高一数学基本不等式检测试题
- 格式:doc
- 大小:282.50 KB
- 文档页数:6
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.下列命题不正确的是A.B.C.D.【答案】D【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【答案】A【解析】略4. 2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。
国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。
设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。
求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。
【答案】(千米/小时)时,取得最小值为8(小时)【解析】由题可得关系式为从而当且仅当,即(千米/小时)时,取得最小值为8(小时)5.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
高一数学基本不等式试题1.(2014•榆林模拟)已知各项均为正数的等比数列{an }满足a7=a6+2a5,若存在两项am,an使得的最小值为()A.B.C.D.【答案】A【解析】由a7=a6+2a5求得q=2,代入求得m+n=6,利用基本不等式求出它的最小值.解:由各项均为正数的等比数列{an }满足a7=a6+2a5,可得,∴q2﹣q﹣2=0,∴q=2.∵,∴q m+n﹣2=16,∴2m+n﹣2=24,∴m+n=6,∴,当且仅当=时,等号成立.故的最小值等于,故选A.点评:本题主要考查等比数列的通项公式,基本不等式的应用,属于基础题.2.(2014•兴安盟一模)x、y满足约束条件,若目标函数z=ax+by(a>0,b>0)的最大值为7,则的最小值为()A.14B.7C.18D.13【答案】B【解析】作出可行域,得到目标函数z=ax+by(a>0,b>0)的最优解,从而得到3a+4b=7,利用基本不等式即可.解:∵x、y满足约束条件,目标函数z=ax+by(a>0,b>0),作出可行域:由图可得,可行域为△ABC区域,目标函数z=ax+by(a>0,b>0)经过可行域内的点C时,取得最大值(最优解).由解得x=3,y=4,即C(3,4),∵目标函数z=ax+by(a>0,b>0)的最大值为7,∴3a+4b=7(a>0,b>0),∴=(3a+4b)•()=(9++16+)≥(25+2)=×49=7(当且仅当a=b=1时取“=”).故选B.点评:本题考查线性规划,作出线性约束条件下的可行域,求得其最优解是关键,也是难点,属于中档题.3.(2014•烟台三模)设二次函数f(x)=ax2﹣4x+c(x∈R)的值域为[0,+∞),则的最小值为()A.3B.C.5D.7【答案】A【解析】先判断a、c是正数,且ac=4,把所求的式子变形使用基本不等式求最小值.解:由题意知,a>0,△=1﹣4ac=0,∴ac=4,c>0,则则≥2×=3,当且仅当时取等号,则的最小值是3.故选A.点评:本题考查函数的值域及基本不等式的应用,求解的关键就是拆项,属于基础题.4.(2014•淮南一模)函数y=a x+3﹣2(a>0,且a≠1)的图象恒过定点A,且点A在直线mx+ny+1=0上(m>0,n>0),则的最小值为()A.12B.10C.8D.14【答案】A【解析】先求出定点A,将其代入直线方程即可得到n、m满足的关系式,再利用基本不等式的性质即可.解:当x=﹣3时,f(﹣3)=a0﹣2=1﹣2=﹣1,∴定点A(﹣3,﹣1).∵点A在直线mx+ny+1=0上,∴﹣3m﹣n+1=0,即3m+n=1.∵m>0,n>0,∴=(3m+n)=6+=12,当且仅当m>0,n>0,3m+n=1,,即n=,时取等号.因此的最小值为12.故选A.点评:熟练掌握基本不等式的性质是解题的关键.5.(2014•安徽模拟)若2m+4n<2,则点(m,n)必在()A.直线x+y=1的左下方B.直线x+y=1的右上方C.直线x+2y=1的左下方D.直线x+2y=1的右上方【答案】C【解析】利用基本不等式得2m+4n≥2,再结合题意并化简2m+2n<2,由指数函数的单调性求解此不等式,再解集转化为几何意义.解:由基本不等式得,2m+4n=2m+22n≥2=2∵2m+4n<2,∴2<2,∴<,则2m+2n<2,又因y=2x在定义域上递增,则m+2n<1,∴点(m,n)必在直线x+2y=1的左下方.故选C.点评:本题考查了基本不等式的应用,结合题意列出含有指数不等式,利用指数函数的单调性求解,还得判断出与选项中直线的位置关系.6.(2014•烟台二模)已知向量=(x﹣1,2),=(4,y),若⊥,则9x+3y的最小值为()A.2B.C.6D.9【答案】C【解析】由于⊥⇔=0,即可得出x,y的关系,再利用基本不等式即可得出9x+3y的最小值.解:∵⊥,∴(x﹣1,2)•(4,y)=0,化为4(x﹣1)+2y=0,即2x+y=2.∴9x+3y≥===6,当且仅当2x=y=1时取等号.故选C.点评:本题考查了⊥⇔=0、基本不等式的性质,属于基础题.7.(2014•天津模拟)已知点P(x,y)在直线x+2y=3上移动,当2x+4y取最小值时,过P点(x,y)引圆C:=1的切线,则此切线长等于()A.1B.C.D.2【答案】D【解析】由条件利用基本不等式可得当2x+4y取最小值时,P点的坐标为(,),再根据CP==,大于圆的半径1,由此求得圆的切线长为的值.解:∵x+2y=3,2x+4y =2x+22y≥2=4,当且仅当x=2y=时,等号成立,∴当2x+4y取最小值4时,P点的坐标为(,),点P到圆心C的距离为CP==,大于圆的半径1,故切线长为==2,故选:D.点评:本题主要考查基本不等式的应用,点到直线的距离公式,直线和圆相切的性质,属于基础题.8.(2014•鹤城区二模)已知a,b为正实数,函数y=2ae x+b的图象经过点(O,1),则的最小值为()A.3+2B.3﹣2C.4D.2【答案】A【解析】将点(O,1)的坐标代入y=2ae x+b,得到a,b的关系式,再应用基本不等式即可.解:∵函数y=2ae x+b的图象经过点(O,1),∴1=2a•e0+b,即2a+b=1(a>0,b>0).∴=()•1=()•(2a+b)=(2+1++)≥3+2(当且仅当b=a=﹣1时取到“=”).故选A.点评:本题考查基本不等式,将点(O,1)的坐标代入y=2ae x+b,得到a,b的关系式是关键,属于基础题.9.(2014•萧山区模拟)已知a>0,b>0,且a+2b=ab,则ab的最小值是()A.4B.8C.16D.32【答案】B【解析】由条件可得ab≥2,化简可得≥2,从而有ab≥8,由此求得ab的最小值.解:∵已知a>0,b>0,且a+2b=ab,∴ab≥2.化简可得≥2,∴ab≥8,当且仅当a=2b时等号成立,故ab的最小值是8,故选B.点评:本题主要考查基本不等式的应用,注意检验等号成立的条件,式子的变形是解题的关键,属于基础题.10.(2014•南昌模拟)若正数x,y满足x2+3xy﹣1=0,则x+y的最小值是()A.B.C.D.【答案】B【解析】先根据题中等式将y用x表示出来,然后将x+y中的y消去,然后利用基本不等式可求出最值,注意等号成立的条件.解:∵正数x,y满足x2+3xy﹣1=0,∴3xy=1﹣x2,则y=,∴x+y=x+=+≥2=当且仅当=即x=时取等号,故x+y的最小值是.故选:B.点评:本题主要考查了消元法的应用,以及基本不等式的应用,同时考查了分析问题的能力和运算求解的能力,属于中档题.。
高一数学不等式的性质试题答案及解析1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.如果,则下列各式正确的是()A.B.C.D.【答案】D【解析】由于,不等式两边同时乘以,得,其他三项不一定正确,符号不确定,,.【考点】不等式的大小判定.3.,,则与的大小关系为.【答案】【解析】作差法比较大小,,,,所以p-q,【考点】利用不等式比较大小4.下列结论正确的是()A.若ac>bc,则a>b B.若a2>b2,则a>bC.若a>b,c<0,则 a+c<b+c D.若<,则a<b【答案】D【解析】的正负不定,故A错;的正负不定,故B错;不等式两边加上同一个数,不等号方向不变,故C错。
【考点】不等式基本性质的应用。
5.已知不等式的解集是.(1)若,求的取值范围;(2)若,求不等式的解集.【答案】(1)(2)【解析】(1)由,说明元素2满足不等式,代入即可求出的取值范围;(2)由,是方程的两个根,由韦达定理即可求出,代入原不等式解一元二次不等式即可;(1)∵,∴,∴(2)∵,∴是方程的两个根,∴由韦达定理得解得∴不等式即为:其解集为.【考点】一元二次不等式的解法6.设,则不等式的解集为()A.B.C.D.【答案】A【解析】当时,(舍去);当时,;综上所述,不等式的解集为.【考点】不等式的解法、等价转换思想.7.如果, 设, 那么()A.B.C.D.M与N的大小关系随t的变化而变化【答案】A【解析】,已知,所以,.【考点】比较大小.8.如果且,那么下列不等式中不一定成立的是( )A.B.C.D.【答案】D【解析】A是不等式两边同乘-1,正确;B,,C,由,得所以正确,D,不等式两边同乘,但不知道的符号,不一定成立.【考点】不等式的基本性质.9.若为实数,则下列命题正确的是()A.若,则B.若,则C.若,则D.若,则【答案】B【解析】试题分析. A 若,则不成立;C 对两边都除以,可得,C不成立;D令则有所以D不成立,故选B.【考点】不等式的基本性质.10.函数,的值域为_________.【答案】【解析】,又,则,,可知.所以.【考点】本题主要考查分离变量法求函数的值域,不等式的性质.11.若,则下列不等式一定不成立的是()A.B.C.D.【答案】C【解析】根据题意,由于,则根据倒数性质可知成立,对于对数函数性质,底数大于1是递增函数,故成立,对于D, 根据作差法可知成立,而对于C,应该是大于等于号,即左边大于等于右边,故选C。
基本不等式测试题A 组一.填空题(本大题共8小题;每小题5分;共40分)1.若xy>0;则x y y x+的最小值是 。
1.2.提示:x y y x +≥x y y x=2. 2. 已知a ;b 都是正数;则 错误!、错误!的大小关系是 。
2.错误!≤错误!。
提示:平方作差;利用a 2+b 2≥2ab 可得。
3.若x +y =4;x >0;y >0;则lg x +lg y 的最大值是 。
3.lg4.提示:lg x +lg y =lg x y ≤lg(2x y +)2=lg4. 121(0,0),m n m n+=>>则mn 的最小值是4. 121mn m n =+≥≥ 5.已知:226x y +=; 则 2x y +的最大值是___: 6 = 22x y +≥22x y ; ∴22x y ≤9 。
故2x y +的最大值是9;此时x=y=2log 3。
6 某公司租地建仓库;每月土地占用费y 1与车库到车站的距离成反比;而每月库存货物的运费y 2与到车站的距离成正比;如果在距车站10公里处建仓库;这两项费用y 1和y 2分别为2万元和8万元;那么要使这两项费用之和最小;仓库应建在离车站__________公里处由已知y 1=x20;y 2=0 8x (x 为仓库与车站距离); 费用之和y =y 1+y 2=0 8x + x 20≥2x x 208.0⋅=8;当且仅当0 8x =x 20即x =5时“=”成立。
7.已知正数x y 、满足3xy x y =++;则xy 的范围是 。
7.[9,)+∞。
提示:由0,0x y >>;则3xy x y =++3xy x y ⇒-=+≥;即230-≥解得13≤-≥(舍);当且仅当3x y xy x y ==++且即3x y ==时取“=”号;故xy 的取值范围是[9,)+∞。
8. 给出下列命题:①a ;b 都为正数时;不等式a+b ≥才成立。
