基本内容 线性有界泛函
- 格式:doc
- 大小:617.50 KB
- 文档页数:7
线性泛函数知识点总结一、线性泛函数的基本概念1.1 线性泛函数的定义线性泛函数是指一个将向量空间中的向量映射到另一个向量空间中的函数,且满足线性性质。
设V和W是两个向量空间,如果一个函数T:V→W满足以下两个条件:1) 对于任意的向量x,y∈V,有T(x+y)=T(x)+T(y);2) 对于任意的向量x∈V和标量a,有T(ax)=aT(x);则函数T被称为V到W的线性泛函数。
1.2 线性泛函数的例子下面我们举几个线性泛函数的例子,以便更好地理解这个概念。
例1:设V是实数域上的n维向量空间,W是实数域上的m维向量空间,定义一个函数T:V→W,使得对于任意的向量x=(x1,x2,...,xn)∈V,有T(x)=(x1^2,x2^2,...,xn^2)∈W。
显然,函数T满足线性性质,因此它是一个线性泛函数。
例2:设V是实数域上的3维向量空间,W是实数域上的2维向量空间,定义一个函数T:V→W,使得对于任意的向量x=(x1,x2,x3)∈V,有T(x)=(x1+x2,x2+x3)∈W。
同样地,函数T也满足线性性质,因此它也是一个线性泛函数。
1.3 线性泛函数的表示线性泛函数可以用矩阵来表示。
设V和W分别是n维和m维向量空间,选择它们的一组基{e1,e2,...,en}和{f1,f2,...,fm},则对于任意的向量x=(x1,x2,...,xn)∈V,有其在基{e1,e2,...,en}下的表达式为x=x1e1+x2e2+...+xnen,而对于任意的向量y=(y1,y2,...,ym)∈W,有其在基{f1,f2,...,fm}下的表达式为y=y1f1+y2f2+...+ymfm。
定义一个线性泛函数T:V→W,使得对于任意的向量x∈V,有T(x)=y∈W,则T的矩阵表示为一个m×n的矩阵A,其中A的第i列为T(ei)在基{f1,f2,...,fm}下的坐标表示,即A=[T(e1)|T(e2)|...|T(en)]。
《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。
以下几点是对第一部分内容的归纳和总结。
一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。
距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。
(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。
赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。
(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间与赋范线性空间;二、有界线性算子与连续线性泛函;三、内积空间与希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间与赋范线性空间(一)度量空间度量空间在泛函分析中就是最基本的概念,它就是n 维欧氏空间n R (有限维空间)的推广,所以学好它有助于后面知识的学习与理解。
1.度量定义:设X 就是一个集合,若对于X 中任意两个元素x,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)就是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义就是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为就是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 与度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 与2d ,则我们认为(X, 1d )与(X, 2d )就是两个不同的度量空间。
⑶ 集合X 不一定就是数集,也不一定就是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d,而称“度量空间X ” 。
数学的泛函分析方法泛函分析是数学中的一个分支领域,它研究的是函数空间及其上的线性算子等数学结构。
在数学的各个领域中,泛函分析方法都得到了广泛的应用,包括数论、微分方程、偏微分方程、概率论等等。
本文将介绍数学的泛函分析方法及其在不同领域中的应用。
