直接转矩控制与DTC
- 格式:ppt
- 大小:1.23 MB
- 文档页数:2
1 直接转矩控制简介直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。
直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。
这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。
直接转矩控制系统的主要特点有:(1)直接转矩控制是直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。
(2)直接转矩控制的磁场定向采用的是定子磁链轴,只要知道定子电阻就可以把它观测出来。
(3)直接转矩控制采用空间矢量的概念来分析三相交流电动机的数学模型和控制各物理量,使问题变得简单明了。
(4)直接转矩控制强调的是转矩的直接控制效果。
直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。
它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。
它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。
2 直接转矩控制的理论基础2.1直接转矩控制的原理ψ的正负符号和电磁直接转矩控制系统的基本思想是根据定子磁链幅值偏差ΔSψ所在位置,直接选取合适的转矩偏差ΔTe的正负符号,再依据当前定子磁链矢量S电压空间矢量,减小定子磁链幅值的偏差和电磁转矩的偏差,实现电磁转矩和定子磁链的控制。
直接转矩控制是为电压源型PWM逆变器传动系统提出的一种先进的转矩控制技术,基于该技术的传动系统性能可与矢量控制的异步电动机传动系统性能相媲美。
异步电动机矢量控制_FOC_和直接转矩控制_DTC_方案的比较首先,我们来看看FOC方案。
FOC方案是基于电机矢量控制理论而发展起来的一种控制方法,在控制异步电动机时,可以通过精确测量和控制转子磁链矢量的方向和大小,来实现精确控制电机的转矩和转速。
其核心思想是将电动机的三相定子电流进行矢量拆分,分为一个磁场矢量和一个转矩矢量,从而实现转子磁链方向和大小的控制。
FOC方案的优点是控制精度高,响应速度快。
由于可以实时测量和控制电机的磁链矢量,FOC方案可以精确控制电机的转矩和转速。
此外,由于转子磁链矢量可以根据需要即时调整,FOC方案可以快速响应转矩和速度的变化,从而适用于需要快速响应和精确控制的应用。
然而,FOC方案也存在一些缺点。
首先,FOC方案的实现较为复杂,需要进行电流和电压的矢量控制,以及相应的转子定位和速度估算算法。
这些复杂的控制算法在实践中需要较高的计算能力和较多的计算资源,因此实现起来较为困难。
其次,FOC方案对于电机参数和系统模型的准确性要求较高。
由于FOC方案需要测量和控制转子磁链矢量,因此对电机参数和系统模型的准确性要求较高,如果参数不准确,将导致控制性能下降。
接下来,我们来看看DTC方案。
DTC方案是一种基于直接转矩控制原理的控制方法,其核心思想是通过采用转矩和磁链两个控制变量直接控制电机的转矩和速度。
DTC方案通过测量和计算磁链和转矩的误差,根据预定的控制规则直接调节电机的电压和频率,以实现对电机转矩和速度的控制。
DTC方案的优点是实现简单,控制快速。
DTC方案不需要进行电流和电压的矢量控制,只需要测量和控制磁链和转矩的误差,因此实现起来相对简单。
此外,DTC方案由于直接控制电机的电压和频率,可以快速响应转矩和速度的变化,适用于需要快速相应和简单控制的应用。
然而,DTC方案也存在一些缺点。
首先,DTC方案的动态性能较差。
由于DTC方案是基于磁链和转矩误差进行控制的,其控制性能受到不可避免的误差和延迟的影响,因此其动态性能较差,不能达到FOC方案的精确度和响应速度。
