第2章 两自由度机械系统动力学
- 格式:ppt
- 大小:5.15 MB
- 文档页数:13
二自由度动力学方程推导一、引言在机械工程领域,动力学方程是研究机械系统的运动规律和相互作用力的重要工具。
本文将介绍如何推导二自由度机械系统的动力学方程,通过此方程可以描述系统的运动行为和相互作用力。
二、二自由度机械系统的建模二自由度机械系统由两个相互连接的质点或刚体组成,例如双杆摆、双摆锤等。
为了推导动力学方程,首先需要对系统进行建模。
2.1笛卡尔坐标系考虑一个二自由度机械系统,我们选择合适的笛卡尔坐标系来描述系统的运动。
假设系统的质点一的坐标为$(x_1,y_1)$,质点二的坐标为$(x_2,y_2)$,则可以用位移矢量$\ve c{r}_1$和$\v ec{r}_2$来表示质点一和质点二的位置。
2.2动力学变量为了研究系统的运动行为,我们引入广义坐标$q_1$和$q_2$来描述系统的状态。
广义坐标可以是位移、角度或者它们的组合。
在本文中,我们选择关节角度作为广义坐标,记为$\th et a_1$和$\th et a_2$。
定义广义坐标的变化率为广义速度$q_1'$和$q_2'$,广义速度的变化率为广义加速度$q_1''$和$q_2''$。
2.3势能和动能系统的能量可以通过势能和动能进行描述。
势能表示系统由于位置而具有的能量,动能表示系统由于运动而具有的能量。
势能$V$和动能$T$可以表示为:$V=V(q_1,q_2)$$T=T(q_1',q_2')$2.4广义力广义力用于描述系统中各个自由度受到的相互作用力。
对于二自由度机械系统,广义力可以表示为:$\ta u_1=Q_1(q_1,q_2,q_1',q_2')$$\ta u_2=Q_2(q_1,q_2,q_1',q_2')$其中,$\t au_1$和$\t au_2$分别表示广义坐标$q_1$和$q_2$的广义力,$Q_1$和$Q_2$为相应的广义力函数。
机械系统动力学作业---平面二自由度机械臂运动学分析平面二自由度机械臂动力学分析[摘要]机器臂是一个非线性的复杂动力学系统。
动力学问题的求解比较困难,而且需要较长的运算时间,因此,这里主要对平面二自由度机械臂进行动力学研究。
本文采用拉格朗日方程在多刚体系统动力学的应用方法分析平面二自由度机械臂的正向动力学。
经过研究得出平面二自由度机械臂的动力学方程,为后续更深入研究做铺垫。
[关键字]平面二自由度机械臂动力学拉格朗日方程一、介绍机器人是一个非线性的复杂动力学系统。
动力学问题的求解比较困难,而且需要较长的运算时间,因此,简化解的过程,最大限度地减少工业机器人动力学在线计算的时间是一个受到关注的研究课题。
机器人动力学问题有两类:■ ■■(1)给出已知的轨迹点上的■J- ■■■■■■,即机器人关节位置、速度和加速度,求相应的关节力矩向量Q。
这对实现机器人动态控制是相当有用的。
(2)已知关节驱动力矩,求机器人系统相应的各瞬时的运动。
也就是说,给出关节力矩■ ■■向量T求机器人所产生的运动風&及&。
这对模拟机器人的运动是非常有用的。
二、二自由度机器臂动力学方程的推导过程机器人是结构复杂的连杆系统,一般采用齐次变换的方法,用拉格朗日方程建立其系统动力学方程,对其位姿和运动状态进行描述。
机器人动力学方程的具体推导过程如下:(1)选取坐标系,选定完全而且独立的广义关节变量O r , r=l, 2,…,n。
(2)选定相应关节上的广义力F r :当O r是位移变量时,F r为力;当O r是角度变量时, F r为力矩。
(3)求出机器人各构件的动能和势能,构造拉格朗日函数。
(4)代入拉格朗日方程求得机器人系统的动力学方程。
下面以图1所示说明机器人二自由度机械臂动力学方程的推导过程。