一、泛函分析的基本概念和原理泛函分析的基本概念包括函数空间、线性算子、内积、范数等。
函数空间是泛函分析的重要概念之一,它是一组具有一定性质的函数的集合。
常见的函数空间有无穷可微函数空间、有界函数空间、连续函数空间等。
线性算子则是函数之间的映射,它保持线性性质。
内积是一个函数空间上的二元运算,它满足线性性、对称性和正定性。
范数是函数空间上的一种度量,它衡量函数的大小和距离。
泛函分析的原理主要包括函数的连续性、可微性、积分等性质。
连续性是泛函分析的基本性质之一,它描述了函数在某一区间上的变化情况。
可微性是指函数在某一点附近存在导数,它描述了函数的变化速率。
积分是泛函分析中常用的计算工具,它描述了函数在某一区间上的总体情况。
二、泛函分析在数论中的应用泛函分析在数论中的应用主要体现在数论函数的性质研究、数论方程的解法等方面。
数论函数是研究整数性质的函数,如欧拉函数、狄利克雷级数等。
泛函分析方法可以用来研究这些数论函数的性质,如连续性、可微性等。
此外,泛函分析方法还可以用来解决一些数论方程,如椭圆曲线方程、费马方程等。
三、泛函分析在微分方程中的应用泛函分析在微分方程中的应用是非常广泛的,它主要体现在解析解的存在性和唯一性、解的稳定性等方面。
微分方程是描述变化的数学模型,而泛函分析方法可以用来证明微分方程的解的存在性和唯一性,以及解的稳定性。
此外,泛函分析方法还可以用来研究微分方程的数值解法,如有限元法、有限差分法等。
四、泛函分析在偏微分方程中的应用泛函分析在偏微分方程中的应用同样是非常广泛的,它主要体现在偏微分方程的解的存在性和唯一性、解的稳定性等方面。
偏微分方程是描述空间变化的数学模型,而泛函分析方法可以用来证明偏微分方程的解的存在性和唯一性,以及解的稳定性。
泛函分析中的八大空间泛函分析绪论总结参考教材是孙炯老师的《泛函分析》❞泛函分析学习目标1、了解和掌握空间理论(距离、赋范、内积空间)和线性算子理论(线性算子空间、线性算子谱分析)中基本概念和理论。
2、运用全新的、现代数学的视点审视、处理数学基础课程中的一些问题。
3、将分析中的具体问题抽象到一种更加纯粹的代数、拓扑形式中加以研究,综合运用分析、代数、几何手段处理问题。
❞泛函分析研究对象与方法泛函分析综合分析、代数、几何的观点和方法来研究无穷维空间上的函数、算子和极限理论,处理和解决数学研究中最关心的一些基本问题。
泛函分析的特点是把古典分析的基本概念和方法一般化、并将这些概念和方法几何化。
解析几何的创立,将代数问题几何化、几何问题代数化,那么这种模式可类比的推广到泛函分析的研究中。
❞(1)建立一个新的空间框架,空间中元素包括函数、运算。
「注」:空间中的元素?空间的结构(距离、范数、内积)(2)在新的空间框架下,研究解决分析、代数、几何中的问题,把分析中的问题结合几何、代数的方法加以处理。
「注」:泛函分析主要研究无穷维空间到无穷维空间的映射、运算,因此关注无穷维空间的性质,收敛性问题(如加法与无穷级数的区别)一些个人思考在三维实向量空间中进行了坐标分解,这样可以更清楚的表示这个向量的相关一些信息,那么空间的几何结构变得非常明了;另外将一个矩阵映射进行了分解,那么它的作用效果,也变得很明了。
所以自然联想到,无穷维空间能否有这样的几何结构(坐标系、正交性、元素能否分解?)、其中的映射又能否分解?但是在这其中就会遇到新的问题,也就是无穷项相加,就会有收敛性的问题。
❞泛函分析主要内容(1)空间、极限的概念,讨论他们的性质.包括:距离空间、赋范空间、内积空间、Hilbert空间.(2)研究线性算子(线性算子空间).包括:有界线性算子、有界线性算子的重要性质、共轭空间。
其中:一致有界原则、开映射定理、闭图像定理、Hahn-Banach定理.(3)线性算子的谱理论.线性算子的谱分解从结构上展示了线性算子的基本运算特征,特别是自共轭算子的谱分解,与有限维空间对称矩阵的分解很类似.❞定义1:设有集合,且存在映射,使得对任意的都有:1.非负性:;2.对称性:;3.三角不等式:映射称为集合上的一个度量,称为度量空间.度量函数有时也用表示.下边我们给出一些常用的度量空间:1.,度量函数为经典度量.这样的实空间就称为欧式空间.2.(平凡度量)在任何一个集合上,我们都可以定义上述度量,因此任何一个集合上都可以让其变为一个度量空间.1.(空间) 所有的方勒贝格可积函数,定义度量:1.(空间) 所有的在可测的本性有界的函数,定义度量:表示它的本性上界.1.(空间和空间) 元素是数列:.2.3.(连续函数空间) 如果不做声明时,我们的定义的度量是:4.