换和短时傅里叶变换是五种常见的傅里叶变换方法。
在本文中,我们将深入解析这五种傅里叶变换的原理和应用,以帮助读者更全面、深刻地理解它们。
1. 傅里叶级数:1.1 傅里叶级数的基本概念和原理1.2 傅里叶级数在信号分析中的应用案例1.3 对傅里叶级数的理解和观点2. 离散傅里叶变换:2.1 离散傅里叶变换的基本原理和离散化方法2.2 离散傅里叶变换在数字信号处理中的应用案例2.3 对离散傅里叶变换的理解和观点3. 傅里叶变换:3.1 傅里叶变换的定义和性质3.2 傅里叶变换在频谱分析中的应用案例3.3 对傅里叶变换的理解和观点4. 快速傅里叶变换:4.1 快速傅里叶变换的算法和优势4.2 快速傅里叶变换在图像处理中的应用案例4.3 对快速傅里叶变换的理解和观点5. 短时傅里叶变换:5.1 短时傅里叶变换的原理和窗函数选择5.2 短时傅里叶变换在语音处理中的应用案例5.3 对短时傅里叶变换的理解和观点总结与回顾:通过对五种傅里叶变换的深入解析,我们可以看到它们在不同领域的广泛应用和重要性。
傅里叶级数用于对周期信号进行分析,离散傅里叶变换在数字信号处理中具有重要地位,傅里叶变换常用于频谱分析,快速傅里叶变换作为计算效率更高的算法被广泛采用,而短时傅里叶变换在时变信号分析中展现出其优势。
对于读者而言,通过深入理解这五种傅里叶变换的原理和应用,可以更好地应用它们解决实际问题。
观点和理解:从简到繁、由浅入深地探讨五种傅里叶变换是为了确保读者能够从基础开始逐步理解,从而更深入地理解其运算原理、应用场景和优缺点。
通过结构化的文章格式,读者可以清晰地了解到每种傅里叶变换的特点和优势,并能够进行比较和评估。
同时,本文在总结与回顾部分提供了对这五种傅里叶变换的综合理解,以帮助读者获得更全面、深刻和灵活的知识。
傅里叶级数例题解答过程傅里叶级数是将一个周期函数表示为一系列正弦和余弦函数的和的方法。
为了更好地解答你的问题,我将从以下几个角度来回答,傅里叶级数的定义、计算公式、求解步骤和一个具体的例题解答过程。
1. 傅里叶级数的定义:傅里叶级数是一种将周期函数分解为一组基本正弦和余弦函数的方法。
它是基于傅里叶变换的理论基础,用于将一个周期函数表示为无穷级数的形式。
2. 傅里叶级数的计算公式:对于一个周期为T的函数f(t),它的傅里叶级数可以表示为以下形式:f(t) = a0/2 + Σ(ancos(nωt) + bnsin(nωt))。
其中,a0、an和bn是系数,ω是角频率,n是正整数。
3. 求解步骤:a. 确定周期函数f(t)的周期T。
b. 计算常数项a0:a0 = (1/T) ∫[0,T] f(t) dt.c. 计算余弦系数an:an = (2/T) ∫[0,T] f(t) cos(nωt) dt.d. 计算正弦系数bn:bn = (2/T) ∫[0,T] f(t) sin(nωt) dt.e. 将计算得到的系数代入傅里叶级数公式,得到f(t)的傅里叶级数展开式。
4. 例题解答过程:假设我们要求解周期为2π的函数f(t) = t,即f(t)的周期T=2π。
a. 计算常数项a0:a0 = (1/2π) ∫[0,2π] t dt.= (1/2π) [t^2/2] [0,2π]= (1/2π) [(2π)^2/2 0^2/2]= (1/2π) π^2。
= π/2。
b. 计算余弦系数an:an = (1/π) ∫[0,2π] t cos(nωt) dt.= (1/π) [t (sin(nωt)/(nω) ∫sin(nωt)/(nω) dt)] [0,2π]= (1/π) [t (sin(nωt)/(nω) +cos(nωt)/(n^2ω^2))] [0,2π]= (1/π) [(2π (sin(nπ) sin(0)))/(nω) +(cos(n2π) cos(0))/(n^2ω^2)]= (1/π) [(2π 0 0)/(nω) + (1 1)/(n^2ω^2)]= 0。
电路基础原理解析电路的傅里叶级数和傅里叶变换电路基础原理解析:电路的傅里叶级数和傅里叶变换电路是现代社会不可或缺的一部分,它负责传递和处理电信号,使得我们的电子设备能够正常工作。
在电路的设计和分析过程中,傅里叶级数和傅里叶变换是重要的工具。
本文将解析电路中的傅里叶级数和傅里叶变换,介绍它们在电路分析中的应用。
1. 傅里叶级数傅里叶级数是一种将周期函数分解为基本频率的无穷级数的方法。
根据傅里叶级数的定理,任何一个周期为T的函数f(t)都可以表示为以下形式的级数:f(t) = a0 + Σ(an*cos(nωt) + bn*sin(nωt))其中,a0是直流分量,an和bn是函数f(t)的傅里叶系数,n是正整数,ω = 2π/T是角频率。
在电路分析中,我们经常使用傅里叶级数来分析周期性信号的频谱特性。
通过计算傅里叶系数,我们可以了解到信号中各个频率成分的强度和相位差。
这对于设计和优化电路非常重要,因为不同频率的成分会对电路的性能产生不同的影响。
2. 傅里叶变换傅里叶变换是一种将非周期函数转化为连续频域信号的方法。
它可以将时域信号转换为频域信号,揭示出信号的频谱特性。
傅里叶变换的公式如下:F(ω) = ∫(x(t)*e^(-jωt))dt其中,F(ω)是频域函数,x(t)是时域函数,ω是角频率。
在电路分析中,傅里叶变换被广泛应用于信号处理和滤波。
通过对信号进行傅里叶变换,我们可以观察到信号在不同频段的能量分布情况,并根据需要进行滤波操作。
傅里叶变换还可以帮助我们分析稳态和暂态响应,揭示电路的特性和性能。
3. 傅里叶级数和傅里叶变换的关系傅里叶级数和傅里叶变换在理论上存在着密切的联系。
事实上,傅里叶级数可以看作是傅里叶变换在周期函数上的特例。
当一个函数是周期函数时,它的傅里叶变换将得到一系列的脉冲函数,而这些脉冲函数的加权和就构成了傅里叶级数。
因此,理解和掌握傅里叶级数和傅里叶变换的原理和方法对于电路的分析和设计非常重要。