DTC控制说明DTC控制简介DTC的发展1.直流电机DC Drive U图1直流电机控制环特点:・磁场方向通过机械换向器来转换・控制的变量为电枢电流以及励磁电流,速度反馈直接从电机测量・直接控制转矩在直流电机中,磁场由流经定子上励磁绕组的电流产生。
该磁场与电枢绕组产生的磁场总是成直角。
这种情况称为磁场定向,是产生最大转矩的条件。
无论转子处在什么位置,电刷都会保证这种磁场稳定在这种状态。
一旦磁场定向完成,直流电机的转矩就能很容易通过改变电枢电流和保持磁化电流恒定来实现。
直流传动的优势在于,速度和转矩这两个对用户来说最主要的因素,可以直接通过电枢电流来控制:转矩控制为内环,速度控制为外环(见图1)0 优点・精确快速的转矩控制・高速的速度动态响应・控制简单最初,直流传动用于调速传动,是因为它可以很轻易的实现良好的转矩和高精度的速度响应。
直流电机可以产生转矩并具有如下特性:・直接一电机的转矩与电枢电流成正比,因此可以直接精确的控制转矩。
・快速一转矩控制十分迅速;传动系统可以得到很高的速度动态响应。
如果电机由理想的电流源反馈转矩可以立即改变,电压反馈的传动同样可以实现快速响应,因为它只和转子电气时间常数有关(例如电枢回路中总的电感与电抗)。
•简单一磁场方向通过换向器/电刷这一简单的机械结构来实现,所以不需要使用复杂的电子控制电路,从而节约了控制电机的成本。
2. V/F控制Frequency Control图2使用PWM频率控制的交流传动控制环特点•控制变量为电压和频率・通过调速器来模拟交流正弦波・磁通维持恒压频比・开环控制・负载决定转矩水平与直流传动不同,交流传动频率控制技术使用的是电机的外部参数一即电压和频率一作为控制电机的变量。
电压和频率给定发送至调制器,为定子磁通提供近似的交流正弦波。
这种技术被称为脉宽调制(PWM),是利用二极管整流桥为直流母线提供直流电压使之保持恒定的。
逆变器通过脉宽调制脉冲序列改变电压和频率,由此来控制电机。
运动控制系统2020大作业摘要:三峡工程是世界瞩目的超大工程,其中升船机的设计有着许多难点。
本文针对三峡工程中升船机运行的一些实际问题进行了解答,并基于直接转矩控制(DTC )策略,利用simulink 搭建了三相异步电机直接转矩控制系统仿真模型,采用了定子磁链圆形的控制策略,对系统进行仿真。
仿真结果表明,该直接转矩控制系统仿真模型能够很好地模拟实际调速系统的相关性能,体现了更优越的静动态性能。
关键词:DTC ;异步电动机;定子磁链控制;三峡工程 1引言 1.1 交流调速系统的发展与现状 长期以来,在调速传动领域大多采用磁场电流和电枢电流可以独立控制的直流电动机传动系统,它的调速性能和转矩控制特性比较理想,可以获得良好的动态响应,然而出于在结构上存在的问题使其在设计容量上受到限制,不能适应高速大容量化的发展方向,交流电机以其结构简单,制造方便、运行可靠,可以以更高的转速运行、可用于恶劣环境等优点得到了广泛的运用,但交流电动机的调速比较困难。
在上个世纪20年代,人们认识到变频调速是一种理想的调速方法,由于当时的变频设备庞大,可靠性差,变频调速技术发展缓慢。
60年代至今,电力电子技术和控制技术的发展,使交流调速性能可以与直流调速相媲美。
现代电子技术的飞速发展、电动机控制理论的不断完善以及计算机仿真技术的日益成熟,极大的推动了交流电动机变频调速技术的发展。
1.1.1 直接转矩控制直接转矩控制(direct torque control ,简称DTC )利用逆变器六个开关管的“开关特性”直接对电动机的转矩进行控制,即根据电动机的实际电磁转矩大于还是小于给定转矩,直接选择逆变器开关的状态。
从而输出合适的电压空间矢量,使得转矩减小或增大。
它省掉了复杂的矢量变换,其控制思想新颖,控制结构简单,物理概念明确,转矩响应迅速,电机磁场可以接近圆形,谐波小,开关损耗小,噪声及温升较小;但它也存在转矩脉动大的不足。
整体上是一个非常优秀的控制策略。
ABB变频器中DTC的基本控制原理众所周知,在ABB的交流变频器中,DTC技术已经广泛应用,那DTC究竟是什么东西,它是如何工作的呢?下文我们就介绍一下DTC的基本控制原理。