当然还可以有其他度量:有了度量函数后,我们可以定义收敛性:定义2:设为距离空间中的一个点列(或称序列), 这里如果存在中的点, 使得当时, , , 则称点列收敛于, 记为有时也简记为称为的极限.注意到,这里一定要要求在集合中!命题1:设是距离空间中的收敛点列,则下列性质成立:(i) 的极限唯一;(ii) 对任意的, 数列有界.(iii) 如果收敛,那么它的任意子列也收敛.定义3:距离空间中的点列叫做基本点列或柯西点列,若对任给的, 存在, 使得当时,如果中的任一基本点列必收敛于中的某一点,则称为完备的距离空间.注意到:一个空间是否完备与它的集合和度量都有关系,比如:按照最大值定义的度量是完备的,但是按照积分定义的度量不完备,在比如上配备欧式度量,点列是基本列但是不收敛,因为不在集合中.一个不完备的空间,我们可以想方设法的添加一些元素使其完备,然而是否任何的不完备空间都能这样做使其完备呢?这就要需要我们的完备化定理了!在此之前,我们需要引入一些其他有必要的东西!定义4设是两个度量空间, 如果存在映射:满足:(1):是满射;(2):.则称和是等距同构的, 称为等距同构映射, 有时简称等距同构。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识总结泛函分析是数学中一个重要的分支领域,它研究的是无穷维空间和函数的性质。
在泛函分析中,我们考虑的对象是函数空间,而不是具体的函数。
泛函分析广泛应用于数学、物理学、工程学等领域。
1.线性空间与拓扑空间:泛函分析的基础是线性空间的理论。
线性空间是指具有加法和数乘运算,同时满足线性结构条件的集合。
泛函分析还引入了拓扑空间的概念,拓扑空间是指在线性空间的基础上引入了距离、收敛等概念,并给出了一些性质。
2.范数与内积:范数和内积是泛函分析中常用的两个概念。
范数是定义在线性空间上的一种非负实值函数,它满足正定性、齐次性和三角不等式。
范数可以用来度量向量的大小。
内积是将两个向量映射到实数的一个运算,它满足对称性、线性性和正定性。
3.完备性和紧性:完备性是指一个空间中的柯西序列收敛于空间内的一个点。
完备性是一个重要的性质,它可以用来判断一个空间是否是可度量空间,即能够定义距离的空间。
紧性是指一个空间内的每个序列都存在收敛的子序列。
紧性常用于分析序列在空间内的收敛性。
4.泛函空间和对偶空间:泛函分析中经常考虑的是函数空间,函数空间是指由一类满足特定条件的函数构成的空间。
常用的函数空间有连续函数空间、可积函数空间等。
函数空间还可以定义内积、范数等结构。
对偶空间是一个线性空间的对偶空间,它由该线性空间上的线性函数构成。
5.泛函的连续性和收敛性:泛函分析研究的是空间到实数域的映射,所以泛函的连续性和收敛性是一个重要的问题。
在泛函分析中,我们定义了一个泛函的连续性,当且仅当对于任意给定的序列,如果其收敛于一个点,那么其映射的泛函值也会收敛于该泛函值。
类似地,我们还可以定义泛函的收敛性。
6.算子:算子是泛函分析中一个重要的概念,它是一种将一个空间映射到另一个空间的映射。
线性算子是指满足线性性质的映射,而有界算子是指满足一定范围内的性质的映射。
算子可以是线性差分方程、微分算符等。
7.泛函分析在物理学和工程学中的应用:泛函分析在物理学和工程学中有广泛的应用。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
大学泛函分析的基本概念与性质泛函分析是数学中的一个重要分支,它的主要研究对象是函数空间及其上的泛函。
本文将介绍大学泛函分析的基本概念和性质,为读者对该领域有一个初步了解和认识。
一、函数空间的定义和性质函数空间是泛函分析中的重要研究对象,它由一组满足一定条件的函数构成。
常见的函数空间包括赋范空间、巴拿赫空间和希尔伯特空间等。
在定义函数空间时,需要给出其元素的性质,比如连续性、可微性等。
函数空间一般具有完备性和线性空间的性质,能够构成一个向量空间。
二、泛函的定义和性质泛函是将函数映射到实数或复数的一种特殊函数。
泛函可以看作是函数空间的“函数”,它对函数进行了某种程度上的“评价”。
泛函可以是线性的、有界的、连续的等。
泛函分析中研究了泛函的一些基本性质,比如泛函的线性性、有界性和连续性等。
三、双共轭空间的定义和性质双共轭空间是泛函分析中一个重要的概念,它描述了函数空间中的函数在泛函作用下所得到的结果。
双共轭空间是原函数空间的“对偶空间”,描述了两个空间之间的关系。
它的定义和性质对于泛函分析的研究具有重要的意义,常常用于描述函数空间中的函数与泛函之间的联系。
四、Hilbert空间的定义和性质Hilbert空间是泛函分析中的一个重要概念,它是一个完备的内积空间。