高一数学不等式试题1.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略2.设,且,则()A.B.C.D.【答案】D【解析】由题意,,又,则,所以,则,,由且,可得,故3.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.已知实数x、y满足(0<a<1),则下列关系式恒成立的是()A.B.>C.D.【答案】D【解析】,是减函数,所以当时,,所以当时,只有成立,而当时,不能确定与的大小,以及与的大小.【考点】不等式的性质6.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题7.若实数,满足,则的取值范围是(用区间表示)【答案】【解析】且,设,,则,所以且,所以且.所以的取值范围是.【考点】1.基本不等式;2.三角换元求取值范围.8.设的最小值为_________.【答案】【解析】正数满足,,当且仅当时取等号,所以所求的最小值为。
【考点】基本不等式9.下列选项中,使不等式成立的x的取值范围是A.(1,+∞)B.(0,1)C.(-1,0)D.(-∞,-1)【答案】D【解析】当时,不等式为显然无解,当时,不等式为,即,所以不等式解集为(-∞,-1),故选择D【考点】解不等式10.解关于的不等式:【答案】详见解析【解析】解含参的一元二次不等式,第一步先讨论二次项前的系数,此题为,所以先不讨论,第一步,先将式子分解因式,整理为,第二步,,,讨论两根的大小关系,从而写出解集的形式.试题解析:原不等式可化为:,(1)当-1<a<0时,,所以x>-或x<1。
高一数学具体的不等式试题1.已知关于的不等式的解集是,则 .【答案】2【解析】化分式不等式为整式不等式,根据解集是得,,方程的两实根分别为,,所以=,a=2【考点】解分式不等式,二次方程与二次不等式之间的关系.2.不等式2x-x-1>0的解集是A.(,1)B.(1,+∞)C.(-∞,1)∪(2,+∞)D.(-∞,)∪(1,+∞)【答案】D【解析】不等式2x-x-1>0,即,所以,其解集为(-∞,)∪(1,+∞),选D。
【考点】一元二次不等式的解法点评:简单题,一元二次不等式的解法应首先考虑“因式分解法”。
3.不等式的解集是 .【答案】【解析】根据题意,由于不等式,故可知不等式的解集为【考点】一元二次不等式点评:主要是考查了一元二次不等式的求解,属于基础题。
4.若,且,则下列不等式一定成立的是()A.B.C.D.【答案】D【解析】根据题意,由于,且,那么根据不等式两边同时加上一个数不等式方向不变,不等式的可乘性可知,只有c>0选项B成立,对于C,只有c不为零时成立,对于A,由于c=0不成立,故选D.【考点】不等式的性质点评:主要是考查了不等式性质的运用,属于基础题。
5.已知是任意实数,且,则下列结论正确的是()A.B.C.D.【答案】D【解析】根据题意,由于是任意实数,且,当a=0,b=-1,选项A不成立,对于B,由于a=3,b=2,不成立,对于C,由于,只有a-b>1不等式成立,故排除发选D.【考点】不等式的性质点评:主要是考查了对数函数性质以及不等式性质的运用,属于基础题。
6.不等式的解集是;【答案】【解析】根据题意,由于不等式,等价于当x> ,x-1<1, x<2,即当x,得到1-2x-x<1,x>0,故可知0<x,综上可知满足不等式的解集为【考点】绝对值不等式点评:主要是考查了绝对值不等式的求解,属于基础题。
7.当时,不等式恒成立,则m的取值范围是__ __.【答案】【解析】,设,当时,当时【考点】不等式恒成立点评:不等式恒成立求参数范围的题目常采用分离参数法,转化为求函数最值8.(1)解关于x的不等式;(2)若关于x的不等式的解集为,解关于x的不等式【答案】(1)(2)【解析】解:(1)因为方程的两个根为1和3所以不等式的解集为(2)因为不等式的解集为所以的两个根为1和2将跟代入方程得,解得所以不等式化为因为方程的两个为和1所以不等式的解集为【考点】一元二次不等式的解法点评:若方程有两根(),则一元二次不等式的解集是(),当不等式由等号时,解集也有等号。
高一数学基本不等式试题答案及解析1.若实数、分别满足,,则的值为 .【答案】.【解析】由题意实数、分别满足,知,、可以看成是一元二次方程的两个实数根,然后再根据韦达定理可得:,. 由这两个式子可知实数、均为负数,所以化简原式即可得到:.【考点】一元二次方程根与系数之间的关系.2.已知都是正实数,函数的图象过(0,1)点,则的最小值是()A.B.C.D.【答案】【解析】由于函数的图象过(0,1)点,,代入得.【考点】基本不等式的应用.3.正数、满足,那么的最小值等于___________.【答案】.【解析】由基本不等式,可知,又∵,∴,又∵,,∴可解得,当且仅当时,“=”成立,∴的最小值为.【考点】基本不等式求最值.4.若,则函数有()A.最小值1B.最大值1C.最大值D.最小值【答案】C【解析】因为,所以=,即最大值.故答案为:C.【考点】基本不等式.5.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】【解析】根据选项可知,所以此时不等式左边两项都是正数.根据基本不等式有,因为恒成立,所以,消掉,解得.所以.【考点】不等式恒成立;基本不等式.6.若正数,满足,则的最小值是()A.B.C.5D.6【答案】C【解析】由已知得,所以时等号成立)。
【考点】基本不等式在求最值中的应用,注意一正二定三相等7.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.8.若正数x,y满足,则的最小值是_____.【答案】5【解析】把化简得:,∴.【考点】基本不等式.9.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】A【解析】∵,两边同除,得,要使不等式恒成立,则,,∴,∴k的最小值是1.【考点】基本不等式.10.若两个正实数x,y满足+=1,并且2x+y>m恒成立,则实数m的取值范围是.【答案】【解析】因为且,所以,当且仅当即时取。
高一数学不等式的性质试题1.若则下列不等式成立的是()A.B.C.D.【答案】D【解析】由题意可得又有基本不等式可得,且,对不四个选项可得.【考点】基本不等式;不等关系与不等式.2.已知且,则下列不等式恒成立的是()A.B.C.D.【答案】C【解析】由题知,值不确定,,由于所以对,其它三项不一定对.【考点】判断不等式的大小关系.3.若,则下列不等式成立的是()A.B.C.D.【答案】D.【解析】由条件可知:A:∵,∴A错误;B:,∴B错误;C:,∴C错误;D:,∴D正确.【考点】作差法证明不等式.4.下列不等式正确的是A.若,则B.若,则C.若,则D.若,则【答案】B【解析】A.若c<0,则不等号改变,若c=0,两式相等,故A错误;B. 若,则,故,故B正确;C.若b=0,则表达是不成立故C错误;D.c=0时错误.【考点】不等式的性质.5.已知a,b为非零实数,且a<b,则下列命题一定成立的是()A.B.C.D.【解析】A.中,例如当时不成立;B.中,例如时不成立;D.中,例如时不成立;C.中,不等式两边同乘以非零正实数,不等号方向不变,得到,所以C正确【考点】不等式的简单性质6.如果a<b<0,那么( ).A.a-b>0B.ac<bc C.>D.a2<b2【答案】C【解析】根据题意,由于a<b<0,则a-b<0 故错误,对于c=0时则不等式ac<bc不成立,对于>符合倒数性质可知,成立,对于a2<b2,a=-3,b=-2不成立,故答案为C.【考点】不等式的性质点评:主要是考查了不等式的性质的运用,属于基础题。
7.设x > 0, y > 0,, , a 与b的大小关系()A.a >b B.a <b C.a b D.a b【答案】B【解析】由x>0,y>0,结合不等式的性质可得,解:∵x>0,y>0,∴x+y+1>1+x>0,1+x+y>1+y>0,则可知,,那么可知,故可知得到a <b,选B.【考点】不等式的性质点评:本题主要考查了不等式的性质的简单应用,解题的关键是熟练应用基本性质8.已知实数满足,,则的取值范围是.【答案】【解析】将代入,并化简,构造关于的一元二次方程:,该方程有解,则,解得【考点】不等式的运用点评:主要是考查了构造方程的思想,借助于判别式得到范围,属于中档题。
高中数学基本不等式训练题(含答案)1.若xy>0,则对 xy+yx说法正确的是()A.有最大值-2 B.有最小值2C.无最大值和最小值 D.无法确定答案:B2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是()A.400 B.100C.40 D.20答案:A3.已知x2,则当x=____时,x+4x有最小值____.答案:2 44.已知f(x)=12x+4x.(1)当x>0时,求f(x)的最小值;(2)当x<0 时,求f(x)的最大值.解:(1)∵x>0,12x,4x>0.12x+4x212x4x=83.当且仅当12x=4x,即x=3时取最小值83,当x>0时,f(x)的最小值为83.(2)∵x<0,-x>0.则-f(x)=12-x+(-4x)212-x-4x=83,当且仅当12-x=-4x时,即x=-3时取等号.当x<0时,f(x)的最大值为-83.一、选择题1.下列各式,能用基本不等式直接求得最值的是()A.x+12x B.x2-1+1x2-1C.2x+2-x D.x(1-x)答案:C2.函数y=3x2+6x2+1的最小值是()A.32-3 B.-3C.62 D.62-3解析:选D.y=3(x2+2x2+1)=3(x2+1+2x2+1-1)3(22-1)=62-3.3.已知m、nR,mn=100,则m2+n2的最小值是() A.200 B.100C.50 D.20解析:选A.m2+n22mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程:①∵a,b(0,+),ba+ab2baab=2;②∵x,y(0,+),lgx+lgy2lgxlgy;③∵aR,a0,4a+a 24aa=4;④∵x,yR,,xy<0,xy+yx=-[(-xy)+(-yx)]-2-xy -yx=-2.其中正确的推导过程为()A.①② B.②③C.③④ D.①④解析:选D.从基本不等式成立的条件考虑.①∵a,b(0,+),ba,ab(0,+),符合基本不等式的条件,故①的推导过程正确;②虽然x,y(0,+),但当x(0,1)时,lgx是负数,y(0,1)时,lgy是负数,②的推导过程是错误的;③∵aR,不符合基本不等式的条件,4a+a24aa=4是错误的;④由xy<0得xy,yx均为负数,但在推导过程中将全体xy +yx提出负号后,(-xy)均变为正数,符合基本不等式的条件,故④正确.5.已知a>0,b>0,则1a+1b+2ab的最小值是()A.2 B.22C.4 D.5解析:选C.∵1a+1b+2ab2ab+2ab222=4.当且仅当a=bab =1时,等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()A.最大值64 B.最大值164C.最小值64 D.最小值164解析:选C.∵x、y均为正数,xy=8x+2y28x2y=8xy,当且仅当8x=2y时等号成立.xy64.二、填空题7.函数y=x+1x+1(x0)的最小值为________.答案:18.若x>0,y>0,且x+4y=1,则xy有最________值,其值为________.解析:1=x+4y4y=4xy,xy116.答案:大1169.(2019年高考山东卷)已知x,yR+,且满足x3+y4=1,则xy的最大值为________.解析:∵x>0,y>0且1=x3+y42xy12,xy3.当且仅当x3=y4时取等号.答案:3三、解答题10.(1)设x>-1,求函数y=x+4x+1+6的最小值;(2)求函数y=x2+8x-1(x>1)的最值.解:(1)∵x>-1,x+1>0.y=x+4x+1+6=x+1+4x+1+52 x+14x+1+5=9,当且仅当x+1=4x+1,即x=1时,取等号.x=1时,函数的最小值是9.(2)y=x2+8x-1=x2-1+9x-1=(x+1)+9x-1=(x-1)+9x-1+2.∵x>1,x-1>0.(x-1)+9x-1+22x-19x-1+2=8.当且仅当x-1=9x-1,即x=4时等号成立,y有最小值8.11.已知a,b,c(0,+),且a+b+c=1,求证:(1a-1)(1b -1)(1c-1)8.证明:∵a,b,c(0,+),a+b+c=1,1a-1=1-aa=b+ca=ba+ca2bca,同理1b-12acb,1c-12abc,以上三个不等式两边分别相乘得(1a-1)(1b-1)(1c-1)8.当且仅当a=b=c时取等号.12.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的外圈周壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁忽略不计).问:污水处理池的长设计为多少米时可使总价最低.解:设污水处理池的长为x米,则宽为200x米.总造价f(x)=400(2x+2200x)+100200x+60200=800(x+225x)+120191600x225x+12019=36000(元)当且仅当x=225x(x>0),即x=15时等号成立.。