DTC是英文 Direct Torque Control 的缩写,它是最先进的一种交流传动技术,由ABB公司发展应用成功的。
它将逐步取代传统的脉宽调制(PWM)传动。
它之所以叫做直接转矩控制,是因为它对电动机输出转矩和速度的控制是基于电动机的电磁状态,DTC与直流传动的控制相似,但与传统的脉宽调制控制完全不一样。
传统的PWM控制是基于电压和频率的控制方式。
关键词:DTC,速度控制环,转矩控制环,电机模型下面我们就根据框图逐步介绍一下DTC控制的基本原理。
Figure 1, 直接转矩控制(DTC)的控制原理框图.Figure 1: DTC 由两个关键部分组成:: Speed Control and Torque Control框图表明,DTC有两个基本部分: Torque Control Loop(转矩控制环)和the Speed Control Loop(速度控制环). 现在我们根据框图分七步来逐步介绍每个基本部分以及它们是如何集成到一起的。
我们先从转矩控制环(Torque Control Loop)说起。
Figure 2 转矩控制环结构框图1.电压电流的测量正常情况下,电机的两相电流、直流电压是和变频器功率元件的导通位置是同时测量的。
2. 自适应电机模型来自电机的测量信息反馈到电机模型。
该电机模型非常复杂,但也只有这样复杂的电机模型才能对电机的数据进行精确的计算。
在运行DTC传动装置之前,首先需要将电机的一些参数诸如:定子电阻、公共阻抗、饱和系数等等输入到电机模型里。
这些参数是不需要手动输入的,而是在我们把正确的电动机铭牌数据输入到变频器后,再进行电动机识别运行后,它们就会自动输入到电机模型里。
当然,电机模型参数的识别也可以在不转动电机转子的情况下进行。
直接转矩控制(DTC)技术概述作者:同济大学电气工程系袁登科陶生桂王志鹏刘洪1 引言交流电机传动系统中的直接转矩控制技术是基于定子两相静止参考坐标系,一方面维持转矩在给定值附近,另一方面维持定子磁链沿着给定轨迹(预先设定的轨迹,如六边形或圆形等)运动,对交流电机的电磁转矩与定子磁链直接进行闭环控制。
最早提出的经典控制结构是采用bang-bang控制器对定子磁链与电磁转矩实施砰砰控制,分别将它们的脉动限制在预先设定的范围内。
bang-bang调节器是进行比较与量化的环节,当实际值超过调节范围的上、下限时,它就产生动作,输出的数字控制量就会发生变化。
然后由该控制量直接决定出电压型逆变器输出的电压空间向量。
这种经典的直接转矩控制技术具有:(1) 非常简单的控制结构;(2) 非常快速的动态性能;(3) 无需专门的pwm技术;(4) 把交流电机与逆变器结合在一起, 对电机的控制最为直接,且能最大限度发挥逆变器的能力;(5) 前面叙述的实际被控量必须发生脉动才能产生合适的数字控制量,所以它不可避免地存在着一种与其特有的pwm技术密切相关的定子磁链与电磁转矩的脉动。
2 传统的直接转矩控制(dtc)方案直接转矩控制技术于上世纪80年代中期提出, 当时的控制系统有两种典型的控制结构:德国学者的直接转矩自控制方案与日本学者的直接转矩与磁链控制方案。
两者都属于直接转矩控制的范围,但仍有着较大的不同。
下面对各种方案进行介绍与分析。
2.1 德国depenbrock教授的直接自控制(dsc)方案[1]直接自控制方案是针对大功率交流传动系统电压型逆变器驱动感应电机提出来的控制方案。
由于当时采用大功率gto半导体开关器件,考虑到器件本身的开通、关断比较慢,还有开关损耗和散热等实际问题,gto器件的开关频率不能太高。
当时的开关频率要小于1khz,通常只有500~600hz。
而即便到现在,大功率交流传动应用场合中开关频率也只能有几khz。
直接转矩控制(DTC)技术概述作者:同济大学电气工程系袁登科陶生桂王志鹏刘洪1 引言交流电机传动系统中的直接转矩控制技术是基于定子两相静止参考坐标系,一方面维持转矩在给定值附近,另一方面维持定子磁链沿着给定轨迹(预先设定的轨迹,如六边形或圆形等)运动,对交流电机的电磁转矩与定子磁链直接进行闭环控制。