在Hilbert空间中,我们可以定义范数和内积的概念,并研究它们的性质。
Hilbert空间是泛函分析中一个非常重要的函数空间,常常用于描述物理学中的量子力学问题。
五、紧算子的定义和性质在泛函分析中,紧算子是一类具有特殊性质的线性算子。
紧算子在函数空间中起到了重要的作用,它们具有一些特殊的性质,比如有界性、紧性和可逆性等。
研究和应用紧算子的性质对于泛函分析研究的深入和应用有很大的帮助。
六、弱收敛和弱*收敛的定义和性质弱收敛和弱*收敛是泛函分析中另一个重要概念。
弱收敛是指函数序列在弱拓扑下的收敛性,而弱*收敛是指泛函序列在弱*拓扑下的收敛性。
弱收敛和弱*收敛相对于一般的收敛概念,在泛函分析中具有重要的应用价值,广泛应用于函数空间的理论研究和实际问题的分析。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
第二章 线性算子与线性泛函第一节 有界线性算子一、线性算子本段中只需假设,,X Y Z 等是K 上的向量空间。
定义: 若一个映射:T X Y →满足()(,,,)T x y Tx Tyx y X αβαβαβ+=+∈∈K ,则称T 为从X 到Y 的线性算子。
容易看出,上述等式可推广到更一般的情形:()i iiiiiT x Tx αα=∑∑。
命题2.1.1 设:T X Y →是一线性算子,则以下结论成立:(1)任给子空间A X ⊂与子空间B Y ⊂,TA 与1T B -分别为Y 与X 的子空间。
特别,(0)0T =与()R T TX =(值域)是Y 的子空间;1()(0)N T T -是X 的子空间(称为T 的核或零空间)。
(2)若向量组{}i x X ⊂线性相关,则{}i Tx 亦线性相关;若A 是X 的子空间且dim A <∞,则dim dim TA A <。
(3)T 是单射(){0}N T ⇔=。
说明:若0()Tx Y x X ≡∈∈,则称T 为零算子,就记为0;若(),Tx x x X αα≡∈∈K 为常数,则称T 为纯量算子(或相似变换,若0α≠),记作I α,当0α=与1时,I α分别是零算子和单位算子。
对线性算子可定义两种自然的运算:线性运算与乘法。
若,:T S X Y →是线性算子,,αβ∈K ,则:T S X Y αβ+→是一个线性算子,它定义为()().(2.1.2)T S x Tx Sx x X αβαβ+=+∈若:R Y Z →是另一个算子,则由()()().(2.1.3)RT x R Tx x X =∈定义出一个线性算子:RT X Z →,称它为R 与T 的乘积。
实际上,线性算子的乘积就是它们的复合。
容易原子能正验证,如上定义的运算有以下性质:11(),()();R T S RT RS R R T RT R T +=+⎧⎨+=+⎩分配律()();()Q RT QR T =结合律()()(),()RT R T R T αααα==∈K只要以上等式的一端有意义。
数学考研泛函分析重点复习泛函分析是数学中的一个重要分支,广泛应用于物理学、工程学和经济学等领域。
对于数学考研来说,泛函分析是一个重要的考点,考生需要充分理解泛函分析的概念和定理,并能够熟练运用相关的数学工具和方法。
本文将重点介绍数学考研泛函分析的复习内容,以帮助考生们取得好的考试成绩。
一、范数空间和内积空间范数空间和内积空间是泛函分析的基础概念,考生需要了解其定义和性质。
范数空间是一个线性空间,配备了一个范数函数,满足非负性、齐次性和三角不等式等性质。
内积空间是一个线性空间,配备了一个内积函数,满足对称性、线性性和正定性等性质。
在复习中,考生需要掌握范数空间和内积空间的典型例子,如欧氏空间、连续函数空间和离散函数空间等。
此外,还需要了解不同范数之间的关系,如等价范数和共轭空间等概念。
二、线性算子和算子的谱线性算子是泛函分析中的重要概念,它是一个从一个线性空间到另一个线性空间的映射。
考生需要了解线性算子的定义和性质,包括线性性、有界性和紧性等方面。
此外,还需要学习算子的特征值和特征向量的概念,以及线性算子的谱半径和谱半径公式等内容。
在复习中,考生需要重点掌握线性算子的几个典型例子,如恒等算子、零算子和正规算子等。
此外,还需要了解算子的谱分解定理和函数解析表示定理等重要定理。
三、泛函分析的基本定理泛函分析中有一些重要的基本定理,这些定理被广泛应用于实际问题的求解中。
在复习中,考生需要重点学习这些基本定理的内容和证明过程。
其中,哈尔滨预测系数定理是泛函分析中的经典定理之一,它是关于具有最佳逼近性质的问题。
