雪花型模型
- 格式:ppt
- 大小:594.00 KB
- 文档页数:3
Koch 分形雪花图的面积计算一、问题叙述分形几何图形最基本的特征是自相似性,这种自相似性是指局部与整体在形态、功能、信息、时间、空间等方面具有统计意义上的相似。
在具有自相似性的图形中,图形局部只是整体的缩影,而整体图形则是局部的放大。
而本文我们要分析的是Koch 分形雪花图,包含以下三个问题:1.描述Koch 分形雪花2.证明Koch 分形雪花图K n 的边数为n 1L 34n -=⨯3.求Koch 分形雪花图的面积(数据),求n n lim A rea (K )→∞二、问题分析在分析Koch 分形雪花图之前,我们首先介绍Koch 分形曲线。
Koch 分形曲线的绘制原理是:从一条直线段开始,将线段中间的三分之一部分用一个等边三角形的两边代替,形成四条线段的折线,如图2.1所示:图2.1 对一条线段进行第一次Koch 分形然后,对形成的四条直线段的每一条的中间的三分之一部分用等边三角形的两边代替,形成十六条线段的折线。
这种迭代继续进行下去可以形成Koch 分形曲线。
在迭代过程中,图形中的点数将越来越多,而曲线的最终显示细节的多少将取决于迭代次数和显示系统的分辨率。
设P1和P2分别是原始的两个端点,现在需要在直线段的中间依次插入点Q1,Q2,Q3以产生第一次迭代图形。
显然,Q1位于P1右端直线段的三分之一处,Q3位于P1点右端直线段的三分之二处,而Q2点的位置可以看作由Q3绕Q1逆时针旋转60度而得到的,故可以处理Q Q 13经过正交变换而得到Q Q 12 。
算法如下: (1)Q1P 1+P P Q P 1+P P /3;←←(2-1)/3;32(2-1)(2)TQ 2Q 1+Q 3-Q A ←⨯(1); (3)P 5P 2P 2Q1P 3Q P Q 3←←←←;;2;4。
在算法中,用正交矩阵A 构造正交变换,其功能作用是对向量作旋转,使之成为长度不变的另一向量。
在绘制Koch 曲线的过程中,取旋转的角度为3π,则正交矩阵A 应取为:c o s ()s in ()33A =s in ()c o s ()33ππππ⎛⎫- ⎪⎪⎪⎪⎝⎭1.Koch 分形雪花的描述Koch 分形雪花的原始图形是等边三角形,它是由三条相等的线段围成的三角形。
制造业数据仓库逻辑模型制造业数据仓库逻辑模型数据仓库是指将不同来源的数据进行整合、清洗和转换,以支持企业的决策分析和业务运营。
在制造业中,数据仓库的建立可以帮助企业更好地管理和分析生产过程中所涉及的各种数据,从而提高生产效率、降低成本、优化产品质量和增强市场竞争力。
制造业数据仓库的逻辑模型是指在数据仓库建设过程中,对于制造业特定的数据进行建模和设计的过程。
逻辑模型是数据仓库的核心,它定义了数据仓库中各个数据表之间的关系和属性,为数据仓库的实际构建提供了指导和依据。
1. 数据仓库的维度建模在制造业数据仓库的逻辑模型中,维度建模是非常重要的一部分。
维度是描述业务过程中的各个方面的属性,例如产品、时间、地点、客户等。
在制造业数据仓库中,常见的维度包括产品维度、时间维度、地点维度、客户维度、供应商维度等。
通过对这些维度进行建模,可以更好地了解制造业中各个环节的情况,从而进行决策分析和业务优化。
2. 事实表的设计事实表是制造业数据仓库逻辑模型中的另一个关键部分。
事实表是描述业务过程中所发生事件的表,例如销售订单、生产计划、库存变动等。
在制造业数据仓库中,常见的事实表包括销售事实表、生产事实表、库存事实表等。
事实表中的每一行代表一个特定的事件,行中的各个字段记录了该事件的属性和指标信息。
通过对事实表的设计,可以方便地进行各种分析和查询,从而帮助企业更好地了解和掌握制造过程中的各个环节和指标。
3. 星型模型和雪花模型星型模型和雪花模型是制造业数据仓库逻辑模型的两种常见的建模方法。
星型模型是一种简单的建模方式,其中只包含一个事实表和多个维度表,事实表和维度表之间通过外键进行关联。
星型模型的优点是结构简单、易于理解和查询。
雪花模型在星型模型的基础上进行了扩展,将维度表进一步细化,形成了多层级的关系。