2.2 基本不等式(同步检测)一、选择题1.(多选)已知实数a ,b ,下列不等式一定正确的有( )A.a +b 2≥abB.a +1a ≥2C.|ab +ba|≥2 D.2(a 2+b 2)≥(a +b)22.(多选)下列条件可使b a +ab ≥2成立的是( )A .ab>0 B.ab<0C .a>0,b>0D.a<0,b<03.若实数a ,b 满足1a +2b =ab ,则ab 的最小值为( )A.2B.2C.22D.44.将一根铁丝切割成三段做一个面积为 2 m 2、形状为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且浪费最少)的是( )A.6.5 m B.6.8 m C.7 mD.7.2 m5.“ab <a 2+b 22”是“a >b >0”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知x >0,y >0,且x +y +xy =3,则x +y 的最小值为( )A.2B.3C.22D.237.如果正数a ,b ,c ,d 满足a +b =cd =4,那么( )A .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值唯一B .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值唯一C .ab ≤c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一D .ab ≥c +d ,且等号成立时,a ,b ,c ,d 的取值不唯一8.已知a>1,则a +12,a ,2a a +1三个数的大小顺序是( )A.a+12<a<2aa+1B.a<a+12<2aa+1C.2aa+1<a<a+12D.a<2aa+1≤a+129.若-4<x<1,则y=x2-2x+22x-2( )A.有最小值1B.有最大值1C.有最小值-1D.有最大值-1二、填空题10.已知x>3,则x+4x-3的最小值为________11.设x>0,则函数y=x+22x+1-32的最小值为________12.若把总长为20 m的篱笆围成一个矩形场地,则矩形场地的最大面积是________m2.13.二十大报告中提到:“我国制造业规模稳居世界第一”.某公司为提高产能,购买一批新型设备,据市场分析,每台机器生产的产品可获得的总利润y(单位:万元)与机器运转时间x(单位:年)的关系为y=-x2+18x-25(x∈N*),则当每台机器运转______年时,年平均利润最大,最大值是______万元.三、解答题14.设a,b,c都是正数,求证:b+ca+c+ab+a+bc≥6.15.已知a,b,c都是正数,且abc=1,证明:1a+1b≥2c.16.已知正数x,y满足4x+y-xy+8=0.求:(1)xy的最小值;(2)x+y的最小值.参考答案及解析:一、选择题1.CD 解析:当a<0,b<0时,a+b2≥ab不成立;当a<0,时,a+1a≥2不成立;因为|a b+b a|=|a b|+|b a|≥2,故C正确;因为2(a2+b2)-(a+b)2=a2+b2-2ab=(a-b)2≥0,所以2(a2+b2)≥(a+b)2,故D正确.故选CD.2.ACD 解析:当且仅当ba=ab>0,即a,b同号时等号成立.故选ACD.3.C 解析:由ab=1a+2b≥22ab,得ab≥22,当且仅当1a=2b时取“=”.4.C 解析:设两直角边分别为a,b,直角三角形的框架的周长为l,则12ab=2,所以ab=4,l=a+b+a2+b2≥2ab+2ab=4+22≈6.828(m).因为要求够用且浪费最少,所以选7 m最合理.5.B 解析:∵a2+b2≥2ab,当且仅当a=b时,等号成立,∴ab<a2+b22⇒a≠b,a,b∈R,∴充分性不成立.∵a>b>0⇒a2+b2>2ab,∴必要性成立.故选B.6.A 解析:∵x+y+xy=3,∴y+1=4x+1,∴x+y=x+1+4x+1-2≥2(x+1)4x+1-2=2,当且仅当x+1=4x+1,即x=y=1时取等号.故选A.7.A 解析:由a+b≥2ab可知ab≤4,当且仅当a=b=2时等号成立,又cd≤(c+d2)2,故c+d≥4,当且仅当c=d=2时等号成立,∴c+d≥ab.故选A.8.C 解析:当a,b是正数时,2aba+b≤ab≤a+b2≤a2+b22,令b=1,得2aa+1≤a≤a+12.又a>1,即a≠b,故上式不能取等号,故选C.9.D 解析:y=x2-2x+22x-2=12[(x-1)+1x-1],又∵-4<x<1,∴x-1<0.∴-(x-1)>0.故y=-12[-(x-1)+1-(x-1)]≤-1.当且仅当x-1=1x-1,即x=0时等号成立.故选D.二、填空题10.答案:7解析:∵x>3,∴x-3>0,4x-3>0.∴x+4x-3=x-3+4x-3+3≥2(x-3)·4x-3+3=7,当且仅当x-3=4x-3,即x=5时,x+4x-3取得最小值7.11.答案:0 解析:y=x+22x+1-32=(x+12)+1x+12-2≥2(x+12)·1x+12-2=0,当且仅当x+1 2=1x+12,即x=12时等号成立.所以函数的最小值为0.12.答案:25 解析:设矩形的一边为x m,矩形场地的面积为y m2,则另一边为12×(20-2x)=(10-x)m,则y=x(10-x)≤[x+(10-x)2]2=25,当且仅当x=10-x,即x=5时,y取最大值25.13.答案:5,8 解析:每台机器运转x年的年平均利润为yx=18-(x+25x),且x>0,故y x≤18-225=8,当且仅当x=5时等号成立,此时年平均利润最大,最大值为8万元.三、解答题14.证明:因为a>0,b>0,c>0,所以ba+ab≥2,ca+ac≥2,cb+bc≥2,所以(b a+a b)+(c a+a c)+(c b+b c)≥6,当且仅当b a=a b,c a=a c,c b=b c,即a=b=c时,等号成立,所以b+ca+c+ab+a+bc≥6.15.证明:因为a,b,c都是正数,且abc=1,所以c=1 ab.所以1a+1b≥21ab=2c,当且仅当1a=1b,即a=b=1c时取等号.故1a+1b≥2c成立.16.解:(1)由题意知x,y为正数,xy-8=4x+y≥24xy=4xy,当且仅当4x=y,即x=1+3,y=4+43时等号成立,则(xy)2-4xy-8≥0,解得xy≥2+23或xy≤2-23(舍去),所以xy≥(2+23)2=16+83,即xy的最小值为16+83.(2)由题意知x,y为正数,4x-xy=-y-8,故x=y+8 y-4,因为x>0,y>0,所以y>4,则x+y=y+8y-4+y=y+12y-4+1=(y-4)+12y-4+5.因为y>4,y-4>0,12y-4>0,(y-4)+12y-4+5≥43+5,即x+y≥43+5,当且仅当y-4=12y-4,即y=4+23时等号成立.所以x+y的最小值为5+43.。
高一数学不等式试题1.下列命题不正确的是A.B.C.D.【答案】D【解析】略2.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值3.已知,.(1)当时,①解关于的不等式;②若关于的不等式在上有解,求的取值范围;(2)若,证明不等式.【答案】(1)①时,时,,时,②(2)详见解析【解析】(1)代入转化为关于的一元二次不等式,结合二次不等式的解法求解时需要对参数分情况讨论,从而确定方程的两根大小关系;不等式在上有解中将不等式变形分离出,转化为的形式,转化为函数求值域;(2)首先将代入化简转化为用表示的函数式,利用求得的范围,进而求得函数的最小值试题解析:(1)①不等式代入整理为,当时,时,,时,;②整理得有解,当时最大值为5,取值范围是(2),所以,即【考点】1.一元二次不等式解法;2.不等式与函数的转化;3.函数求最值4.若是正实数,且则的最小值为.【答案】【解析】将化简得,令,则。
①,因为是正实数,所以,则对于①式当时有最小值.【考点】1.换元法;2.二次函数最值;5.关于x的不等式的解集是,则关于x的不等式的解集是()A.B.C.D.【答案】D【解析】关于x的不等式的解集是,所以,所以不等式可化为,从而确定解集;【考点】1.一元二次不等式的解法;2.一元一次不等式的解集与系数的关系;6.已知变量,满足则的最小值为__________.【答案】【解析】如图,当目标函数过点时,函数取得最小值,,目标函数的最小值是.【考点】线性规划7.若实数x,y满足则z=的取值范围是()A.B.C.D.【答案】D【解析】作出可行域如图.,表示可行域内的点与点连线的斜率.图中,所以,由图分析可知或.所以或.故D正确.【考点】1线性规划;2直线的斜率.8.(8分)关于的不等式,(1)已知不等式的解集为,求a的值;(2)解关于的不等式.【答案】(1);(2)时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【解析】(1)由不等式的解集可知,2是方程的两根,由韦达定理可求得的值.(2)讨论二次项系数是否为0,由时的根为或,讨论两根的大小,并注意抛物线开口方向.结合一元二次函数图像解不等式.试题解析:解:因为的解集为,所以方程的两根为或,所以,解得.(2),当时原不等式变形为,解得;当时,的根为或.时,或,时,,时,,时,综上可得时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为;时原不等式解集为.【考点】一元二次不等式.9.(12分)已知函数,(1)当时,解不等式;(2)比较的大小;(3)解关于x的不等式.【答案】(1);(2)详见解析;(3)详见解析【解析】(1)当时,将不等式分解因式,得到解集;(2)比较大小,可以做差,然后通分,分解因式,然后讨论的范围,比较两数的大小;(3)第一步,先分解因式,第二步,根据上一问的结果得到与的大小关系,得到解集.试题解析:解:(1)当时,有不等式,∴,∴不等式的解集为:;(2)∵且∴当时,有当时,有当时,;(3)∵不等式当时,有,∴不等式的解集为;当时,有,∴不等式的解集为;当时,不等式的解集为.【考点】1.解二次不等式;2.比较大小.10.已知不等式的解集为,那么=()A.3B.C.-1D.1【答案】B【解析】因为不等式的解集为,所以,,故选B.【考点】分式不等式的解法11.如果,那么下面不等式一定成立的是()A.B.C.D.【答案】D【解析】取a=-2,b=-1,c=1,代入选项进行逐一验证得选项D正确,故选D.【考点】不等式的基本性质12.已知,则_______【答案】23【解析】,两边平方得【考点】代数式求值13.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;14.(本小题满分16分)设函数f(x)=x2-2tx+2,其中t∈R.(1)若t=1,求函数f(x)在区间[0,4]上的取值范围;(2)若t=1,且对任意的x∈[a,a+2],都有f(x)≤5,求实数a的取值范围.(3)若对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8,求t的取值范围.【答案】(1) [1,10] (2) [-1,1] (3) [4-2 ,2 ]【解析】(1)若t=1,则f(x)=x2-2tx+2,根据二次函数在[0,4]上的单调性可求函数的值域(2)由题意可得函数在区间[a,a+2]上,[f(x)]max≤5,分别讨论对称轴x=t与区间[a,a+2]的位置关系,进而判断函数在该区间上的单调性,可求最大值,进而可求a的范围(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8等价于M-m≤8,结合二次函数的性质可求试题解析:因为f(x)=x2-2tx+2=(x-t)2+2-t2,所以f(x)在区间(-∞,t]上单调减,在区间[t,∞)上单调增,且对任意的x∈R,都有f(t+x)=f(t-x),(1)若t=1,则f(x)=(x-1)2+1.