考生需要了解哈尔滨预测系数定理的条件和结论,并能够应用该定理解决具体问题。
此外,邓庄子定理和泛函分析的反射原理也是泛函分析中的重要定理。
考生需要了解这两个定理的内容和证明过程,并能够应用于实际问题的求解中。
四、弱收敛和弱*收敛弱收敛和弱*收敛是泛函分析中的重要概念,用于描述函数序列或算子序列的收敛性质。
研究生泛函分析总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和函数空间的理论。
它的应用涉及到许多领域,如量子力学、信号处理、图像处理等。
在研究生阶段,我们对泛函分析进行了深入学习和研究,下面是我对泛函分析的总结:一、泛函的概念和基本理论:1.泛函的定义:泛函是定义在一个函数空间上的函数,它将函数映射到实数集上。
2.泛函的性质:线性、有界、正则。
3.泛函的例子:函数的积分、导数、极大极小值等都可以视作泛函。
4.函数空间的定义:函数空间是一组满足一定性质的函数的集合。
5.多个函数空间的关系:包含关系、并集、交集等。
二、线性算子和函数空间:1.线性算子的定义:线性算子是将一个函数空间映射到另一个函数空间的线性变换。
2.线性算子的性质:线性、有界、正则。
3.压缩映射定理:压缩映射在完备度量空间上具有不动点,且不动点唯一4.单正则线性算子:定义、性质、例子。
三、Hilbert空间:1. Hilbert空间的定义:Hilbert空间是一个完备的内积空间。
2.内积的定义和性质:正定性、对称性、线性性等。
3. Hilbert空间的例子:L2空间、离散函数空间等。
4.切比雪夫不等式:内积的有界性和L2空间中的函数收敛性。
5. 基映射和完备性:基映射是将元素展开为基函数的系数,Hilbert 空间的完备性意味着可以用无限维的元素表示。
四、广义函数和分布理论:1.广义函数的定义:广义函数是泛函的推广,它是一种对一般函数进行推广的概念。
2.分布的性质:线性、有界、正则。
3. 分布的例子:Dirac函数、Heaviside函数等。
4.分布的导数和积分:广义函数的导数和积分的定义和性质。
五、Sobolev空间:1. Sobolev空间的定义:Sobolev空间是一组定义在Lp空间中,具有弱导数的函数的集合。
2. Sobolev空间的性质:线性、有界、正则。
3. Sobolev空间的例子:H1空间、H2空间等。
数学专业的泛函分析泛函分析是数学专业中的一门重要课程,它研究的是无穷维空间中的函数和算子。
本文将从概念、理论以及应用等方面对泛函分析进行介绍。
一、泛函分析的概念与基础理论1.1 范数空间与内积空间范数空间是指一个具有范数的线性空间,范数定义了空间中向量的长度或大小。
内积空间是指一个具有内积的线性空间,内积赋予了空间中向量之间的夹角和长度。
1.2 泛函的定义与性质泛函是将向量映射到实数或复数的函数,它是对线性空间上的向量进行研究的一种方法。
泛函有线性性、有界性等基本性质。
1.3 线性算子与连续性线性算子是将一个线性空间映射到另一个线性空间的线性映射。
连续性是线性算子的重要性质,涉及到收敛性和有界性的概念。
二、泛函分析的重要理论与方法2.1 凸分析与变分法凸分析是研究凸函数、凸集以及凸优化问题的分析方法。
变分法是泛函分析的重要应用领域,涉及到极值问题的研究。
2.2 傅立叶变换与解析函数傅立叶变换是一种将函数分解成正弦和余弦函数(或复指数函数)的方法,它在泛函分析中有广泛的应用。
解析函数是具有全纯性质的函数,具有重要的解析性质。
2.3 紧算子与算子的谱紧算子是泛函分析中的一种重要算子,它在有限维空间和无穷维空间中的性质存在差异。
算子的谱是研究线性算子特征值与特征向量的集合。
三、泛函分析的应用领域3.1 偏微分方程与泛函分析泛函分析在偏微分方程的理论研究以及数值计算中有重要应用,例如变分法可以用于求解偏微分方程的边值问题。
3.2 优化与控制理论泛函分析在优化与控制理论中有广泛应用,例如凸优化问题中的约束条件可以通过泛函的理论进行研究。
3.3 统计学与概率论泛函分析在统计学和概率论中的应用主要体现在随机变量空间的研究,例如概率分布的傅立叶变换等。
四、泛函分析的发展与挑战泛函分析作为数学专业中的重要学科,其发展也面临一些挑战。
例如,非线性泛函分析和无穷维空间的研究等问题,需要进一步深入和探索。
总结:泛函分析是数学专业中的重要课程,它研究的是无穷维空间中的函数和算子。
泛函分析知识点范文泛函分析是数学中的一门学科,研究向量空间上的函数和函数空间的性质,涉及到实数或复数域上的向量空间。
泛函分析包括线性代数、实变函数分析和拓扑学等多个学科的内容,因此具有广泛的应用领域,如物理、工程、经济等。