雪花模型的优点是可以更好地表示业务过程中的复杂关系和层次结构。
4. 数据粒度的确定在制造业数据仓库的逻辑模型中,数据粒度的确定是非常重要的一步。
第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两大类:联机事务处理和联机分析处理。
4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储于管理和数据表现等。
7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。
8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。
9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。
10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。
第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。
2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。
因此,我们要求ETL过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度高低的一个衡量。
粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。
超市数据仓库雪花模型的设计与应用以连锁超市数据仓库数据模型为典型案例,在分析星型模型的优势和不足的基础上,提出了把星型模型扩展为雪花模型的基本方法。
并通过聚集事实表等途径,使星型模型和雪花模型的特色和优势得到有效的应用。
为数据仓库的联机分析处理和数据挖掘奠定了基础。
标签:连锁超市数据仓库星型模型雪花模型设计雪花模型应用信息技术的迅速发展和企业管理决策的迫切需要,使数据仓库技术应运而生。
1993年,数据仓库之父W.H.lnmon将数据仓库定义为:“一个面向主题的、集成的、随时间变化的、非易失性的数据集合,用以支持管理层的决策”。
数据仓库的概念,决定了数据仓库特有的数据组织模式和广泛的应用前景。
数据模型是开发和构建数据仓库(集市)的基础;是联机分析处理和数据挖掘的重要条件。
星型模型和雪花模型是基于关系数据库的数据仓库的两种典型的数据模型。
目前,数据仓库星型模型已被广泛应用。
而雪花模型的实用价值还处在进一步认识和开发阶段。
一、连锁超市数据仓库星型数据模型“星型模型”是数据仓库广泛采用的数据模型。
它能准确、简洁地描述出实体之间的逻辑关系。
建立数据仓库的数据模型,一般都是在对应用主题分析的基础上,首先建立星型模型。
现以超市数据仓库为例,认识和理解数据仓库星型模型。
一个典型的星型模式包括一个大型的事实表和一组逻辑上围绕这个事实表的维度表。
事实表是星型模型的核心,事实表由主键和度量数据两部分组成。
星型模型中各维度表主键的组合构成事实表的主键。
事实表中存放的大量数据,是同主题密切相关的、用户最关心的度量数据。
“销售”是超市的主题,因此,在事实表中,要准确记载各超市所有商品的销售数量、营业额、利润等度量数据。
维度是观察事实、分析主题的角度。
维度表的集合是构建数据仓库数据模式的关键。
维度表通过主键与事实表相连。
用户依赖维表中的维度属性,从事实表中获取支持决策的数据。
围绕销售主题,连锁超市数据仓库有以下典型的维度及其属性:客户维:在客户维中,建立了客户的基本信息、是否为会员客户、客户居住地域等属性。
数据仓库面试题一、简介数据仓库是一个用于存储和管理大量数据的系统,被广泛应用于数据分析和决策支持领域。
在数据仓库领域的面试中,涉及到的题目通常围绕数据仓库的架构、设计、模型、ETL流程、性能优化等方面展开。
本文将针对数据仓库面试常见的题目进行一一解答。
二、题目解答1. 请介绍数据仓库的架构。
数据仓库的架构通常包括三层:数据源层、集成层和展示层。
数据源层是指数据仓库的原始数据来源,可以是各种业务系统中的数据库、文件、API等。