①当x∈[0,1]时.f(x)单调减,从而最大值f(0)=2,最小值f(1)=1.所以f(x)的取值范围为[1,2];②当x∈[1,4]时.f(x)单调增,从而最大值f(4)=10,最小值f(1)=1.所以f(x)的取值范围为[1,10];所以f(x)在区间[0,4]上的取值范围为[1,10].(2)“对任意的x∈[a,a+2],都有f(x)≤5”等价于“在区间[a,a+2]上,[f(x)]max≤5”.若t=1,则f(x)=(x-1)2+1,所以f(x)在区间(-∞,1]上单调减,在区间[1,∞)上单调增.当1≤a+1,即a≥0时,由[f(x)]max=f(a+2)=(a+1)2+1≤5,得-3≤a≤1,从而0≤a≤1.当1>a+1,即a<0时,由[f(x)]max=f(a)=(a-1)2+1≤5,得-1≤a≤3,从而-1≤a<0.综上,a的取值范围为区间[-1,1].(3)设函数f(x)在区间[0,4]上的最大值为M,最小值为m,所以“对任意的x1,x2∈[0,4],都有|f(x1)-f(x2)|≤8”等价于“M-m≤8”.①当t≤0时,M=f(4)=18-8t,m=f(0)=2.由M-m=18-8t-2=16-8t≤8,得t≥1.从而t∈Æ.②当0<t≤2时,M=f(4)=18-8t,m=f(t)=2-t2.由M-m=18-8t-(2-t2)=t2-8t+16=(t-4)2≤8,得4-2≤t≤4+2.从而4-2≤t≤2.③当2<t≤4时,M=f(0)=2,m=f(t)=2-t2.由M-m=2-(2-t2)=t2≤8,得-2≤t≤2.从而2<t≤2.④当t>4时,M=f(0)=2,m=f(4)=18-8t.由M-m=2-(18-8t)=8t-16≤8,得t≤3.从而t∈Æ.综上,a的取值范围为区间[4-2 ,2 ].【考点】1.二次函数在闭区间上的最值;2.二次函数的性质15.已知,关于的一元二次不等式的解集中有且仅有个整数,则实数的取值范围为.【答案】【解析】二次函数的对称轴为,所以个整数为:,,.所以,解得.【考点】一元二次不等式整数解16.若关于的不等式在区间上恒成立,则实数的取值范围是.【答案】【解析】关于的不等式在区间上恒成立等价于在时,函数的图像恒在函数的图像的下方.从上图易知且,即,解得.【考点】恒成立问题求参数范围.【方法点睛】恒成立问题求参数范围,常常把参数移到一边转化为求最值,但是本题将参数移到一边比较困难,就是移到一边了,另一边的最值也难于计算,所以考虑数形结合.如上图,从图中能直接看出满足题意的条件且,从而求出参数范围.本题使我们感受到数形结合的魅力所在.17.(2015秋•宝山区期末)解不等式组:.【答案】原不等式组的解集为(1,2).【解析】由条件利用分式不等式、绝对值不等式的解法,等价转化,求得x的范围.解:不等式组,即,即,求得 1<x<2,即原不等式组的解集为(1,2).【考点】其他不等式的解法.,b=a sinα,c=a cosα,则()18.(2015秋•黄山期末)已知α∈(0,),a=logaA.c>a>b B.b>a>c C.a>c>b D.b>c>a【答案】D【解析】根据指数函数对数函数三角图象和性质即可判断解:∵α∈(0,),∴0<sinα<cosα<1,∴a=log<0,a∵y=a x为减函数,∴a sinα>a cosα>0,∴b>c>a,故选:D【考点】指数函数的图象与性质.19.设实数,满足则的取值范围是.【答案】.【解析】作出可行域,令,则由的几何意义可知取点时,取得最大值,取点时,取得最小值,则,又,由及单调递增,可知单调递增,故,,所以的取值范围是.【考点】1、线性规划;2、函数单调性求最值.【思路点睛】本题主要考查目标函数求取最值(范围)问题,属困难题.由题给不等式组作出相应可行域,取目标函数中,由的几何意义:可行域中的点与原点的连线斜率,可知,取得最大值和最小值的最优解分别为点和点,从而,此时目标函数为,结合函数单调性可求.20.若关于x的不等式(2x-1)2<ax2的解集中整数恰好有3个,则实数a的取值范围是__________.【答案】【解析】关于x的不等式(2x-1)2<ax2等价于,其中且有,故有,不等式的解集为,所以解集中一定含有1,2,3,可得,所以,解得.【考点】含参数的一元二次方程的解法.21.下列四个不等式中,解集为的是()A.B.C.D.【答案】B【解析】对于A.,得,判别式,所以此不等式的解集不为;对于B.,判别式,所以此不等式的解集为;对于C.,判别式,所以此不等式的解集为,不为;对于D.,得:判别式,所以此不等式的解集不为;故选B.【考点】一元二次不等式.22.对任意实数,不等式恒成立,则实数的取值范围是()A.-24<k<0B.-24<k≤0C.0<k≤24D.k≥24【答案】B【解析】当时不等式即为,不等式恒成立,当时,若不等式恒成立,则,即,即,综合知,故选择B.【考点】二次函数与二次不等式.23.已知c<d,a>b>0,下列不等式中必成立的一个是()A.a+c>b+d B.a﹣c>b﹣d C.ad<bc D.>【答案】B【解析】由题意可得﹣c>﹣d,且 a>b,相加可得 a﹣c>b﹣d,从而得出结论.解:∵c<d,a>b>0,∴﹣c>﹣d,且 a>b,相加可得a﹣c>b﹣d,故选:B24.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.25.如果a<b<0,那么下面一定成立的是( )A.ac<bc B.a﹣b>0C.a2>b2D.【答案】C【解析】利用不等式的性质即可得出.∵a<b<0,∴-a>-b>0,∴a2>b2.故选C.【考点】不等式比较大小.26.已知,且,若恒成立,则实数的取值范围为__________.【答案】【解析】,∴∵恒成立,∴,求得-4<m<2【考点】函数恒成立问题27.以下列函数中,最小值为的是()A.B.C.D.【答案】A【解析】由不等式性质可知,当且仅当即时等号成立,取得最小值2【考点】不等式性质28.已知,且,则的值是()A.20B.C.D.400【答案】B【解析】由已知可得【考点】指数式对数式化简及化简29.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.30.已知,,,则A.B.C.D.【答案】D【解析】【考点】比较大小31.已知函数满足,且.(Ⅰ)求实数,的值;(Ⅱ)若不等式的解集为,求实数的值.【答案】(Ⅰ),;(Ⅱ)【解析】(Ⅰ)由可得到关于的关系式,由可得到关于的另一关系式,解方程组得到的值;(Ⅱ)将不等式变形,从而得到关于的方程,求解其值试题解析:(Ⅰ)∵满足.∴,即,则=0,即,∵,∴,得,即实数,的值为,;…………6分(Ⅱ)∵,,∴不等式的解集为(0,2),则>0,由得,由,得.…………12分【考点】抽象函数运算及不等式解法32.不等式对任意实数恒成立,则实数的取值范围是()A.B.C.D.【答案】A【解析】因,故,解之得或,故选A.33.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a2>b2.本题选择C选项.34.在平面直角坐标系xOy中,与原点位于直线3x+2y+5=0同一侧的点是()A.(-3,4)B.(-3,-2)C.(-3,-4)D.(0,-3)【答案】A【解析】当时,,对于当时,,故满足,对于当时,,故不满足,对于,故不满足,对于时,,故不满足,故选A.35.若,则下列不等式正确的是()A.B.C.D.【答案】B【解析】因为,所以,因此A错,B对;取,可得,故错误;.取,可得,故错误,故选B.36.不等式的解集是_____________.【答案】【解析】由,得,解得或,故不等式的解集是,故答案为.37.(2015年苏州B14)若,,,则的取值范围为________.【答案】【解析】因为,解得,当时等号成立。
高一数学不等式试题答案及解析1.定义,设实数满足约束条件则的取值范围是()A.[-5,8]B.[-5,6]C.[-3,6]D.[-8,8]【答案】A【解析】分析:由题意可得约束条件所满足的可行域如图所示的正方形ABCD,由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6;当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8,从而可求Z的取值范围解答:解:由题意可得约束条件所满足的可行域如图所示的正方形ABCD由Z=当x+2y<0时的可行域即为图中的四边形MCDN,Z=2x-y在N(-2,1)处取得最小值-5,在B (2,-2)处取得最大值6当x+2y≥0时的可行域为图中的四边形ABMN,Z=3x+y在C(2,2)处取得最小值8∴-5≤Z≤8故选:A点评:本题主要考查了简单的线性规划,解题的关键是要根据题目中的定义确定目标函数及可行域的条件以及,属于知识的综合应用题.2.设则xy的最大值为 ( )A.2B.4C.D.【答案】A【解析】略3.目标函数,变量满足,则有()A.B.C.无最大值D.既无最大值,也无最小值K^S*5U.C#O【解析】略4.二次函数的部分对应值如下表:x-3-2-101234则不等式的解集是。
【答案】【解析】略5.已知实数x,y满足,则z=4x+y的最大值为()A.10B.8C.2D.0【答案】B【解析】根据条件,可知,因为,所以两不等式相减得到,所以最大值为8【考点】函数最大最小值6.设,且,,则下列结论正确的是()A.B.C.D.【答案】A【解析】根据不等式的性质,知成立,,当就不成立,,当就不成立,同时也不成立.【考点】不等式的性质7.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式8.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划9.设a>0,b>0,若是与的等比中项,则的最小值为()A.4B.8C.1D.【答案】A【解析】,所以,所以:,等号成立的条件是.【考点】1.等差数列的性质;2.基本不等式求最值.10.不等式对一切恒成立,则实数的取值范围为.【答案】【解析】当时,或,代入,只有使不等式恒成立,当时,,即,解得,所以最后的取值范围是【考点】二次不等式恒成立11.已知,,,则的最小值是_________.【答案】【解析】∵,,,∴由基本不等式可得≥2=2当且仅当时,取最小值2.故答案为:2【考点】基本不等式12.若实数x,y,且x+y=5,则的最小值是()A.10B.C.D.【答案】D【解析】,,当且仅当即时取得.故D正确.【考点】基本不等式.13.不等式的解集为()A.或B.或C.或D.{或【答案】A【解析】,由数轴穿根法知,或【考点】•分式不等式的解法分式——不等式化整式不等式 数轴穿根法求不等式的解14.下列函数的最小值为2的是()A.B.C.D.【答案】D【解析】,在其定义域上没有最小值,因为自变量的区间右端点是开的而导致取不到最小值,利用均值不等式取不到最小值,故只能选D.【考点】对勾函数与均值不等式.15.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集16.若不等式对一切恒成立,则实数取值的集合为()A.B.C.D.【答案】D【解析】当时,恒成立,当,解得,所以【考点】含参不等式恒成立问题17.若点的坐标满足约束条件:,则的最大值为A.B.C.D.11【答案】C【解析】如图,先画可行域,先设目标函数,当目标函数过点时,,最后除以得最小值是.【考点】线性规划18.不等式的解集为_______________.【答案】【解析】解:,所以不等式的解集是.【考点】一元二次不等式的解法19.(本题满分10分)已知关于的不等式的解集为.(1)求实数的值;(2)解关于的不等式:(为常数).【答案】(1)(2)当时解集为;当时解集为;当时解集为【解析】(1)本题考察的是一元二次不等式与一元二次方程关系,由题意知是关于的方程的两个根,再由韦达定理可得方程组,解方程组即可得到答案.(2)不等式等价于,按照对应方程的根的大小关系分三种情况进行讨论即可解出分式方程的解集.试题解析:(1)由题知为关于的方程的两根,即∴.(2)不等式等价于,所以:当时解集为;当时解集为;当时解集为.【考点】一元二次不等式的解法20.不等式的解集是()A.B.C.D.