最早提出的经典控制结构是采用bang-bang控制器对定子磁链与电磁转矩实施砰砰控制,分别将它们的脉动限制在预先设定的范围内。
bang-bang调节器是进行比较与量化的环节,当实际值超过调节范围的上、下限时,它就产生动作,输出的数字控制量就会发生变化。
然后由该控制量直接决定出电压型逆变器输出的电压空间向量。
这种经典的直接转矩控制技术具有:(1) 非常简单的控制结构;(2) 非常快速的动态性能;(3) 无需专门的pwm技术;(4) 把交流电机与逆变器结合在一起, 对电机的控制最为直接,且能最大限度发挥逆变器的能力;(5) 前面叙述的实际被控量必须发生脉动才能产生合适的数字控制量,所以它不可避免地存在着一种与其特有的pwm技术密切相关的定子磁链与电磁转矩的脉动。
2 传统的直接转矩控制(dtc)方案直接转矩控制技术于上世纪80年代中期提出, 当时的控制系统有两种典型的控制结构:德国学者的直接转矩自控制方案与日本学者的直接转矩与磁链控制方案。
两者都属于直接转矩控制的范围,但仍有着较大的不同。
下面对各种方案进行介绍与分析。
2.1 德国depenbrock教授的直接自控制(dsc)方案[1]直接自控制方案是针对大功率交流传动系统电压型逆变器驱动感应电机提出来的控制方案。
由于当时采用大功率gto半导体开关器件,考虑到器件本身的开通、关断比较慢,还有开关损耗和散热等实际问题,gto器件的开关频率不能太高。
当时的开关频率要小于1khz,通常只有500~600hz。
而即便到现在,大功率交流传动应用场合中开关频率也只能有几khz。
直接转矩控制直接转矩控制(Direct Torque Control,简称DTC)是一种电机控制技术,用于直接控制交流电机的转矩和转速。
它是由法国斯特拉斯堡理工大学的Andrzej M. Trzynadlowski 教授于1985年提出的。
相比传统的电机向量控制(Field Oriented Control,简称FOC),DTC具有更快的响应速度、更宽的可调速范围和更精确的转矩控制能力,因此在工业应用中得到了广泛的应用。
直接转矩控制的基本原理是根据电机的状态变量,即电机电流和转速,直接计算所需的转矩控制量,并通过适当的电压矢量选择器生成相应的电压矢量,从而实现对电机的转矩和转速控制。
与FOC相比,DTC不需要进行逆变器电流矢量的坐标变换和空间矢量调制,因此减少了计算开销,提高了控制系统的响应速度。
在直接转矩控制中,最重要的是转矩和磁通的估算。
转矩估算一般通过测量电机绕组的电流和电压来实现,可以利用数学模型、数据曲线和反演算法等方式进行估算。
而磁通估算则是通过测量电机反电动势来实现,反电动势的测量可以利用传感器或者观测器等方法进行。
直接转矩控制的优点主要体现在以下几个方面:1. 响应速度快:由于DTC不需要坐标变换和空间矢量调制,可以更快地响应转矩和转速的变化,提高了系统的动态性能。
2. 转矩和转速控制精度高:DTC可以直接计算所需的转矩控制量,精确地控制电机的转矩和转速,使系统响应更加准确和稳定。
3. 拓扑简单:DTC的控制电路结构相对简单,不需要传统的坐标变换和PWM技术,减少了电路复杂性和硬件实现难度。
4. 高可靠性:由于DTC的拓扑简单,减少了电路元器件的数量和故障点,提高了系统的可靠性和稳定性。
5. 宽工作范围:DTC适用于大范围的转矩和转速控制需求,可以满足不同工况下的运行要求。
然而,直接转矩控制也存在一些缺点和挑战。
首先,由于DTC直接计算所需的控制量,对参考值的变化非常敏感,因此对速度和磁通参数的准确测量和估算至关重要。
变频器dtc⽅式介绍-华美⾦⾈直接转矩控制也称之为“直接⾃控制”,这种“直接⾃控制”的思想是以转矩为中⼼来进⾏磁链、转矩的综合控制。
和⽮量变频器的控制不同,直接转矩控制不采⽤解耦的⽅式,从⽽在算法上不存在旋转坐标变换,简单地通过检测电动机定⼦电压和电流,借助瞬时空间⽮量理论计算电动机的磁链和转矩,并根据与给定值⽐较所得差值,实现磁链和转矩的直接控制。