集成层负责对数据进行抽取、转换和加载(ETL)的过程,将原始数据转化为适合分析和查询的形式。
展示层是数据仓库最终呈现给用户的部分,一般使用OLAP数据模型,支持多维分析和报表功能。
2. 请介绍数据仓库的设计原则。
数据仓库的设计原则主要包括可理解性、稳定性、高性能和易扩展性。
可理解性要求数据仓库的模型和数据应该能够被用户清晰地理解和操作,遵循一致的命名规范和约定。
稳定性要求数据仓库的结构和数据应该是可靠的,能够保证数据的完整性和准确性。
高性能要求数据仓库在查询和分析时能够快速响应,通常通过索引、分区等技术来实现。
易扩展性要求数据仓库能够方便地扩展和增加新的数据源,以适应业务发展和数据增长的需求。
3. 什么是星型模型和雪花模型?星型模型和雪花模型是常见的数据仓库设计模型。
星型模型以一个中心的事实表(Fact Table)为核心,与多个维度表(Dimension Table)关联。
事实表中包含了事实(例如销售量、金额等)以及用于关联维度表的外键。
维度表包含了与事实表相关的维度(例如时间、产品、地区等),每个维度表都有一个与之关联的主键。
星型模型简单、直观,易于理解和查询。
雪花模型在星型模型的基础上进行了拓展,将维度表进一步规范化,使得维度间可以建立更多层级的关联。
即维度表可以再次分解成更小的维度表。
这样做可以提高数据的一致性和准确性,但同时也增加了模型的复杂性。
4. 请解释OLAP和OLTP的区别。
数据库数据仓库设计实例星型模式与雪花模式数据库数据仓库设计实例:星型模式与雪花模式数据仓库是指一个用于集成、存储和管理企业中大量历史、不同来源的数据的数据库。
在设计数据仓库时,我们需要考虑到如何最好地组织数据以满足分析和查询的需求。
星型模式和雪花模式是两种常见的数据仓库设计模式,本文将介绍它们的特点、应用场景以及优缺点。
一、星型模式星型模式是最简单和最直接的数据仓库设计模式之一。
它由一个中心的事实表和多个与之相关的维度表组成。
在星型模式中,事实表包含着企业中的业务事实,如销售金额、销售数量等。
每一条记录都与一个或多个维度表关联,维度表包含着描述业务事实的维度属性,如时间、地点、产品等。
事实表和维度表之间通过外键关联。
星型模式的主要特点是简单、易于理解和查询性能较高。
通过将数据分散到多个维度表中,星型模式提供了更好的数据查询性能。
此外,星型模式还具有较好的扩展性,因为维度表之间是独立的,并可以根据需求进行增加或修改。
然而,星型模式也有一些缺点。
首先,维度表之间的关系相对简单,无法表达一些复杂的业务关系。
其次,事实表中的数据冗余较多,可能浪费存储空间。
最后,当数据模型变得更加复杂时,星型模式的设计和维护会变得困难。
二、雪花模式雪花模式是星型模式的一种扩展,它在维度表中引入了层次结构,使得维度表不再是扁平的结构,而是具有层级关系。
在雪花模式中,维度表不仅包含维度属性,还包含了维度属性之间的关系。
这些关系通过将维度表进一步规范化来实现,使得维度表呈现出树状结构。
如一个产品维度表可以包含产品组、产品类别、产品子类等属性。
雪花模式的主要优点是可以更好地表达复杂的业务关系和层次关系。
通过规范化维度表,我们可以灵活地组织数据,并支持更复杂的分析查询。
此外,雪花模式还可以提供更好的数据一致性和维护性。
然而,雪花模式也有一些缺点。
首先,相对于星型模式而言,查询性能可能会稍差一些。
由于维度表的层次结构,查询需要多次连接和搜索。
第一章1、数据仓库就是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合。
2、元数据是描述数据仓库内数据的结构和建立方法的数据,它为访问数据仓库提供了一个信息目录,根据数据用途的不同可将数据仓库的元数据分为技术元数据和业务元数据两类。
3、数据处理通常分成两大类:联机事务处理和联机分析处理。
4、多维分析是指以“维”形式组织起来的数据(多维数据集)采取切片、切块、钻取和旋转等各种分析动作,以求剖析数据,使拥护能从不同角度、不同侧面观察数据仓库中的数据,从而深入理解多维数据集中的信息。