【答案】D【解析】不等式可得,所以解集为:,故选择D 【考点】解一元二次不等式21.已知实数满足,则的最大值是 .【答案】13【解析】作出二元一次不等式组所表示的可行域如图所示:根据图像可知当经过直线与直线的交点时,取最大值时,最大值为【考点】二元一次不等式的线性规划问题;22.解关于x的不等式:【答案】当a=0时,;当a﹥0时,;当a﹤0时,【解析】移项,通分,将分式不等式转化为一元二次不等式,分解因式后比较两根的大小即可求解不等式.试题解析:解:所以,当a=0时,当a﹥0时,当a﹤0时,【考点】分式不等式.23.如果实数x,y满足约束条件,那么2x-y的最大值为A.2B.1C.-2D.-3【答案】B【解析】将不等式组中不等式看成方程.两两结合解出交点坐标分别为,代入可得值最大为.故答案选B.也可结合图形分析得出答案.【考点】线性规划24.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】当时,,当时,不等式为,解集为空集,符合题意;当时,若不等式解集为空集,则应满足,解得,综上所述:【考点】一元二次不等式.25.(本小题满分12分)已知函数.(Ⅰ)若,解不等式;(Ⅱ)若,任意,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)当,,由两个数将轴分为三个区间,去绝对值,将函数表示成分段函数形式,分别解不等式即可;(Ⅱ)等价于,分,,三种情况去绝对值,研究恒成立时的实数的范围,再求并集即可.试题解析:(Ⅰ)若,由解得或;所以原不等式的解集为.(Ⅱ)由可得当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要当时,只要恒成立即可,此时只要综上.【考点】1.绝对值的意义;2.分段函数的表示;3.函数与解不等式.【方法点睛】本题主要考查绝对值的意义、分段函数的表示的方法、函数与解不等式的知识,属中档题.在解决含有绝对值不等式有关问题时,通常是利用绝对值的意义去掉绝对值符号变为分段函数,利用分段函数的性质求解,在去绝对值符号量一定要注意自变量的取值范围.26.解关于的不等式:.【答案】见解析【解析】解分式不等式,一般移项、通分、再讨论有无根及根的大小:由得只有一根-1; 比较大小试题解析:解:【考点】解分式不等式【名师】解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.27.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.(Ⅰ)求f(x)的解析式;(Ⅱ)求f(x)在区间上的最小值.【答案】(Ⅰ) f(x) =2x2-10x (Ⅱ)【解析】(Ⅰ)求二次函数解析式常采用待定系数法,设出解析式,由已知条件得到参数值,从而得到解析式;(Ⅱ)求二次函数最值首先判断其单调性,本题中要分情况讨论区间与对称轴的位置关系试题解析:(Ⅰ)∵f(x)是二次函数,且f(x)<0的解集是(0,5)∴可设f(x)=ax(x-5)(a>0)∴f(x)的对称轴为x=且开口向上∴f(x)在区间[-1,4]上的最大值是f(-1)=6a=12.∴a=2∴f(x)=2x(x-5)=2x2-10x.(Ⅱ)由题意,,①当时,在区间上单调递增,∴的最小值为;②当时,∴的最小值为;③当时,在区间上单调递减,∴的最小值为;综上所述:【考点】1.待定系数法求解析式;2.二次函数单调性与最值28.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.29.设0.3,则a,b,c的大小关系是()A.a>c>b B.c>a>b C.a>b>c D.b>a>c【答案】D【解析】由幂函数的性质比较a,b的大小,再由对数函数的性质可知c<0,则答案可求.解:∵0<<0.50=1,c=log50.3<log51=0,而由幂函数y=可知,∴b>a>c.故选:D.【考点】指数函数的图象与性质.30.若0<a<1,且logba<1,则()A.0<b<a B.0<a<b C.0<a<b<1D.0<b<a或b>1【答案】D【解析】利用对数函数的单调性和特殊点,分b>1和0<b<1两种情况,分别求得a、b的关系,从而得出结论.解:当b>1时,∵logb a<1=logbb,∴a<b,即b>1成立.当0<b<1时,∵logb a<1=logbb,∴0<b<a<1,即0<b<a,故选D.【考点】对数函数的单调性与特殊点.31.下列各函数中,最小值为2的是()A.B.,C.D.【答案】A【解析】对于A.,当且仅当即取等号正确;对于B.,,则当且仅当即取等号,等号取不到所以错误;对于C.,当且仅当即取等号,等号取不到所以错误,D.,当不满足题意,所以应选A.【考点】基本不等式的应用.【易错点睛】利用基本不等式求最值必须满足一正,二定,三相等三个条件,并且和为定值时,积有最大值,积为定值时,和有最小值,特别是等号成立的条件是否满足,必须进行验证,否则易错;基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.32.下列不等式中,解集为的是()A.B.C.D.【答案】D【解析】A.,解集为;B.解集为;C.解集为;解集为,选D【考点】不等式的解集33.已知正项等比数列满足,若存在两项使得,则的的最小值为()A.B.C.D.【答案】B【解析】将代入中,可求得(数列为正向数列,舍去负值),则,代入有,所以,当且仅当,显然是整数,所以不能取得最小值,单可取相邻整数的值,即时的值,可求得最小值为,股本题正确选项为B.【考点】等比数列的公比与重要不等式的运用.【思路点睛】因为,所以只要求得公比,便可通过求得的和,将等比数列通项代入,化简解方程便可求得公比,从而进一步求得,对乘以,化简整理后,再利用重要不等式求最值,最后要注意,取最值时,看能否满足取等号的条件,如果不能满足,则可取的相邻两个整数值,从中取最小的代数值即可.34.若,则下列结论中正确的是()A.B.C.D.【答案】C【解析】由题意得,,因为,所以,所以,所以,【考点】不等式的性质.35.已知实数满足.(1)若,求的最小值;(2)解关于的不等式:.【答案】(1);(2).【解析】(1)根据条件将二元代数式的最值问题转化为一元代数式的最值问题,再结合基本不等式,即可求出的最小值;(2)根据条件将不等式转化为关于的分式不等式,进而可得到其解集.试题解析:(1)由及得,因为,所以当且仅当,即时取等号,此时所以的最小值为(2)由(1),且原不等式可化为,即所以,即且所以原不等式的解集为【考点】1、基本不等式;2、分式不等式.36.若x>0,y>0,且+=1,则xy有()A.最大值64B.最小值C.最小值D.最小值64【答案】D【解析】因为,所以(当且仅当,即时取等号),即;故选D.【考点】基本不等式.【方法点睛】本题考查利用基本不等式求最值,属于基础题;在利用基本不等式求最值时,要注意其适用条件(一正,二定,三相等)的验证,陪凑“定和或定积”的解题的关键,也是难点,而验证“相等”是学生易忽视的问题,如“由判定的最小值为2”是错误的,因为是不成立的.37.如果不等式对一切实数均成立,则实数的取值范围是()A.B.C.D.【解析】不等式对一切实数均成立,等价于对一切实数均成立,所以,解得,故选A.【考点】函数的恒成立问题.【方法点晴】本题主要考查了不等式的恒成立问题的求解及一元二次函数的图象与性质的综合应用,对于函数的恒成立问题,一般选用参变量分离法、转化为对一切实数均成立,进行求解,其中正确运用一元二次函数的图形与性质是解答本题的关键,着重考查了分析问题和解答问题的能力,属于中档题.38.若满足约束条件则的最大值为【答案】7【解析】如图,画出可行域,令,画出初始目标函数,,当初始目标函数向上平移时,函数取值越来越大,当多点时,函数取得最大值,最大值为,故填:7.【考点】线性规划39.已知a>0,则的最小值是【答案】【解析】,当且仅当时等号成立取得最小值【考点】不等式性质40.二次不等式的解集为或,则关于的不等式的解集为_________.【答案】【解析】由题意可知所以所以不等式为,又,所以,解得.所以答案应填:.【考点】一元二次不等式的解法.【方法点睛】根据二次不等式的解集得出,求出,采用消元的思想,将和消去,再将不等式转化为具体的一元二次不等式来求解即可.本题考查了一元二次不等式与一元二次方程之间的应用问题,解题时应利用一元二次方程根与系数的关系进行求解即可.属于基础题.41.解关于的不等式:.【答案】当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【解析】不等式中含有参数,对分和两种情况讨论,当时,原不等式为,解得即可,当时,原不等式化为一元二次不等式,再对分和两种情况分别求解.试题解析:原不等式整理得.当时,原不等式为,∴;当时,原不等式为,∴当时,原不等式可化为,当时,原不等式可化为,当时,原不等式为,原不等式的集为或,若,则,原不等式的集为或,当时,原不等式的集为.综上,当时,原不等式的集为,当时,原不等式的集为,当时,原不等式的集为或,当时,原不等式的集为.【考点】不等式的解法.42.不等式的解集是空集,则实数的范围为()A.B.C.D.【答案】B【解析】由题意得,不等式的解集是空集,当,解得或,(1)当时,不等式可化为,所以解集不是空集,不符合题意(舍去);(2)当时,不等式可化为不成立,所以解集为空集;当,要使的不等式的解集为空集,则,解得,综上所述,实数的范围为,故选B.【考点】一元二次不等式问题.43.设,则的大小关系是()A.B.C.D.【答案】D【解析】【考点】比较大小44.三个数的大小关系是().A.B.C.D.【答案】C【解析】,,,所以,故选C.【考点】指数,对数45.已知,则的大小关系为()A.B.C.D.【答案】C【解析】由指数函数是单调递减函数,所以,又,所以,故选C.【考点】指数函数与对数函数图象与性质.46.设,则()A.B.C.D.【答案】C【解析】,函数在上单调递增,故,又,而.综上知【考点】指数函数,对数函数的性质47.已知命题:;:.(1)若“”为真命题,求实数的取值范围;(2)若“”为真命题,求实数的取值范围.【答案】(1);(2).【解析】(1)先分别求出命题为真命题时的取值范围,再由已知“”为真命题进行分类讨论即可求解;(2)由(1)可知,当同时为真时,即可求出的范围.试题解析:若为真,则,所以,则若为真,则,即.(1)若“”为真,则或,则.(2)若“”为真,则且,则.48.设,且b>0,则下列不等式正确的是()A.B.C.D.【答案】C【解析】解答:∵a+b<0,且b>0,∴−a>b>0,∴a 2>b2.本题选择C选项.49.关于x的不等式ax-b>0的解集是(1,+),则关于x的不等式(ax+b)(x-2)>0的解集是()A.(1,2)B.(-1,2)C.(-,-1)(2,+)D.(-,1)(2,+)【答案】C【解析】由已知,不等式为,所以或,故选C.50.设,给出下列结论:①;②;③;④.其中正确的结论有()A.①④B.②④C.②③D.③④【答案】B【解析】①;②;③;;④.所以选B.51.已知.(1)当时,解不等式;(2)若,解关于的不等式.【答案】(1)(2)见解析【解析】(1),结合图像可得不等式解集(2),所以根据根的大小进行分类讨论:时,为;,为;时,为试题解析:(1)当时,不等式,即,解得.故原不等式的解集为.(2)因为不等式,当时,有,所以原不等式的解集为;当时,有,所以原不等式的解集为;当时,原不等式的解集为52.已知,那么下列命题中正确的是( )A.若则B.若,则C.若且,则D.若且,则【答案】C【解析】当时,,选项A是假命题;若,则由可得,选项B是假命题;若a3>b3且ab<0,则 (对),若a3>b3且ab<0,则若a2>b2且ab>0,则 (错),若,则D不成立。
