高考二轮复习资料专题二2.2 动能定理和动量定理(二)
- 格式:doc
- 大小:274.00 KB
- 文档页数:6
专题二动量与能量第2讲动量定理和动量守恒定律基本知能:考点一| 动量定理的应用1.冲量的三种计算方法公式法I=Ft适用于求恒力的冲量动量定理法多用于求变力的冲量或F、t未知的情况图像法F-t图线与时间轴围成的面积表示力的冲量.若F-t成线性关系,也可直接用平均力求解2.(1)公式:FΔt=m v′-m v(2)应用技巧①研究对象可以是单一物体,也可以是物体系统.②表达式是矢量式,需要规定正方向.③匀变速直线运动,如果题目不涉及加速度和位移,用动量定理比用牛顿第二定律求解更简捷.④在变加速运动中F为Δt时间内的平均冲力.⑤电磁感应问题中,利用动量定理可以求解时间、电荷量或导体棒的位移.3.流体作用的柱状模型对于流体运动,可沿流速v 的方向选取一段柱形流体,设在极短的时间Δt 内通过某一横截面S 的柱形流体的长度为Δl ,如图所示.设流体的密度为ρ,则在Δt 的时间内流过该横截面的流体的质量为Δm =ρS Δl =ρS v Δt ,根据动量定理,流体微元所受的合外力的冲量等于该流体微元动量的增量,即F Δt =Δm Δv ,分两种情况:(以原来流速v 的方向为正方向)(1)作用后流体微元停止,有Δv =-v ,代入上式有F =-ρS v 2;(2)作用后流体微元以速率v 反弹,有Δv =-2v ,代入上式有F =-2ρS v 2.[典例1] 运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。
已知运动员与装备的总质量为90 kg ,两个喷嘴的直径均为10 cm ,重力加速度大小g 取10 m/s 2,水的密度ρ=1.0×103 kg/m 3,则喷嘴处喷水的速度大约为( )A .2.7 m/sB .5.4 m/sC .7.6 m/sD .10.8 m/sB [两个喷嘴的横截面积均为S =14πd 2,根据平衡条件可知每个喷嘴对水的作用力为F =12mg ,取质量为Δm =ρS v Δt 的水为研究对象,根据动量定理得F Δt =2Δm v ,解得v =mg ρπd 2≈5.4 m/s ,选项B 正确。
动量和能量的综合应用[建体系·知关联][析考情·明策略]考情分析近几年高考对动量及动量守恒的考查多为简单的选择题形式;而动量和能量的综合性问题则以计算题形式命题,难度较大,常与曲线运动,带电粒子在电磁场中运动和导体棒切割磁感线相联系。
素养呈现1。
动量、冲量、动量定理2。
动量守恒的条件及动量守恒定律3.动力学、能量和动量守恒定律的应用素养落实1。
掌握与动量相关的概念及规律2.灵活应用解决碰撞类问题的方法3。
熟悉“三大观点”在力学中的应用技巧考点1| 动量定理和动量守恒定律冲量和动量定理(1)恒力的冲量可应用I=Ft直接求解,变力的冲量优先考虑应用动量定理求解,合外力的冲量可利用I=F合·t或I合=Δp求解。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选取统一的正方向.[典例1](2020·武汉二中阶段测试)运动员在水上做飞行运动表演,如图所示,他操控喷射式悬浮飞行器将竖直送上来的水反转180°后向下喷出,令自己悬停在空中。
已知运动员与装备的总质量为90 kg,两个喷嘴的直径均为10 cm,重力加速度大小g=10 m/s2,水的密度ρ=1。
0×103kg/m3,则喷嘴处喷水的速度大约为( )A.2.7 m/s B.5.4 m/sC.7。
6 m/s D.10。
8 m/s[题眼点拨] ①“悬停在空中”表明水向上的冲击力等于运动员与装备的总重力。
②“水反转180°”水速度变化量大小为2v。
B [两个喷嘴的横截面积均为S=错误!πd2,根据平衡条件可知每个喷嘴对水的作用力为F=错误!mg,取质量为Δm=ρSvΔt的水为研究对象,根据动量定理得FΔt=2Δmv,解得v=错误!≈5。
4 m/s,选项B正确.]动量和动量守恒定律(1)判断动量是否守恒时,要注意所选取的系统,注意区别系统内力与外力。
系统不受外力或所受合外力为零时,系统动量守恒。
动量定理和动能定理动量定理和动能定理是物理学中两个重要的定理,它们分别描述了物体运动中的动量和动能的变化规律。
本文将分别介绍这两个定理的概念、公式和应用。
一、动量定理动量定理是描述物体运动中动量变化规律的定理。
动量是物体运动的重要物理量,它等于物体的质量乘以速度。
动量定理指出,当物体受到外力作用时,它的动量会发生变化,变化的大小等于外力作用时间内物体所受的合力乘以时间。
动量定理的公式为:FΔt=Δp,其中F为物体所受的合力,Δt为外力作用时间,Δp为物体动量的变化量。
这个公式表明,当物体所受的合力越大,外力作用时间越长,物体的动量变化量就越大。
动量定理的应用非常广泛。
例如,在汽车碰撞事故中,当两辆车发生碰撞时,它们所受的合力会导致它们的动量发生变化,从而产生撞击力和损坏。