5、ROLAP是基于关系数据库的OLAP实现,而MOLAP是基于多维数据结构组织的OLAP实现。
6、数据仓库按照其开发过程,其关键环节包括数据抽取、数据存储与管理和数据表现等。
7、数据仓库系统的体系结构根据应用需求的不同,可以分为以下4种类型:两层架构、独立型数据集合、以来型数据结合和操作型数据存储和逻辑型数据集中和实时数据仓库。
8、操作型数据存储实际上是一个集成的、面向主题的、可更新的、当前值的(但是可“挥发”的)、企业级的、详细的数据库,也叫运营数据存储。
9、“实时数据仓库”以为着源数据系统、决策支持服务和仓库仓库之间以一个接近实时的速度交换数据和业务规则。
10、从应用的角度看,数据仓库的发展演变可以归纳为5个阶段:以报表为主、以分析为主、以预测模型为主、以运营导向为主和以实时数据仓库和自动决策为主。
第二章1、调和数据是存储在企业级数据仓库和操作型数据存储中的数据。
2、抽取、转换、加载过程的目的是为决策支持应用提供一个单一的、权威数据源。
因此,我们要求ETL 过程产生的数据(即调和数据层)是详细的、历史的、规范的、可理解的、即时的和质量可控制的。
3、数据抽取的两个常见类型是静态抽取和增量抽取。
静态抽取用于最初填充数据仓库,增量抽取用于进行数据仓库的维护。
4、粒度是对数据仓库中数据的综合程度高低的一个衡量。
粒度越小,细节程度越高,综合程度越低,回答查询的种类越多。
星型模型因为数据的冗余所以很多统计查询不需要做外部的连接,因此一般情况下效率比雪花型模型要高。
星型结构不用考虑很多正规化的因素,设计与实现都比较简单。
雪花型模型由于去除了冗余,有些统计就需要通过表的联接才能产生,所以效率不一定有星型模型高。
正规化也是一种比较复杂的过程,相应的数据库结构设计、数据的 ETL、以及后期的维护都要复杂一些。
因此在冗余可以接受的前提下,实际运用中星型模型使用更多,也更有效率。
二、使用选择星形模型(Star Schema)和雪花模型(Snowflake Schema)是数据仓库中常用到的两种方式,而它们之间的对比要从四个角度来进行讨论。
1.数据优化雪花模型使用的是规范化数据,也就是说数据在数据库内部是组织好的,以便消除冗余,因此它能够有效地减少数据量。
通过引用完整性,其业务层级和维度都将存储在数据模型之中。
▲图1 雪花模型相比较而言,星形模型实用的是反规范化数据。
在星形模型中,维度直接指的是事实表,业务层级不会通过维度之间的参照完整性来部署。
▲图2 星形模型2.业务模型主键是一个单独的唯一键(数据属性),为特殊数据所选择。
在上面的例子中,Advertiser_ID就将是一个主键。
外键(参考属性)仅仅是一个表中的字段,用来匹配其他维度表中的主键。
在我们所引用的例子中,Advertiser_ID将是Account_dimension的一个外键。
在雪花模型中,数据模型的业务层级是由一个不同维度表主键-外键的关系来代表的。
而在星形模型中,所有必要的维度表在事实表中都只拥有外键。
3.性能第三个区别在于性能的不同。
雪花模型在维度表、事实表之间的连接很多,因此性能方面会比较低。
举个例子,如果你想要知道Advertiser 的详细信息,雪花模型就会请求许多信息,比如Advertiser Name、ID以及那些广告主和客户表的地址需要连接起来,然后再与事实表连接。
而星形模型的连接就少的多,在这个模型中,如果你需要上述信息,你只要将Advertiser的维度表和事实表连接即可。
3、用《几何画板》生成Koch雪花的制作方法科克(Koch) 雪花:把等边三角形的每一条边三等份,去掉中间的三分之一,在被去掉线段处向外作出两边为此线段三分之一的尖角。
重复这一过程得到各个尖角,以至无穷。
这个几何分形是数学家赫尔奇·冯·科克在1904年创造的。
雪花曲线制作方法1:3.1 打开一个新的绘图窗口,作点A,在水平线上作点B;选择A,双击,标记为旋转中心,按下Shift键,选择点B,从变换菜单中选择旋转命令,弹出对话框,输入“60”,按确定,得点C。
3.2 按下Shift键,依次选择点A、C(点C、B;点B、A),按下记录对话框中的“快进”键,弹出对话框,“深度”分别选择“1”、“2”、“3”,选择确定,分得图55、图56、图57——2级、3级、4级Koch雪花。