泛函分析的核心内容包括线性空间、拓扑空间和连续映射等概念、线性算子和泛函的基本性质以及泛函分析中的基本定理等。
1.线性空间:泛函分析的基础是线性空间,也就是向量空间。
线性空间满足线性组合和分配律等性质,例如实数域或复数域上的向量空间。
线性空间中的向量可以是函数、矩阵等不同的对象。
2.拓扑空间:泛函分析中的向量空间往往是赋予了拓扑结构的空间,即拓扑向量空间。
拓扑空间是一种具有连续性质的空间,它引入了开集、闭集和收敛性等概念。
拓扑空间的拓扑结构可以通过开集、闭集、邻域、基等方式来定义。
3.连续映射:泛函分析中的重要概念是映射的连续性。
连续映射是保持拓扑结构的映射,即对于拓扑空间中的开集,其原像仍然是开集。
连续映射可以用来描述泛函和线性算子的性质。
4.线性算子和泛函:线性算子是线性空间之间的映射,它可以是有界算子或无界算子。
线性算子的基本性质包括线性性、有界性、闭图像性等。
泛函是线性空间到数域的映射,它可以看作是线性算子的特殊情况。
泛函的基本性质包括线性性、有界性、连续性等。
5. Hahn-Banach定理:Hahn-Banach定理是泛函分析中的基本定理,它是关于泛函延拓的定理。
该定理说明了任意线性子空间上的有界泛函可以延拓到整个空间上,并且保持原有泛函的范数不变。
6.可分性:可分性是拓扑空间的一个重要性质,它指的是拓扑空间中存在可数稠密子集。
可分性保证了拓扑空间中存在足够多的元素,使得在拓扑空间上可以进行良定义的运算。
7.反射空间:反射空间是泛函分析中的一类特殊线性空间,它是线性空间和拓扑空间的交叉概念。
反射空间具有良好的性质,例如有界闭集外包性、扩张定理等。
8.紧算子和迹类算子:紧算子是对有界算子的一种推广,它在泛函分析中具有重要的地位。
浅析泛函分析的基本概念泛函分析是数学中的一个重要分支,研究的是线性空间上的函数,即泛函,以及泛函之间的关系和性质。
它主要通过引入拓扑结构、度量和范数来研究函数的连续性、收敛性以及性质等问题。
在泛函分析中,有一些基本概念是不可或缺的,下面我们将对它们进行浅析。
1.线性空间:泛函分析主要研究的对象是线性空间,即一个满足线性运算封闭性的集合。
线性空间可以是有限维的,也可以是无限维的。
基于线性空间的性质,我们可以引入拓扑结构来研究函数的连续性和收敛性。
2.泛函:泛函是一个映射,将线性空间中的元素映射到实数或复数。
泛函可以是线性的或非线性的,通过泛函,我们可以对线性空间中的元素进行评估和度量,从而引出一系列概念和性质。
3.范数和内积:范数是度量线性空间中元素大小的工具,它满足一些基本性质,比如非负性、齐次性和三角不等式。
使用范数,我们可以定义度量空间,并刻画元素的连续性和收敛性。
内积是另一种度量线性空间中元素之间距离的工具,它除了满足范数的基本性质外,还满足对称性和正定性,并可以用于定义赋范线性空间。
4.收敛性:在泛函分析中,研究函数的收敛性是一个重要的问题。
我们可以在线性空间上定义一种拓扑结构,根据该结构来讨论函数序列或函数列的极限,即函数的点态收敛和均匀收敛。
通过收敛性,我们可以研究函数的连续性和连续函数的区别。
5.连续性和完备性:连续性是泛函分析中的一个核心概念,它表示函数在其中一点附近有界,当自变量趋近于其中一点时,函数也趋近于其中一值。
完备性则是对线性空间的一种性质,它表示该空间中的柯西序列会收敛于该空间中的一些元素。
连续性和完备性是泛函分析中的两个基本性质,它们与收敛性密切相关。
6.希尔伯特空间和巴拿赫空间:希尔伯特空间是一个完备的内积空间,具有良好的性质和结构,它在量子力学和信号处理等领域有广泛的应用。
巴拿赫空间同样是一个完备的赋范线性空间,它具有一致收敛的性质,并被广泛应用于函数分析和偏微分方程等领域。
专题之八:有界线性泛函的表示
12专题之八: 有界线性泛函的表示
赋范线性空间X 上的连续线性泛函的表示,就是研究*X 这个赋范线性空间能与怎样的具体空间实现同构.其研究方法是:
(1)在X 中适当选取元素集合U ,使U 中元素的线性组合在X 中稠密,集合U 称为X 中的母元组;
(2)把泛函f 在U 上的形式表示出来后,利用U 中元素的线性组合在X 中的稠密性与f 的连续性,把f 在X 上的形式表示出来.
1.设n K 是n 维实的(或复的)线性空间,},,,{21n e e e L 是它的一组基,证明:n
n K K =)*(.
2.证明:∞=l l )*(1.
【注意】类似可以证明:
(1) 1)*(l l ≠∞.(2) q p l l =)*(,其中∞<<p 1,1/1/1=+q p .