1平更二自由度机械臂1、分别求出两杆的动能和势能设齐、B 2是广义坐标,Q i、Q2是广义力。
两个杆的动能和势能分别为:式中,’是杆1质心C i.,\ )的速度向量,\是杆2质心C i ( ' , J )的速度向量。
二自由度动力学模型状态方程动力学是研究物体运动的学科,它涉及物体的力学性质以及力对物体的影响。
在动力学中,二自由度动力学模型是一种常用的模型,它描述了具有两个自由度的物体在外力作用下的运动规律。
通过建立二自由度动力学模型的状态方程,可以研究和预测物体的运动轨迹、力学特性和动力学行为。
在二自由度动力学模型中,物体的运动可以用两个广义坐标来描述,通常分别表示为q1和q2。
这两个广义坐标可以代表物体在空间中的位置、方向或其他物理量。
状态方程是描述物体运动的微分方程组,它表达了物体的广义坐标随时间的变化规律。
为了建立二自由度动力学模型的状态方程,需要确定物体的受力情况和运动方程。
受力情况包括作用在物体上的外力和内力,外力可以是重力、弹性力、摩擦力等。
内力可以是物体内部的相互作用力。
运动方程描述了物体的加速度与受力之间的关系,可以通过牛顿第二定律来得到。
根据物体的受力情况和运动方程,可以得到二自由度动力学模型的状态方程。
状态方程是一个包含广义坐标和其导数的微分方程组,通常是二阶微分方程。
通过求解状态方程,可以得到物体的广义坐标随时间的变化规律,从而了解物体的运动情况。
在实际应用中,二自由度动力学模型的状态方程可以用于研究各种物理系统的动力学行为。
例如,在机械系统中,可以通过建立二自由度动力学模型的状态方程来分析机械结构的振动特性和稳定性。
在控制系统中,可以利用状态方程设计控制器,实现对物体运动的控制和稳定。
除了状态方程,二自由度动力学模型还可以通过能量方法进行分析。
能量方法是一种基于能量守恒原理的分析方法,通过建立物体的能量方程来描述物体的运动规律。
能量方法在实际应用中具有很高的效率和准确性,特别适用于复杂的动力学问题。
二自由度动力学模型的状态方程是研究物体运动的重要工具。
通过建立和求解状态方程,可以得到物体的运动规律和力学特性,为物体的设计、控制和优化提供理论依据。
在实际应用中,二自由度动力学模型的状态方程在机械、控制、物理等领域发挥着重要作用,为解决实际问题提供了有力的工具和方法。
二自由度机械臂的动力学模型通常涉及到两个主要的方面:几何构型和运动方程。
在建立动力学模型之前,首先需要确定机械臂的几何参数,包括每个关节的转动惯量以及各连杆的长度。
动力学模型可以分为两部分:静力学模型和动力学模型。
静力学模型关注的是力的平衡问题,即在机械臂的任意位置上,作用在机械臂上的所有外力之和等于零,所有外力矩之和也等于零。
动力学模型则进一步考虑了机械臂的运动情况,即在给定的力和力矩作用下,机械臂的运动如何变化。
为了建立动力学模型,我们通常采用牛顿-欧拉方法或者拉格朗日方法。
牛顿-欧拉方法从关节坐标出发,逐步推导出各关节的力和力矩,再结合连杆的长度,得到整个机械臂的动力学方程。
拉格朗日方法则是从能量的角度出发,利用动能和势能的关系来建立动力学方程。
具体来说,对于二自由度机械臂,其动力学方程可以表示为:
M(q)q'' + C(q, q', t)q' + G(q, t) = T(q, q', t)
其中:
- M(q) 是机械臂的质量矩阵,q是关节变量;
- q' 是关节变量的速度;
- q'' 是关节变量的加速度;
- C(q, q', t) 是由关节速度引起的科氏力和离心力等构成的矩阵;
- G(q, t) 是重力矩阵;
- T(q, q', t) 是外部施加的力和力矩。
在实际应用中,还需要对上述方程进行求解,这通常需要借助计算机模拟或数值积分方法。
通过求解动力学方程,可以预测机械臂在特定输入下的动态响应,这对于机械臂的控制系统的设计至关重要。