直接转矩控制技术,是利⽤空间⽮量、定⼦磁场定向的分析⽅法,直接在定⼦坐标系下分析异步电动机的数学模型,计算与控制异步电动机的磁链和转矩,采⽤离散的两点式调节器(band—band控制),把转矩检测值与转矩给定值作⽐较,使转矩波动限制在⼀定的容差范围内,容差的⼤⼩由频率调节器来控制,并产⽣pwm脉宽调制信号,直接对逆变器的开关状态进⾏控制,以获得⾼动态性能的转矩输出。
它的控制效果不取决于异步电动机的数学模型是否能够简化,⽽是取决于转矩的实际状况,它不需要将交流电动机与直流电动机作⽐较、等效、转化,即不需要模仿直流电动机的控制,由于它省掉了⽮量变换⽅式的坐标变换与计算和为解耦⽽简化异步电动机数学模型,没有通常的pwm脉宽调制信号发⽣器,所以它的控制结构简单、控制信号处理的物理概念明确、系统的转矩响应迅速且⽆超调,是⼀种具有⾼静、动态性能的交流调速控制⽅式。
与⽮量控制⽅式⽐较,直接转矩控制磁场定向所⽤的是定⼦磁链,它采⽤离散的电压状态和六边形磁链轨迹或近似圆形磁链轨迹的概念。
只要知道定⼦电阻就可以把它观测出来。
⽽⽮量控制磁场定向所⽤的是转⼦磁链,观测转⼦磁链需要知道电动机转⼦电阻和电感。
因此直接转矩控制⼤⼤减少了⽮量控制技术中控制性能易受参数变化影响的问题。
直接转矩控制强调的是转矩的直接控制与效果。
与⽮量控制⽅法不同,它不是通过控制电流、磁链等量来间接控制转矩,⽽是把转矩直接作为被控量,对转矩的直接控制或直接控制转矩,既直接⼜简化。
直接转矩控制对交流传动来说是⼀个优秀的电动机控制⽅法,它可以对所有交流电动机的核⼼变量进⾏直接控制。
汇报人:日期:CATALOGUE 目录•异步电机概述•直接转矩控制(DTC)策略简介•异步电机DTC策略的实现方法•异步电机DTC策略的性能优化•异步电机DTC策略的应用案例与未来展望01异步电机概述异步电机的定义和工作原理定义异步电机,又称感应电机,是一种基于电磁感应原理工作的电动机。
与同步电机不同,异步电机的转子速度与定子磁场旋转速度存在一定的转速差。
工作原理当定子绕组通入三相交流电时,会在气隙中产生旋转磁场。
这个旋转磁场与转子导体产生相对运动,从而在转子导体中产生感应电动势和感应电流。
根据电磁感应原理,这个感应电流会与旋转磁场相互作用,产生电磁力,驱动转子转动。
发电机的励磁异步电机可以作为发电机的励磁机,通过控制励磁电流来调节发电机的输出电压和频率。
电力系统的调峰填谷异步电机可以作为电力系统的调峰填谷手段,通过控制其运行状态来调节电力系统的有功功率和无功功率。
拖动各种生产机械异步电机具有结构简单、运行可靠、维护方便等优点,因此被广泛应用于拖动各种生产机械,如风机、水泵、压缩机等。
异步电机在电力系统中的应用异步电机控制的重要性提高运行效率01通过采用先进的控制策略,可以提高异步电机的运行效率,降低能耗,实现节能减排。
改善电能质量02异步电机的运行状态直接影响到电力系统的电能质量。
通过有效控制异步电机,可以减少谐波、降低电压波动和闪变,提高电能质量。
增强系统稳定性03异步电机作为电力系统的重要组成部分,其稳定性对于整个系统的稳定运行至关重要。
采用适当的控制策略,可以提高异步电机的稳定性,增强整个电力系统的稳定性。
02直接转矩控制(DTC)策略简介电压矢量选择DTC策略中,根据电机的当前状态和期望的转矩,选择合适的电压矢量来驱动电机。
这种选择通常基于查找表或者优化的算法。
原理概述DTC策略基于电机的电磁转矩方程,通过直接调节电机的电压矢量来控制转矩,从而实现对电机速度和位置的精确控制。
转矩和磁链观测为了实时调节电机的转矩,DTC 策略需要实时观测电机的转矩和磁链。
4. 直接转矩控制(DTC)方式1985年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。
该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。