3.设0C 表示收敛于零的序列}{n x 全体,按照普通的线性运算和范数 n n
x x sup =,
0C 是Banach 空间.证明:10)*(l C =.。
第四章 习题课基本内容1.线性有界泛函:f D X ⊂→∧满足()()()f x y f x f y αβαβ+=+,线性. 若x D ∀∈,|()|||||f x M x ≤.——称f 有界. 2.线性有界泛函的范数 |()|||||sup||||x f x f x θ≠=. ||||1||||1||||sup |()|sup |()|x x f f x f x ≤===.共轭空间(Banach 空间)*()n n R R =,*()p q l l =,*([,])p q L a b L =,*H H =. 基本定理:①延括定理:G X ⊂是线性子空间,:f G X ⊂→∧是线性有界泛函,则*F X ∃∈,使(ⅰ)当x G ∈时,()()F x f x =; (ⅱ)||||||||X G F f =. ②两个推论:(Ⅰ)(Hahn —Banach 定理)设X l.n.s ,0x X ∀∈,0x θ≠,则*f X ∃∈,||||1f =,00()||||f x x =.(Ⅱ)设X l.n.s ,G X ⊂是线性子空间,0x X ∈,0(,)0d x G >,则*f X ∃∈,满足(ⅰ)x G ∀∈,()0f x =;(ⅱ)0()f x d =; (ⅲ)||||1f =. 3.线性有界算子1X ,2X ——l.n.s ,1D X ⊂线性子空间,2:T D X ⊂满足 ()()()T x y T x T y αβαβ+=+.4.线性有界算子,算子范数. 5.基本定理引理:(开映射原理):若1X ,2X 是Banach 空间,12()T B X X ∈→,且2()R T X =,则T 为开映射.① 逆算子定理:设1X ,2X 都是Banach 空间,12:T X X →满射,可逆的线性有界算子,则T 的逆算子1T -是有界算子.② 闭图像定理:设1X ,2X 都是Banach 空间,12:()T D T X X ⊂→是闭算子,其中()D T 是1X 的闭子空间,则T 是线性有界算子.③ 共鸣定理:设1X 是Banach 空间,2X 是l.n.s.{|}i X i A ∈是一族12X X →的线性有界算子,则{|||||}i T i A ∈有界1x X ⇔∀∈,{|||||}i T x i A ∈有界.6.强收敛与弱收敛① l.n.s 中的点列的强、弱收敛.(ⅰ)若||||0n x x →→,称{}n x 强收敛于x ,记为n x x →; (ⅱ)若*f X ∀∈,|()()|0n f x f x -→,称*n x x →(弱收敛). ② 有限维空间中,强弱收敛等价. ③ 弱收敛的判别(等价条件)*n x x →⇔(ⅰ){||||}n X 有界;(ⅱ)**M X ∃⊂(稠密),使*f M ∀∈,0|()()|0n f x f x -→.④ 算子列的各种收敛性:(ⅰ)一致收敛:||||0n T T -→; (ⅱ)强收敛:||||0n T x Tx -→;(ⅲ)弱收敛:||()()||0n f T x f Tx -→,*2f X ∀∈,1x X ∈. 特别泛函列n f :(ⅰ)强收敛:||||0n f f -→(对应一致收敛);(ⅱ)弱*收敛:||()()||0n f x f x -→(对应算子列强收敛).7.共轭算子设1X ,2X 是同一数域∧上的l.n.s.12()T B X X ∈→, ***21:T X X →,如果对任何1x X ∈,*2f X ∈,都有*()()()T f x f Tx = 或 *(,)(,)x T f Tx f =成立,就称*T 是T 的共轭算子(也称伴随算子).共轭算子的范数:定理(共轭算子的范数):设12()T B X X ∈→,*T 是T 的共轭算子,则*T 是**21X X →的线性有界算子,且有*||||||||T T =.定理(共轭算子的性质): (1)**()aT aT =; (2)***2112()T T T T ⋅=⋅; (3)***1212()T T T T +=+;(4)12:I X X →,则***12:I X X →. 8.自共轭算子H 是Hilbert 空间,若,x y H ∀∈,(,)(,)Tx y x Ty =.T ——自共轭算子. Th .(自共轭算子的充要条件):H 是复的Hilbert 空间,T 为自共轭算子x H ⇔∀∈,(,)Tx x 为实数.性质:(1)特征值为实数;T 1X *1X *T 2X *2X(2)不同特征值的特征向量正交.投影算子:0Px x =.(0x x z =+,0x M ∈,z M ⊥∈).举 例例1.设21,X X 是s n l ..,)(21X X T →∈,则T X X B T ⇔→∈)(21应某个内部非空的有界集为有界集。
证:)(⇐设Φ≠⊂01,A X A (0A 是A 的内部)2X TA ⊂有界,取A r a O ⊂),((Φ≠0A ),,0>r 令∞<=∈||||sup Tx Ax β,,0,1≠∈∀x X x 有),(||||1r a O x x r a ∈+-,因此β≤+-||)||||(||1x x r a T可以推出 r x r x Ta x x ra T Tx /||||2/||||||)||||(||||||β≤-+= 因此T 有界。