高一数学(必修5)不等式测试题一、选择题:1、若R c b a ∈,,,且b a >,则下列不等式一定成立的是( )A .c b c a -≥+B .bc ac >C .02>-ba c D .0)(2≥-cb a 2、函数)12lg(21)(-+-=x xx f 的定义域为( )A .),21(+∞ B .)2,21( C .)1,21(D .)2,(-∞3、已知01<<-a ,则( )A .a aa 2212.0>⎪⎭⎫ ⎝⎛> B .aa a ⎪⎭⎫⎝⎛>>212.02C .a a a22.021>>⎪⎭⎫ ⎝⎛ D .a aa 2.0212>⎪⎭⎫⎝⎛>4、不等式21≥-xx 的解集为( )A .)0,1[-B .),1[∞+-C .]1,(--∞D .),0(]1,(∞+--∞5、已知正数y x 、满足811x y+=,则2x y +的最小值是( ) A .18 B .16 C .8 D .10 6、下列命题中正确的是( )A .当2lg 1lg ,10≥+≠>x x x x 时且B .当0>x ,21≥+x xC .当20πθ≤<,θθsin 2sin +的最小值为22 D .当xx x 1,20-≤<时无最大值 7、在约束条件0024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当53≤≤s 时,目标函数32z x y =+的最大值的变化范围是( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]二、填空题8、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 .9、已知变量y x ,满足约束条件22,41≤-≤-≤+≤y x y x .若目标函数(0)z ax y a =+>仅在点)1,3(处取得最大值,则a 的取值范围为___________.10、设0>a ,且1≠a ,函数)12lg()(2+-=a x a x f 有最小值,则不等式0)75(log 2>+-x x a 的解集为___________.11、某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_____________班级 姓名 座号 成绩 一、选择题二、填空题8、 9、10、 11、三、解答题12、已知b a ,都是正数,并且b a ≠,求证:233255b a b a b a +>+.17.已知函数3222)(a b x a ax x f -++=,当)6()2(∞+--∞∈,, x 时,0)(<x f ;当)62(,-∈x 时,0)(>x f .①求b a 、的值;②设)16(2)1(4)(4)(-+++-=k x k x f kx F , 则当k 取何值时, 函数)(x F 的值恒为负数?。
高一数学基本不等式试题答案及解析1.设且,则的最小值为________.【答案】4【解析】由,当且仅当时等号成立.故答案为4.【考点】均值不等式的应用.2.长为4,宽为3的矩形,当长增加,且宽减少时的面积最大,则此时=_______,最大面积=________.【答案】.【解析】由题意,得所得矩形面积;则,即当时,矩形面积有最大值.【考点】一元二次函数模型的应用.3.已知x,y均为正数且x+2y=xy,则().A.xy+有最小值4B.xy+有最小值3C.x+2y+有最小值11D.xy﹣7+有最小值11【答案】C【解析】由,得,由得,则(当且仅当,即时取等号),;令,则在上为增函数,,排除A,B;而选项D:;选项C:(当且仅当,即或时取等号;故选C.【考点】基本不等式.4.若,则下列不等式正确的是().A.B.C.D.【答案】C【解析】由基本不等式得,则;又,.【考点】基本不等式.5.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.6.设a>0,b>0,若是和的等比中项,则的最小值为()A.6B.C.8D.9【答案】A【解析】由题意a>0,b>0,且是和的等比中项,即,则,当且仅当时,即时取等号.【考点】重要不等式,等比中项7.(1)阅读理解:①对于任意正实数,只有当时,等号成立.②结论:在(均为正实数)中,若为定值,则,只有当时,有最小值.(2)结论运用:根据上述内容,回答下列问题:(提示:在答题卡上作答)①若,只有当__________时,有最小值__________.②若,只有当__________时,有最小值__________.(3)探索应用:学校要建一个面积为392的长方形游泳池,并且在四周要修建出宽为2m和4 m的小路(如图所示)。
问游泳池的长和宽分别为多少米时,共占地面积最小?并求出占地面积的最小值。
【答案】(2)①1 ,2:②3,10(3)游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【解析】(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理运用所给结论,可求面积的最值.(2)①利用阅读材料,可知当时,有最小值2,②,当时,有最小值10.(3)设游泳池的长为m,则游泳池的宽为m,又设占地面积为,依题意,得,整理.当且仅当即取“=”.此时所以游泳池的长为28m,宽14m时,占地面积最小,占地面积的最小值是648【考点】基本不等式在最值问题中的应用;进行简单的合情推理8.已知且若恒成立,则的范围是【答案】【解析】原式恒成立等价于,,所以解得.【考点】基本不等式求最值9.已知向量=(x,2),=(1,y),其中x>0,y>0.若•=4,则+的最小值为.【答案】【解析】因为所以当且仅当时取等号.【考点】基本不等式求最值10.现要用一段长为的篱笆围成一边靠墙的矩形菜园(如图所示),则围成的菜园最大面积是___________________.【答案】【解析】依题意可知,其中,由基本不等式可知即(当且仅当时等号成立),所以,所以围成的菜园最大面积是.【考点】基本不等式的应用.11.若x>0,则函数的最小值是________.【答案】2【解析】因为,x>0,所以,函数当且仅当时,函数取得最小值2.【考点】均值定理的应用点评:简单题,应用均值定理,要注意“一正,二定,三相等”,缺一不可。
高一数学不等式试题1.设常数,若对一切正实数成立,则的取值范围为 .【答案】【解析】【考点】1.不等式与函数的转化;2.均值不等式求最值2.(1)已知x<,求函数y=4x-2+的最大值;(2)已知x>0,y>0且=1,求x+y的最小值.【答案】(1)1;(2)16【解析】本题主要考察函数万能公式的运用,在第一小问中函数化简须与分式分母相对应,在运用万能公式时,要注意不要将符号弄反,解不等式即可求出最大值。
在第二小问中,将条件乘入到所求结果中去,再将式子进行展开,利用万能公式,解不等式即可求出最小值。
试题解析:(1)x<,∴4x-5<0.∴y=4x-5++3=-[(5-4x)+]+3=1.≤-2+3=1,ymax(2)∵x>0,y>0且=1,∴x+y=(x+y)=10+≥10+2=16,即x+y的最小值为16【考点】函数万能关系不等式3.设,,则的大小关系为.【答案】【解析】,【考点】函数求最值4.(12分)已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【答案】(1);(2)【解析】(1)定义域为,指被开方数恒大于等于0,讨论两种情况当或是两种情况;(2)函数的最小值,指被开方数为抛物线时的顶点函数值是,所以先根据顶点坐标求参数,然后将参数代入二次不等式,解不等式.试题解析:(1)∵函数y=的定义域为R,∴a=0时,满足题意;a>0时,△=4a2﹣4a≤0,解得0<a≤1;∴a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥, a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.【考点】1.二次函数;2.二次函数的性质;3.解二次不等式.5.实数,满足不等式组,则目标函数的最小值是()A.B.C.D.【答案】C【解析】如图,先画可行域,,当目标函数过点时,函数取得最小值,所以.【考点】线性规划6.若不等式(a-2)x2+2(a-2)x-4<0的解集为R,则实数a的取值范围是________.【答案】【解析】当时,恒成立,等,解得:,所以,实数的取值范围是.【考点】1.二次函数的图像;2.二次不等式恒成立.7.二次函数的零点为2和3,那么不等式的解集为A.B.C.D.【答案】B【解析】因为二次函数的零点为2和3,所以,进而函数,又因为,所以不等式的解集为,故选择B【考点】一元二次不等式解集8.(本题满分12分)解下列不等式:(1)(2)【答案】(1);(2)【解析】(1)先将二次项系数化为正数,然后分解因式得,利用一元二次不等式其解法口诀“大于取两边,小于去中间”可得解集;(2)移项整理为,分解因式得,即可求得试题解析:(1)将不等式化为标准形式为分解因式得所以原不等式的解集为(2)将不等式化为标准形式为分解因式得所以原不等式的解集为【考点】解一元二次不等式9.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式10.已知,满足条件,则的最小值()A.B.C.D.4【答案】B【解析】不等式组表示的平面区域如图所示,为边界及其内部。
高一数学不等式试题1.(本题满分12分)已知函数(1)当时,求不等式的解集(2)若关于的不等式的解集为R,求实数的取值范围(3)当时,若在内恒成立,求实数b的取值范围。
【答案】,,【解析】2.(文)若,则的最大值为.【答案】文 -4【解析】(文),当且仅当时等号成立,所以最小值为【考点】1.线性规划;2.均值不等式求最值3.对于任意实数x,一元二次不等式恒成立,则实数a取值范围是()A.B.C.(-2,2)D.【答案】C【解析】试题分析因为一元二次不等式,所以a-2≠0,a-2<04(a-2)2+16(a-2)<0解得-2<a<2。
故选C【考点】函数不等式的运用4.设满足约束条件,则的最大值为()A.-8B.3C.5D.7【答案】D【解析】不等式表示的可行域为直线围成的三角形及其内部,三个顶点为,当过点时取得最大值7【考点】线性规划5.(本题满分10分)解关于的不等式【答案】当或时,不等式解集为;当或时,不等式的解集为;当或时, 不等式解集为.【解析】首先将原不等式通过十字相乘法分解因式得,然后得到两根与相同时参量的值,再根据与的大小分情况讨论进而借助一元二次函数解不等式.试题解析:原不等式可化为:,令,可得:∴当或时,,;当或时,,不等式无解;当或时, ,综上所述,当或时,不等式解集为;当或时,不等式的解集为;当或时, 不等式解集为.【考点】(1)含参量一元二次不等式的解法;(2)不等式的基本性质.6.设变量x,y满足约束条件则z=3x-2y的最大值为A.0B.2C.4D.6【答案】C【解析】约束条件对应的可行域为直线围成的三角形区域,,当直线过交点时取得最大值4【考点】线性规划问题7.已知,则的最小值是()A.10B.C.12D.20【解析】,,当且仅当时取得等号.【考点】基本不等式.8.不等式的解集是____________________.【答案】【解析】不等式变形为:,分解因式可得:,所以解集为【考点】解一元二次不等式9.在约束条件下,目标函数取最大值时的最优解为_______.【答案】【解析】根据约束条件画出可行域,再由目标函数可得,平移直线可知在点处目标函数取得最大值.【考点】线性规划问题.10.已知满足且,则下列选项中一定成立的是()A.B.C.D.【答案】D【解析】因为满足,所以.又因为,所以,故选D.【考点】不等式的性质.【一题多解】根据题意令,代入A、B、C、D中,易知只有D成立,故选D.11.比较的大小关系是()A.B.C.D.【答案】D【解析】∵,,又幂函数在上是增函数,,∴,故选D.【考点】1、指数式;2、比较大小.12.已知,,则下列不等式中成立的是()A.B.C.D.【解析】,【考点】不等式的性质13.三个数的大小顺序是()A.B.C.D.【答案】D【解析】由,,则大小顺序可知为:【考点】指数和对数函数性质的应用。