(注意:若依次选择点A、B,则生成的曲线在开始时所作三角形的内部。
)图55 图56 图57作者:江苏省苏州实验中学周建华雪花曲线制作方法2:第1阶段:(1)任取两点AB(2)以点A为中心以(1/3)和(2/3)为比例缩放点B得点C、D(3)以点C为中心将点D旋转60°得到点E(4)选择点C、D、E,选择“构造”菜单中的“三角形内部”命令,构造三角形的内部。
(5)选择三角形的内部,选择“显示”->“颜色”命令,将三角形内部的颜色标为蓝色。
第2阶段:新建一个参数以控制迭代深度,取参数初始值为2第3阶段:(1)选择点A、B、迭代深度,按住<Shift>键不放,然后选择“变换”菜单中的“深度迭代”命令;(2)用鼠标依次选择点D、B建立如图所示A->D,B->B的映射。
第4阶段:(1)选择“结构”->“添加新的映射”命令增加A->E,B->D的新映射;(2)类似地增加如图所示映射。
(3)选择“结构”->“仅没有点的象”命令隐藏由迭代产生的点。
(4)按“迭代”键退出。
DW/BI 数据库面试题一、基础题1.2.描述Tablespace和Datafile之间的关系.3.描述日志的作用.4.5.SQL调整最关注的是什么.7.绑定变量是什么?绑定变量有什么优缺点?8.比较TRUNCATE和DELETE命令.9.FACT Table上需要建立何种索引?10.什么是SCD?请列举SCD的种类与区别.二、SQL试题1.有一张表T(F1,F2,F3,F4),要根据字段F2排序后取第8-16条记录显示,请写出SQL。
2.指出下面SQL语句的执行顺序:select a.column1 , COUNT(*) AS CountValue, SUM(b.column3) AS SumValue fromTableAainner joinTableB b on a.column1 = b.column1 and a.column2 = 1 whereb.column3 = 10 group by a.column1 having COUNT(*)> 10 order by a.column11. From2. ON3. INNER JOIN4. WHERE5. GROUP BY6. having7. SELECT 8. ORDER BY三、DW/BI 试题1.描述ROLAP、MOLAP、HOLAP的区别与优势。
2.描述星型与雪花型的区别与优势。
3.描述一下DW设计架构,及ETL设计方法。
4.描述你所熟悉的数据模型,如一些行业的模型,实际参与的设计及主题。
财务数据模型,主要是凭证,会计科目,供应商,客户,等主事实表就是会计分录、凭证等。
因为凭证有表头和表体。
所以事实表由两个表组成,一个是存储表头一个是表体。
会计科目、供应商、客户是作为单独维度表。
其他维度作为辅助维度存储在在一张表中。
星形模型和雪花模型星形模型和雪花模型数据仓库是多维数据库,它扩展了关系数据库模型,以星形架构为主要结构方式的,并在它的基础上,扩展出理论雪花形架构和数据星座等方式,但不管是哪一种架构,维度表、事实表和事实表中的量度都是必不可少的组成要素1 星形架构星形模型是最常用的数据仓库设计结构的实现模式,它使数据仓库形成了一个集成系统,为最终用户提供报表服务,为用户提供分析服务对象。
星形模式通过使用一个包含主题的事实表和多个包含事实的非正规化描述的维度表来支持各种决策查询。
星形模型可以采用关系型数据库结构,模型的核心是事实表,围绕事实表的是维度表。
通过事实表将各种不同的维度表连接起来,各个维度表都连接到中央事实表。
维度表中的对象通过事实表与另一维度表中的对象相关联这样就能建立各个维度表对象之间的联系。
每一个维度表通过一个主键与事实表进行连接。
事实表主要包含了描述特定商业事件的数据,即某些特定商业事件的度量值。
一般情况下,事实表中的数据不允许修改,新的数据只是简单地添加进事实表中,维度表主要包含了存储在事实表中数据的特征数据。
每一个维度表利用维度关键字通过事实表中的外键约束于事实表中的某一行,实现与事实表的关联,这就要求事实表中的外键不能为空,这与一般数据库中外键允许为空是不同的。