)(⇒显然成立。
例2.设)(Y A B T →∈,A 是X 的稠密子空间,Y 完备,则∃唯一的)(Y X B T →∈,使得||||||||,T T T T A ==。
证:X x ∈∀,取,}{A x n ⊂使)(∞→→n x x n 。
因||||||||||||n m n m x x T Tx Tx -≤-故 }{n Tx 是Y 中的Cauchy 列;由于Y 完备,必存在n n Tx ∞→lim ,记为x T ,这与}{n x 的选取无关(事实上,若)(A x x x n n ∈'→',取},,,,{}{2211 x x x x y n ''=,x y →,则}{n Ty 为Cauchy 列,x T Ty n →,则x T x T n →'),这样就定义了一个算子Y X T →:,T 显然是线性的,且T T A =。
由||||||||||||||||lim ||||lim||||x T x T Tx x T n n n n =≤=∞→∞→故 ||||||||T T ≤,故)(Y X B T →∈。
因 ||||||||||||||||,x T x T Tx A x ≤=∈∀, 故||||||||T T ≤, 因此 ||||||||T T =。
若有某)(Y X B S →∈亦满足,T S A =则X x ∈∀,取,}{A x n ⊂,使x x n →,则x T Tx Sx n n ==∞→lim ,因此T S =(唯一性得证)。
例3.设-----Y X ,...s n l ,∞=X dim ,}0{≠Y ,则存在无界线性算子Y X T →:。
证: ∞=X dim ,∴可取线性独立的可数集,}{X x A n ⊂=可设,1||||=n x 取Y y y ∈≠,0,定义算子T :ny Tx =T 可以自然的扩张到SpanA (如),Y x T x T Ty SpanA x x y ∈''+'=∈''+'=βαβα。
则X 可以表示B SpanAA X ⊕=,B x ∈∀定义0=Tx ,则T 是一线性算子,)(Y X T →∈,因+∞==≥=||||sup ||||sup ||||sup 1||||ny Tx Tx nn nx故T 是无界算子。
例4.设),0,0,,,,(21 n n x x x x T =,2}{l x x n ∈=∀。
证明 )(22l l B T n →∈,求||||n T 。
证: )(22l l B T n →∈显然。
||||||=x T n ||),0,0,,,,(21 n x x x ||,||x ≤因此1||||≤n T 。
另一方面,设}{i e 是2l 的标准正交基,则1||||=n e ,n n n e e T =,故||||1n e ==||||||||||||||||n n n n n T e T e T ==, 故 1||||≥n T ,故1||||=n T 。
例5.给定.)..(s n l X a ∈,令Ta T =)(ϕ())(X X B T →∈,证明),((X X B B →∈ϕ求||||ϕ。
解:此题中,a 是固定的, T 成了“自变量”,)()()()(S T Sa Ta a S T S T βϕαϕβαβαβαϕ+=+=+=+ ())(,X X B S T →∈ 可见:ϕX X X B →→)(是线性算子。
由||||||||||||||)(||a T Ta T ≤=ϕ ))((X X B T →∈∀得 ||||||||a ≤ϕ; ∴X X X B →→∈)(ϕ。
取 I T =,得 ||||||||||||||)(||||||||||ϕϕϕ=≤==I I Ia a∴ ||||||||ϕ≤a ; ||||||||a =∴ϕ。
例6. 设Y X ,是Banach 空间,)(Y X B T →∈是一个单射,存在X x n ⊂}{,使得)(||||1||||N n x nTx n n ∈∀≤,证明)(T R 在Y 中不是闭的。
证: 用反证法。
若)(T R 在Y 中闭,则)(T R 作为Y 的子空间是一个Banach 空间,于是)(:T R X T →是一个线性等距同构(T 是单射,2121,Tx Tx x x ≠≠),由逆算子定理知,))((1X T R B T →∈-,这与以下事实相矛盾。
.||||||||||)(||1n n n Tx n x Tx T >=-例7.设X 是,..s n l 设X x k ⊂}{,*X f ∈∀,∑∞=∞<1|)(|k k x f ,证明∑∞=≤1|||||)(|k kf M xf 。
证:定义算子l X T '→*:l X ',(*均为Banach 空间),))((k x f Tf =。
若在*X 中f f n →,在l '中)(k n a a Tf =→,则必有)()(k k n x f x f →=),(N k n a k ∈∀∞→a TF =∴。
于是由闭图像定理知),(*l X B T '∈,即得证。
M T ≤∴||||,故*X f ∈∀,.||||||||f M Tf ≤ 即∑∞=≤1|||||)(|k kf M xf 。