高一数学基本不等式试题1.已知x,y均为正数且x+2y=xy,则().A.xy+有最小值4B.xy+有最小值3C.x+2y+有最小值11D.xy﹣7+有最小值11【答案】C【解析】由,得,由得,则(当且仅当,即时取等号),;令,则在上为增函数,,排除A,B; 而选项D:;选项C:(当且仅当,即或时取等号;故选C.【考点】基本不等式.2.已知,则x + y的最小值为.【答案】【解析】,,由,可得,当且仅当时等号成立,故,故答案为.【考点】对数的性质运算;均值不等式的应用.3.若,则下列不等式正确的是().A.B.C.D.【答案】C【解析】由基本不等式得,则;又,.【考点】基本不等式.4.若正数满足,则的取值范围是________________.【答案】【解析】,;可化为,,即,,即.【考点】基本不等式.5.在下列函数中,最小值为2的是( )A.B.C.D.【答案】D【解析】A中不满足x>0;B中,因为0<sinx<1,故“=”取不到;C中,因为0<lgx<1,故“=”取不到;D中 y=3x+3-x≥2,当且仅当 3x=3-x时取等号,此时x存在;故选D.【考点】基本不等式.6.对任意正数x,y不等式恒成立,则实数的最小值是 ()A.1B.2C.3D.4【答案】【解析】根据选项可知,所以此时不等式左边两项都是正数.根据基本不等式有,因为恒成立,所以,消掉,解得.所以.【考点】不等式恒成立;基本不等式.7.已知正数满足,则的最小值为.【答案】【解析】.【考点】基本不等式.8.在分别是角A、B、C的对边,若,则的周长的取值范围是()A. B. C. D.【答案】C【解析】∵,∴,化简后可得:,∴,又∵,∴,即周长的范围为.【考点】1、余弦定理;2、基本不等式.9.设实数满足:,则取得最小值时,.【答案】121【解析】∵,∴,上述等号成立的条件依次为:,∴a=1,b=c=10,d=100,a+b+c+d=121.【考点】1、基本不等式;2、不等式的放缩.10.下列各函数中,最小值为2的是 ().A.y=x+B.y=sin x+,x∈C.y=D.y=+【答案】D【解析】(1)函数:当时,,当且仅当即时取;当时,,此时,即,当且仅当即时取。
高一数学不等式试题答案及解析1.下列函数中,最小值为2的是----------------------------------------()A.B.C.D.【答案】B【解析】略2.(本题满分10分)已知正数满足,求的最小值有如下解法:解:∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法【答案】不正确【解析】∵且.∴∴. 判断以上解法是否正确?说明理由;若不正确,请给出正确解法解:以上解法错误------1分理由:∵,当且仅当x=y时取到等号,3.已知则的最小值为()A.2B.C.4D.5【答案】C【解析】【考点】均值不等式求最值4.设常数,若对一切正实数成立,则的取值范围为 .【答案】【解析】【考点】1.不等式与函数的转化;2.均值不等式求最值5.已知点满足约束条件,为坐标原点,则的最小值为_______________.【答案】【解析】将约束条件中任意俩条件进行联立,若想满足三个不等式,则解出y=,将y值带入不等式,解出,所以的最小值为。
【考点】函数不等式6.如果,则下列不等式中成立的只有()A.B.C.D.【答案】C【解析】令,可得,故不正确,正确.再根据,可得不正确,只有选项成立,故选.【考点】不等式关系与不等式7.如果,那么下列不等式成立的是()A.B.C.D.【答案】A【解析】因为,则,所以,A正确;因为,则,B错;因为,则,所以,C错;因为,则,D错;【考点】不等式的基本性质;8.关于x的不等式的解集是,则关于x的不等式的解集是()A.B.C.D.【答案】D【解析】关于x的不等式的解集是,所以,所以不等式可化为,从而确定解集;【考点】1.一元二次不等式的解法;2.一元一次不等式的解集与系数的关系;9.若,且,则的最小值等于_______.【答案】【解析】约束条件对应的平面区域如上图所示,当直线过点时取得最小值3.【考点】线性规划10.(本小题16分)已知函数(1)时,解关于的不等式;(2)当时,若对任意的,不等式恒成立,求实数的取值范围;(3)若,求的取值范围.【答案】(1)(2)(3)【解析】(1)将不等式系数整理可得到二次不等式,结合二次函数图像即可求解;(2)将不等式恒成立问题采用分离参数的方法转化为求函数最值问题,本题中首先将不等式变形为进而利用均值不等式求解的最小值;(3)将不等式化简得到关于的不等式,进而求得范围,将所求式子的绝对值去掉,结合值及线性规划求式子的范围试题解析:(1)化为因此解集为;(2)原不等式化为:,因为所以原不等式化为恒成立,,当且仅当时等号成立,所以(3)题目条件化为,作图可知,去绝一个绝对值z=,对讨论再去掉一个绝对值.当时,由线性规划得;当时,,综上可得【考点】1.不等式解法;2.函数最值;3.线性规划问题11.不等式组所表示的平面区域的面积是 ____________.【答案】25【解析】由已知条件可计算出,不等式表示的平面区域为,易得【考点】线性规划不等式组表示的平面区域及三角形的面积计算12.二次不等式的解集是全体实数的条件是()A.B.C.D.【答案】B【解析】当时,原不等式换位对任意的都成立,要使二次不等式的解集是全体实数,只需,综上,故选B。
基本(均值)不等式1.了解基本(均值)不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 【基础检测】1.函数y =x1+2x 2(x>0)取最大值时x 的值为( )A .22B .24C .2D .2 2 2.已知a>0,b>0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .22C .8D .163.设0<x <1,a >0,b >0,a ,b 为常数,则a 2x +b21-x的最小值是( )A .4abB .2(a 2+b 2)C .(a +b)2D .(a -b)21.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b . 2.几个重要的不等式(1)a 2+b 2≥__2ab__(a ,b ∈R); (2)b a +a b≥__2__(a ,b 同号);(3)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R);(4)⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22(a ,b ∈R). 3.算术平均数与几何平均数设a >0,b>0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.4.利用基本不等式求最值问题已知x>0,y>0,(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p(简记:积定和最小). (2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).考点1 利用基本(均值)不等式求最值例1(1)已知xy =1,且0<y<22,则x 2+4y2x -2y 的最小值为( )A .4 B.92 C .2 2 D .4 2(2)已知a>0,b>0,且a 2+b 22=1,则a 1+b 2的最大值为________.1.a 2+b 2≥2ab 成立的条件是a ,b ∈R ,而a +b2≥ab 成立,则要求a >0,b >0.2.利用基本不等式求最值,要注意使用条件:一正(各数为正),二定(和或积为定值),三相等(等号在允许取值范围内能取到),要熟悉均值不等式的各种变形⎝ ⎛⎭⎪⎫如y =ax 2+bx +c x =ax +c x +b . 3.连续使用以上公式中的任一个或两个,取等号的条件要在同一条件下取得,方可取到最值.1.(2018·天津)已知a ,b ∈R ,且a -3b +6=0,则2a+18b 的最小值为________.考点集训A 组题1.已知x >0,y >0,且x +y =2xy ,则x +4y 的最小值为( )2.设x +y =1,x ,y ∈(0,+∞),则x 2+y 2+xy 的最小值为( ) A.14B.34C .-14D .-343.函数y =log 2x +log x (2x )的值域是( ) A .(-∞,-1] B .[3,+∞) C .[-1,3]D .(-∞,-1]∪[3,+∞)4.已知a 2+2a +2x ≤4x 2-x+1对于任意的x ∈()1,+∞恒成立,则( )A .a 的最小值为-3B .a 的最小值为-4C .a 的最大值为2D .a 的最大值为46.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a ,b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗xx的最小值为________.7.已知正实数a ,b 满足a +b =4,则1a +1+1b +3的最小值为________.8.已知x >0,y >0,且2x +5y =20. (1)求u =lg x +lg y 的最大值; (2)求1x +1y的最小值.函数图像及函数零点1.函数()2log 3-=x x f 的大致图象是( )2.已知函数133,1,()log ,1,x x f x x x ⎧⎪=⎨⎪⎩≤>则y =f (2-x )的大致图象是( )函数的图象可能为( )1()cos (0)f x x x x x x ⎛⎫=--π≤≤π≠ ⎪⎝⎭且1.已知函数()f x 满足2(1)41f x x x +=--+,函数()()4,4,f x x m g x x x m -≤⎧=⎨->⎩有两个零点,则m 的取值范围为 . 2. 函数2||1()()2x f x x =-的零点个数为 A. 0B. 1C. 2D. 33.函数()()231ln ---=x x x f 的零点所在区间为( ) A .()3,4-- B .()e --,3 C.()2,--e D .()1,2--4.定义在R 上的函数()x f 满足()()22-=x f x f ,且当(]1,1-∈x 时,()xx f ⎪⎭⎫⎝⎛=21.若关于x 的方程()()23+-=x a x f 在()50,上至少有两个实数解,则实数a 的取值范围为( ) A .[]20,B .[)∞+,0 C.(]20, D .[)∞+,2 5. 函数1,04()2sin(2),06x x f x x x ππ⎧≤⎪⎪=⎨⎪+<<⎪⎩,若123,,x x x 是函数()y f x a =+三个不同的零点,则123x x x ++的范围是A. 1(,)22π- B. 1(,)323ππ-C. 11(,)3232ππ-+D. 1(,)662ππ+6.若函数()32231-+⎪⎭⎫ ⎝⎛=mx x x f 在区间()1,1-上单调递减,则实数m 的取值范围是7.. 已知函数(26)1,1()log ,1aa x x f x x x -+≤⎧=⎨>⎩,对12,(,)x x ∀∈-∞+∞,总有1212()()0f x f x x x -<-12()x x ≠成立,则实数a 的取值范围是A. 1(,1)3B. 1(0,)3C. 11(,]32D. 1[,1)28.已知()f x 为偶函数,当0x ≥时,1cos ,[0,]2()121,(,)2x x f x x x π⎧∈⎪⎪=⎨⎪-∈+∞⎪⎩,则不等式1(1)2f x -≤的解集为__________,函数()11-++=x x x f ,若对于任意R x ∈且0>a 有()a x f 2>恒成立,则函数322log --=x x ay 的单调减区间为( )A.()1,-∞-B.()+∞,3C.()3,1-D.()∞+,1 4.已知幂函数()a x x f =的图像经过点()2,2,函数()()k x ax g +=log ,若0<x 时()0≥x g 无解,则k 的范围是( )A.2≥kB.1-≤kC.11≤≤-kD.1≤k5.设函数()()ax a x a x f ++-=12log ,若21<x 时()x f 恒为单调递增函数,则a 的取值范围是( )A.21≤aB.121<≤aC.1>aD.210<<a6.方程()222log x x =+的实数解有( )A.0个B.1个C.2个D.3个7.当()2,1∈x 时,不等式()xa x log 12<-恒成立,则a 的取值范围是( )A.()1,0B.()2,1C.(]2,1D.⎪⎭⎫ ⎝⎛210,8.若不等式0log 2<-xm x 在⎪⎭⎫ ⎝⎛210,内恒成立,则实数m 的取值范围为( )A.⎪⎭⎫⎢⎣⎡1,161B.⎪⎭⎫⎢⎣⎡1,21C.⎪⎭⎫⎝⎛1,41 D.()∞+,1 9.设βα,分别是方程03log 3=-+x x和033=-+x x 的根,则βα+的值为( ) A.3 B.23C.4D.6 10.函数()()()()⎪⎩⎪⎨⎧<>=-0log 0log 212x x x f x x ,若()()a f a f ->,则实数a 的取值范围是( ) A.(0,1) B.(-1,0) (1,+∞) C.(1,+∞) D.(-1,1) 11.已知函数()ax ay -=2log 在[]1,0上是减函数,则a 的取值范围是( )A.(0,1)B.(1,+∞)C.(2,+∞)D.(1,2)12.对任意两实数b a ,定义运算“*”如下:a *b =⎩⎨⎧>≤b a b b a a ,,,则函数()()2321log -=x x f *x2log 的值域为( )A.(]0,∞-B.⎥⎦⎤⎢⎣⎡0,log 322C.⎥⎦⎤⎢⎣⎡+∞,log 322 D.R15.已知函数()()()⎩⎨⎧<≥+=01012x x x x f ,则满足不等式()()x f x f 212>-的x 的范围是__________16.函数()2122log +-=x ax ax f ,当x 在其定义域内时()x f 能取尽所有的正数,则a 的取值范围是_________9设函数()R a ax x x f ∈++=,122.(Ⅰ)当[]1,1-∈x 时,求函数()x f 的最小值()a g ;(Ⅱ)若函数()x f 的零点都在区间[]0,2-内,求a 的取值范围.10.已知函数()()R m mx mx x f ∈+-=,12log 22.(Ⅰ)若函数()x f 的定义域为R ,求m 的取值范围;(Ⅱ)设函数()()x x f x g 4log 2-=.若对任意[]1,0∈x ,总有()02≤-x g x,求m 的取值范围.已知函数,则__________2. 390cos ︒的值为A.2B.12C. D. 12-已知π,π2α⎛⎫∈ ⎪⎝⎭,且4sin5α.(1)求πtan4α⎛⎫-⎪⎝⎭的值,(2)求2sin2cos1cos2ααα-+的值.。