这种结构使用户能够很容易地从维度表中的数据分析开始,获得维度关键字,以便连接到中心的事实表,进行查询,这样就可以减少在事实表中扫描的数据量,以提高查询性能。
星形模式虽然是一个关系模型,但是它不是一个规范化的模型。
在星形模式中,维度表被故意地非规范化了,这是星形模式与OLTP系统中关系模式的基本区别。
使用星形模式主要有两方面的原因:提高查询的效率。
采用星形模式设计的数据仓库的优点是由于数据的组织已经过预处理,主要数据都在庞大的事实表中,所以只要扫描事实表就可以进行查询,而不必把多个庞大的表联接起来,查询访问效率较高,同时由于维表一般都很小,甚至可以放在高速缓存中,与事实表进行连接时其速度较快,便于用户理解;对于非计算机专业的用户而言,星形模式比较直观,通过分析星形模式,很容易组合出各种查询。
数据仓库与数据挖掘第一章课后习题一:填空题1)数据库中存储的都是数据,而数据仓库中的数据都是一些历史的、存档的、归纳的、计算的数据。
2)数据仓库中的数据分为四个级别:早起细节级、当前细节级、轻度综合级、高度综合级。
3)数据源是数据仓库系统的基础,是整个系统的数据源泉,通常包括业务数据和历史数据。
4)元数据是“关于数据的数据”。
根据元数据用途的不同将数据仓库的元数据分为技术元数据和业务元数据两类。
5)数据处理通常分为两大类:联机事务处理和联机事务分析6)Fayyad过程模型主要有数据准备,数据挖掘和结果分析三个主要部分组成。
7)如果从整体上看数据挖掘技术,可以将其分为统计分析类、知识发现类和其他类型的数据挖掘技术三大类。
8)那些与数据的一般行为或模型不一致的数据对象称做孤立点。
9)按照挖掘对象的不同,将Web数据挖掘分为三类:web内容挖掘、web结构挖掘和web 使用挖掘。
10)查询型工具、分析型工具盒挖掘型工具结合在一起构成了数据仓库系统的工具层,它们各自的侧重点不同,因此适用范围和针对的用户也不相同。
二:简答题1)什么是数据仓库?数据仓库的特点主要有哪些?数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合,用于支持管理决策。
主要特点:面向主题组织的、集成的、稳定的、随时间不断变化的、数据的集合性、支持决策作用2)简述数据挖掘的技术定义。
从技术角度看,数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际数据中,提取隐含在其中的、人们不知道的、但又是潜在有用的信息和知识的过程。
3)什么是业务元数据?业务元数据从业务角度描述了数据仓库中的数据,它提供了介于使用者和实际系统之间的语义层,使得不懂计算机技术的业务人员也能够读懂数据仓库中的数据4)简述数据挖掘与传统分析方法的区别。
本质区别是:数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。
数据挖掘所得到的信息应具有先前未知、有效和实用三个特征。
数据仓库工程师面试题作为数据仓库工程师,面试题是评估您对数据仓库设计和管理的理解和经验的重要参考。
下面是一些常见的数据仓库工程师面试题,带您深入了解该领域的知识和技能。
1. 请解释一下数据仓库是什么,以及它与传统数据库的区别是什么?数据仓库是一个被设计用于支持处理和分析大量结构化和非结构化数据的系统。
与传统数据库相比,数据仓库有以下区别:- 数据来源:数据仓库从多个不同的源中获取数据,包括内部和外部数据源,例如业务系统、Web日志和社交媒体。
而传统数据库主要用于业务操作和事务处理。
- 数据结构:数据仓库使用星型模型或雪花模型来组织数据,以便更好地支持查询和分析。
传统数据库则使用关系模型。
- 数据性能:数据仓库通过聚集、索引和分区等技术来优化查询性能,而传统数据库更关注事务性处理的响应时间。
2. 请解释一下ETL的过程是什么,以及在数据仓库中的作用是什么?ETL(抽取、转换和加载)是数据仓库中的常见过程。
它包括以下步骤:- 抽取(Extract):从多个数据源中获取数据,并进行初步清洗和转换,以满足后续处理的需求。