目前,该技术已成功地应用在电力机车牵引的大功率交流传动上。
直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。
它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
5.矩阵式交—交控制方式VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。
其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。
为此,矩阵式交—交变频应运而生。
由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。
它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。
该技术目前虽尚未成熟,但仍吸引着众多的学者深入研究。
其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。
具体方法是:? 控制定子磁链引入定子磁链观测器,实现无速度传感器方式;? 自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;? 算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;? 实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。
矩阵式交—交变频具有快速的转矩响应(<2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(<+3%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出150%~200%转矩。
变频器的使用中遇到的问题和故障防范由于使用方法不正确或设置环境不合理,将容易造成变频器误动作及发生故障,或者无法满足预期的运行效果。
直接转矩控制直接转矩控制(Direct Torque Control——DTC),国外的原文有的也称为Direct self-control——DSC,直译为直接自控制,这种“直接自控制”的思想以转矩为中心来进行综合控制,不仅控制转矩,也用于磁链量的控制和磁链自控制。
直接转矩控制与矢量控制的区别是,它不是通过控制电流、磁链等量间接控制转矩,而是把转矩直接作为被控量控制,其实质是用空间矢量的分析方法,以定子磁场定向方式,对定子磁链和电磁转矩进行直接控制的。
这种方法不需要复杂的坐标变换,而是直接在电机定子坐标上计算磁链的模和转矩的大小,并通过磁链和转矩的直接跟踪实现PWM脉宽调制和系统的高动态性能。
直接转矩控制(Direct Torque Control,DTC)变频调速,是继矢量控制技术之后又一新型的高效变频调速技术。
20 世纪80 年代中期,德国鲁尔大学的M.Depenbrock教授和日本的I.Takahashi教授分别提出了六边形直接转矩控制方案和圆形直接转矩控制方案。
1987 年,直接转矩控制理论又被推广到弱磁调速范围。
直接转矩控制技术用空间矢量的分析方法,直接在定子坐标系下计算与控制电动机的转矩,采用定子磁场定向,借助于离散的两点式调节(Band-Band)产生PWM 波信号,直接对逆变器的开关状态进行最佳控制,以获得转矩的高动态性能。
它省去了复杂的矢量变换与电动机的数学模型简化处理,没有通常的PWM 信号发生器。
它的控制思想新颖,控制结构简单,控制手段直接,信号处理的物理概念明确。
直接转矩控制也具有明显的缺点即:转矩和磁链脉动。
针对其不足之处,现在的直接转矩控制技术相对于早期的直接转矩控制技术有了很大的改进,主要体现在以下几个方面:(1)无速度传感器直接转矩控制系统的研究在实际应用中,安装速度传感器会增加系统成本,增加了系统的复杂性,降低系统的稳定性和可靠性,此外,速度传感器不实用于潮湿、粉尘等恶劣的环境下。