根本不等式复习卷一、 填空题:1. a ,b 是正数,那么2,2a b ab a b ++三个数的大小顺序是 〔 〕A.22a b ab a b ++ 22a b ab a b +≤≤+C.22ab a b a b ++ D.22ab a b a b +≤+ 2. 以下函数中,最小值为4的是 〔 〕 A.4y x x =+ B.4sin sin y x x=+ (0)x π<< C.e 4e x x y -=+ D.3log 4log 3x y x =+ 3. 设x >0,那么133y x x=--的最大值为 4. 设,,5,33x y x y x y ∈+=+R 且则的最小值是5. 假设x , y 是正数,且141x y+=,那么xy 有 6. :0<x <1,那么函数y =x 〔3-2x 〕的最大值是___________7. 假设x >5/4 ,那么y =4x -1+-54x 1的最小值是___________8. 设y x ,满足,404=+y x 且,,+∈R y x 那么y x lg lg +的最大值是二、 解答题: x 、y 满足811x y+=,求2x y +的最小值.a ,b ,c (0,),∈+∞且a +b +c =1,求证: 111(1)(1)(1)8.a b c---≥励志赠言经典语录精选句;挥动**,放飞梦想。
厚积薄发,一鸣惊人。
关于努力学习的语录。
自古以来就有许多文人留下如头悬梁锥刺股的经典的,而近代又有哪些经典的高中励志赠言出现呢?小编筛选了高中励志赠言句经典语录,看看是否有些帮助吧。
好男儿踌躇满志,你将如愿;真巾帼灿烂扬眉,我要成功。
含泪播种的人一定能含笑收获。
贵在坚持、难在坚持、成在坚持。
功崇惟志,业广为勤。
耕耘今天,收获明天。
成功,要靠辛勤与汗水,也要靠技巧与方法。
常说口里顺,常做手不笨。
不要自卑,你不比别人笨。
不要自满,别人不比你笨。
【基本不等式】本卷共100分,考试时间90分钟一、选择题 (每小题4分,共40分)1. 在面积为定值9的扇形中,当扇形的周长取得最小值时,扇形的半径是(A)3 (B)2 (C)4 (D) 5 2. 若y x ,是正数,且141x y+=,则xy 有 A.最大值16 B .最小值116 C .最小值16 D .最大值1163. 如果f(x)=mx 2+(m -1)x+1在区间]1,(-∞上为减函数,则m 的取值范围( ) A . (0, ⎥⎦⎤31 B .⎪⎭⎫⎢⎣⎡31,0 C .]⎢⎣⎡31,0 D (0,31)4. 给出如下四个命题:①||||yz xy z y x >⇒>>;②y x y a x a >⇒>22;③d bc a abcd d c b a >⇒≠>>0,,;④2011b ab b a <⇒<<.其中正确命题的个数是( )A .1B .2C .3D .45. 已知实数),....2,1(,,n i R b a i i =∈,且满足1.. (2)2221=+++n a a a ,1 (2)2221=+++n b b b , 则n n b a b a b a +++.....2211的最大值为( )A .1B .2C .2nD .n 26. 设0a >,不等式ax b c +<的解集是{}21x x -<<,::a b c =( ) A .1∶2∶3 B .2∶1∶3 C .3∶1∶2 D .3∶2∶17. 今有甲、乙、丙、丁四人通过“拔河”进行“体力”较量。
当甲、乙两人为一方,丙、丁两人为另一方时,双方势均力敌;当甲与丙对调以后,甲、丁一方轻而易举地战胜了乙、丙一方;而乙凭其一人之力便战胜了甲、丙两人的组合。
那么,甲、乙、丙、丁四人的“体力”由强到弱的顺序是A .丁、乙、甲、丙B .乙、丁、甲、丙C .丁、乙、丙、甲D .乙、丁、丙、甲8. 某厂产值第二年比第一年增长%p ,第三年比第二年增长%q ,又这两年的平均增长率为S%,则S 与2p q+的大小关系是A .2p q S +>B .2p qS +=C 2p qS +≤D 2p qS +≥9. 已知正项等比数列765{}:2,n a a a a =+满足若存在两项m a 、n a14a =,则14m n+的最小值为( ) A .32 B .53C .256D .不存在10. 买4枝郁金香和5枝丁香的金额小于22元,而买6枝郁金香和3枝丁香的金额和大于24元,那么买2枝郁金香和买3枝丁香的金额比较,其结果是( ) A .前者贵 B .后者贵 C .一样 D .不能确定 二、填空题 (每小题4分,共16分)11. 函数)1,0(1)2(l o g ≠>-+=a a x y a 的图象恒过定点A ,若点A 在直线01=++ny mx 上,其中0>mn ,则nm 21+的最小值为 . 12. 设a,b 是两个实数,给出下列条件:①a+b>1; ②a+b=2;③a+b>2;④a 2+b 2>2;⑤ab>1,其中能推出:“a 、b 中至少有一个实数大于1”的条件是____________.13. 考察下列一组不等式:221212252533442233525252525252525252⋅+⋅>+⋅+⋅>+⋅+⋅>+将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 ___。
14. 若A ,B ,C 为△ABC 的三个内角,则4A +1B C+的最小值为 . 三、解答题 (共44分,写出必要的步骤)15. (本小题满分10分)已知a ,b ,c 是全不相等的正实数, 求证:3>-++-++-+ccb a b bc a a a c b . 16. (本小题满分10分) 已知a,b,m 是正实数,且a<b,求证:a b <a mb m++ (12分) 17. (本小题满分12分)甲、乙两地相距s 千米,汽车从甲地匀速行驶到乙地,速度不得超过c 千米/时。
已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v (千米/时)的平方成正比,比例系数为b ;固定部分为a 元.(Ⅰ)把全程运输成本y(元)表示为速度v (千米/时)的函数,并指出这个函数的定义域; (Ⅱ)为了使全程运输成本最小,汽车应以多大速度行驶?18. (本小题满分12分) 某厂生产某种产品的年固定成本为250万元,每生产x (*x N ∈)千件,需另投入成本为)(x C ,当年产量不足80千件时,x x x C 1031)(2+=(万元);当年产量不小于80千件时,14501000051)(-+=xx x C (万元).通过市场分析,若每件..售价为500元时,该厂年内生产该商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?答案一、选择题 1. A2. C3. C解析:依题意知,若m=0,则成立;若m ≠0,则开口向上,对称轴不小于1,从而取并集解得C 。
4. B5. A6. B7. A8. C9. A10. A解析:设郁金香x 元/枝,丁香y 元/枝,则⎩⎨⎧>+<+②①24362254y x y x ,∴由不等式的可加(减)性,得x>3,y<2,∴2x>6,3y<6,故前者贵。
二、填空题11. 223+12. ③13. ()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m nm解析:仔细观察左右两边式子结构的特点、指数的联系,便可得到。
14.9π因为A +B +C =π,且(A +B +C )·(4A +1B C +)=5+4·B C A ++A B C+≥5+9,因此4A +1B C +≥9π,当且仅当4·B C A +=AB C+,即A =2(B +C )时等号成立.三、解答题15. 证法1:(分析法) 要证3>-++-++-+ccb a b bc a a a c b 只需证明 1113b c c a a ba ab bc c+-++-++-> 即证6b c c a a ba ab bc c+++++> 而事实上,由a ,b ,c 是全不相等的正实数 ∴ 2,2,2b a c a c ba b a c b c +>+>+> ∴ 6b c c a a ba ab bc c+++++> ∴3b c a a c b a b ca b c+-+-+-++>得证. 证法2:(综合法) ∵ a ,b ,c 全不相等 ∴ a b 与b a ,a c 与c a ,b c 与cb全不相等. ∴2,2,2b a c a c b a b a c b c +>+>+>三式相加得6b c c a a ba ab bc c +++++>∴ (1)(1)(1)3b c c a a ba ab bc c+-++-++->即3b c a a c b a b ca b c+-+-+-++>. 16. 证明:由a,b,m 是正实数,故要证a b <a mb m++ 只要证a (b+m )<b(a+m) 只要证ab+am<ab+bm 只要证am<bm, 而m>0 只要证 a<b, 由条件a<b 成立,故原不等式成立。
17. 解析:(Ⅰ)依题意知汽车从甲地匀速行驶到乙地所用时间为vs,全程运输成本为 ())(2bv va s v s bv a y +=+=故所求函数及其定义域为],0(),(c v bv vas y ∈+=.(Ⅱ)依题意知s,a,b,v 都为正数,故有 ab s bv vas 2)(≥+ 当且仅当bv v a=,即 bav = 时等号成立。
① 若c b a≤,则当b a v =时,y 取得最小值; ② 若c ba>,则2bc a >, ))(()]()[()()(bcv a v c vcsbc bv cvv a s bc c a s bv v a s --=-+-=+-+因为0≥-v c ,且2bc a >,故有02>-≥-bc a bcv a ,0))((≥--∴bcv a v c vcs, 故)()(bc cas bv v a s +≥+,当仅且当c v =时等号成立。
综上可知,若c b a≤,则当b a v =时,全程运输成本最小;若c ba >,当c v =时,全程运输成本y 最小.18. 解析: (1)当*,800N x x ∈<<时,当80≥x ,*N x ∈时,*),80(*),800()10000(12002504031)(2N x x N x x x x x x x L ∈≥∈<<⎪⎩⎪⎨⎧+--+-=∴ 25040312501031100001000500)(22-+-=---⨯=x x x x x x L )10000(120025014501000051100001000500)(xx x x x x L +-=-+--⨯=(2)当*,800N x x ∈<<时,950)60(31)(2+--=x x L∴当60=x 时,)(x L 取得最大值950)60(=L当,,80N x x ∈≥,100020012001000021200)10000(1200)(=-=⋅-≤+-=xx x x x L ∴当xx 10000=,即100=x 时,)(x L 取得最大值.9501000)100(>=L。