- 转换(Transform):对抽取的数据进行清洗、规范化、转换和整合,以满足数据仓库的模型和规范。
- 加载(Load):将已转换的数据加载到数据仓库中的相应表中。
ETL的作用是将分散和异构的数据整合到一个中心化的数据仓库中,以便进行分析和报告。
通过ETL过程,可以清洗数据、处理数据质量问题、整合多个数据源的数据,并为分析师和业务用户提供一致、准确的数据。
3. 请解释一下星型模型和雪花模型,并阐述它们之间的区别。
星型模型和雪花模型是用于组织数据仓库中的事实表和维度表的两种常见模型。
- 星型模型:星型模型由一个中心的事实表和多个维度表组成。
事实表包含可度量的业务指标,而维度表包含描述业务上下文的属性。
维度表通过外键与事实表相连,而且维度表之间没有相互连接。
- 雪花模型:雪花模型延伸了星型模型,通过将维度表进一步分解成多个规范化的表来减少数据冗余。
星型模型与雪花模型的比较,何时用星型模型,何时需要用雪花模型
(2012-05-22 22:16:27)
转载▼
分类:cognos
标签:
杂谈
星型模式:是一种使用关系数据库实现多维分析空间的模式,用星型模型可以通过关系数据库来模拟OLAP模式。
使用关系数据库+星型模型能够优化存储并且保持数据结构的灵活性。
OLAP多维数据模型对数据做预先计算,建成多维数据立方体,它需要很大的内存以存储所有事实。
无论是稠密纬还是稀疏维,无论数据块是否包含事实,都必须要预留单元。
星型模式的基本思想就是保持立方体的多维功能,同时也增加了小规模数据存储的灵活性。
雪花模式
有时候,需要对星型模式的维度需要进行规范化,这时,星型模式就演进为雪花模式。
原因是基本的星型模式并不能满足数据挖掘的所有需要。
(1)我们需要更复杂的维度,例如时间。
分析员希望根据周、月、季度等识别模式。
(2)维度必须进行规范化。
我们不需要冗余的维度表,这只会使数据切片变得更加复杂。
这种过程中我们得到的模式被称为雪花模式。
(3)另外一个原因需要把星型模型变成雪花模型:就是当存在多对多的关联时,无法在关系数据库中实现,需要使用雪花模式。
雪花模式中可以存在切片,切块。
初中必备数学雪花模型在维度建模中,根据事实表和维度表的关系,可以将常见的模型分为星型模型和雪花型模型。
09.1.1 概念解释星型模型是一种多维的数据关系,其组成是一个事实表(Fact Table)一组维表(Dimension Table)每个维表都有一个维作为主键所有这些维的主键组合成事实表的主键,理解为内容的唯一。
事实表的非主键属性称为事实(Fact)它们一般都是数值或其他可以进行计算的数据(便于分析时的聚合操作)示意图说明星型模型是一种非正规化的结构,多维数据集的每一个维度都直接与事实表相连接,所以数据有一定的冗余。
雪花型模型当有一个或多个维表没有直接连接到事实表上,而是通过其他维表连接到事实表上时,其图解就像多个雪花连接在一起,故称雪花模型。
雪花模型是对星型模型的扩展。
它对星型模型的维表进一步层次化。
原有的各维表可能被扩展为小的事实表,形成一些局部的“层次”区域。
这些被分解的表都连接到主维度表而不是事实表示意图说明通过最大限度地减少数据存储量以及联合较小的维表来改善查询性能。
雪花型结构去除了数据冗余。
09.1.2 优缺点一般从4个角度进行比较1、查询性能角度OLTP-DW 环节,由于雪花型要做多个表联接,性能会低于星型架构;DW-OLAP 环节,由于雪花型架构更有利于度量值的聚合,因此性能要高于星型架构。
2、模型复杂度角度星型架构更简单方便处理3、层次结构角度雪花型架构更加贴近OLTP系统的结构,比较符合业务逻辑,层次比较清晰。
TEXT 复制全屏4、存储角度雪花型架构具有关系数据模型的所有优点,不会产生冗余数据,而相比之下星型架构会产生数据冗余。
09.1.3 实践经验根据项目经验,一般建议使用星型模型。
因为在实际项目中,往往最关注的是查询性能问题。
至于磁盘空间一般都不是问题。
当然,雪花型模型的几个前提:在维度表数据量极大,需要节省存储空间的情况下。
或者是业务逻辑比较复杂、必须要体现清晰的层次概念情况下。