第2章 确知信号与随机信号分析基础
- 格式:ppt
- 大小:1.80 MB
- 文档页数:22
第二章随机信号分析随机信号分析确定性信号分析的不同与联系:随机信号分析、确定性信号分析的不同与联系:随机信号分析的主要内容:随机过程的一般表述平稳随机过程高斯过程窄带随机过程正弦波加窄带高斯过程稳随机过过线性系平稳随机过程通过线性系统2010-9-271引言信号:一般是时间的函数确定信号:可以用确定的时间函数表示的信号 周期信号和非周期信号能量信号和功率信号基带信号和频带信号模拟信号和数字信号随机信号:具有随机性,可用统计规律来描述 通信过程中要发送的信号是不可预知的,因此具有随机性,是随机信号,但信号的统计特性具有规律性。
噪声和干扰是随机的信号噪声和干扰是随机的信号;无线信道特性(可理解为系统传递函数)也是随机变2010-9-272化的。
随机过程:与时间有关的函数,但任一时刻的取值不确定(随机变量)随机过程可以看成对应不同随机试验的时间过程的集合。
如n(或无数)台性能完全的接收机输出的噪声波形,每个波形都是一个确定函数,为一个样本函数,各波形又各不相同。
也可看成一个接收机,不同实验输出不同的样本函数。
随机过程是所有样本函数的集合。
2010-9-2731随机过程的一般表述1 随机过程的般表述(1)样本函数:随机过程的具体实现样本空间所有实现构成的全体~()i x t )()t 样本空间:所有实现构成的全体所有样本函数及其统计特性构成了随机过程{}1~(),,),i S x x t =……~()t ξ2010-9-274随机过程是随机变量概念的延伸,即随机变量引入时间变量,成为随机过程。
每一个时刻,对应每个样本函数的取值{i(),,,,}{x(t),i=1,2,…,n}是一个随机变量。
固定时刻t1的随机变量计为ξ(t1)。
随机过程看作是在时间进程中处于不同时刻的随机变量的集合。
2010-9-27511随机过程的n维分布函数或概率密度函数往往不容易或不需要得到,常常用数字特征部分地表述随机过程的主要特征。
第2章信号与噪声分析知识点及层次1. 确知信号时-频域分析(1) 现代通信系统周期信号的傅氏级数表示和非周期信号的傅氏积分。
(2) 几个简单且常用的傅氏变换对及其互易性。
(3) 信号与系统特征-卷积相关-维钠-辛钦定理。
2. 随机过程统计特征(1) 二维随机变量统计特征。
(2) 广义平稳特征、自相关函数与功率谱特点。
(3) 高斯过程的统计特征。
3. 高斯型白噪声统计特征(1) 理想白噪声及限带高斯白噪声特征。
(2) 窄带高斯白噪声主要统计特征。
以上三个层次是一个层层深入的数学系统,最终旨在解决信号、系统及噪声性能分析,是全书各章的基本理论基础,也是系统分析的最主要的数学方法。
第2章信号与噪声分析知识点及层次1. 确知信号时-频域分析(1)现代通信系统周期信号的傅氏级数表示和非周期信号的傅氏积分。
(2)几个简单且常用的傅氏变换对及其互易性。
(3)信号与系统特征-卷积相关-维钠-辛钦定理。
2.随机过程统计特征(1)二维随机变量统计特征(2)广义平稳特征、自相关函数与功率谱特点。
(3)高斯过程的统计特征。
3. 高斯型白噪声统计特征(1)理想白噪声及限带高斯白噪声特征。
(2)窄带高斯白噪声主要统计特征。
以上三个层次是一个层层深入的数学系统,最终旨在解决信号、系统及噪声性能分析,是全书各章的基本理论基础,也是统分析的最主要的数学方法。
傅里叶分析是从时域、频域描述信号的有效方法。
狭义而言,通信过程更是信号与传输信道在频域相适应的过程。
往往信号和系统的频域特征分析更有利于解决传输问题。
第二章信号与噪声分析经典例题[例 2-1] 求图2-1所示信号f(t)的频谱。
解:这一结果表明,频谱是两部分构成,为虚轴上奇对称于原点。
证实了奇对称实信号的频谱为虚频谱奇对称形式。
[例2-2] 由随机过程定义,典型的数学表达式是无法写出的。
一般地,在一个确知形式的时间函数中,若其中一个(或2个)变量是随机的,称准随机过程。
设随机过程,其中是均值为0、方差为的高斯变量,是内均匀分布的相位随机变量,且与统计独立。