此外,在运动员比赛中,动量定理也可以用来计算运动员的速度和力量,以便评估他们的表现。
二、动能定理动能定理是描述物体运动中动能变化规律的定理。
动能是物体运动的另一个重要物理量,它等于物体的质量乘以速度的平方再乘以1/2。
动能定理指出,当物体受到外力作用时,它的动能会发生变化,变化的大小等于外力作用时间内物体所受的功。
动能定理的公式为:W=ΔK,其中W为外力所做的功,ΔK为物体动能的变化量。
这个公式表明,当外力所做的功越大,物体的动能变化量就越大。
动能定理的应用也非常广泛。
例如,在机械工程中,动能定理可以用来计算机械设备的能量转换效率,以便优化机械设计。
此外,在物理实验中,动能定理也可以用来验证能量守恒定律,以便深入理解物理学中的基本原理。
动量定理和动能定理是物理学中两个非常重要的定理,它们分别描述了物体运动中动量和动能的变化规律。
这些定理不仅可以用来解释自然现象,还可以应用于工程设计和科学研究中,具有广泛的实际意义。
第一部分 专题二 第2讲基础题——知识基础打牢1. (多选)(2022·广东汕头二模)科学家常在云室中加入铅板以降低运动粒子的速度.图示为物理学家安德森拍下的正电子在云室中运动的径迹,已知图示云室加垂直纸面方向的匀强磁场,由图可以判定( BC )A .匀强磁场方向向外B .正电子由上而下穿过铅板C .正电子在铅板上、下磁场中运动角速度相同D .正电子在铅板上、下磁场运动中动量大小相等【解析】 正电子在匀强磁场中,洛伦兹力提供向心力,则有qvB =m v 2r 解得r =mv qB,由于正电子经过铅板后速度会减小,可知正电子经过铅板后的轨迹半径减小,从图中可以看出正电子在铅板上方轨迹半径比下方轨迹半径大,故正电子由上而下穿过铅板,由左手定则判断匀强磁场方向向里,A 错误,B 正确;正电子经过铅板后速度会减小,则正电子经过铅板后动量减小,正电子在铅板上、下磁场运动中动量大小不相等,D 错误;正电子在磁场中做圆周运动的角速度为ω=v r =qBm可知正电子在铅板上、下磁场中运动角速度相同,C 正确.故选BC.2. (多选)(2022·重庆八中模拟)2022北京冬奥会期间,校园陆地冰壶也在积极的参与中.如图所示,某次投掷时,冰壶A 以速度v =3 m/s 与冰壶B 发生正碰,碰撞前后的速度均在同一直线上,若A 、B 的质量均为1 kg ,则下列说法正确的是( CD )A .碰撞后A 的速度可能为2 m/sB .碰撞后B 的速度可能为1 m/sC .碰撞后A 不可能反向运动D .碰撞后B 的速度可能为2.5 m/s【解析】 设A 、B 的质量为m ,若发生弹性碰撞,根据动量守恒得mv =mv A +mv B ,根据机械能守恒得12mv 2=12mv 2A +12mv 2B ,解得A 、B 的速度分别为v A =0,v B =v =3 m/s ,若发生完全非弹性碰撞,则mv =(m +m )v 共,解得A 、B 的共同速度为v 共=1.5 m/s ,所以碰撞后A 、B 球的速度范围分别为0~1.5 m/s,1.5 m/s ~3 m/s ,故选CD.3. (2022·广东汕头二模)汕头市属于台风频发地区,图示为风级(0~12)风速对照表.假设不同风级的风迎面垂直吹向某一广告牌,且吹到广告牌后速度立刻减小为零,则“12级”风对广告牌的最大作用力约为“4级”风对广告牌最小作用力的( A )C .27倍D .9倍【解析】 设空气的密度为ρ,广告牌的横截面积为S ,经过Δt 时间撞击在广告牌上的空气质量为Δm =ρΔV =ρSv Δt ,根据动量定理可得F Δt =Δmv ,解得F =ρSv 2,根据牛顿第三定律可知,风对广告牌作用力为F ′=F =ρSv 2∝v 2,则“12级”风对广告牌的最大作用力与“4级”风对广告牌最小作用力的比值为F 12′F 4′=36.925.52≈45,故选A.4. (2022·江苏连云港模拟)离子发动机是利用电场加速离子形成高速离子流而产生推力的航天发动机,这种发动机适用于航天器的姿态控制、位置保持等.某航天器质量M ,单个离子质量m ,带电量q ,加速电场的电压为U ,高速离子形成的等效电流强度为I ,根据以上信息计算该航天器发动机产生的推力为( B )A .I mU qB .I 2mUqC .I3mUqD .I5mUq【解析】 对离子,根据动能定理有qU =12mv 2,解得v =2qUm,根据电流的定义式则有I =Q Δt =Nq Δt ,对离子,根据动量定理有F ·Δt =Nmv ,解得F =Nmv Δt =mvIq=I 2Um q,根据牛顿第三定律,推进器获得的推力大小为F ′=I2Umq,故B 正确,A 、C 、D 错误.5. (多选)(2022·湖南长郡中学月考)如图所示,质量为m 的半圆轨道小车静止在光滑的水平地面上,其水平直径AB 长度为2R ,现将质量也为m 的小球从距A 点正上方h 0高处由静止释放,然后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为h 02(不计空气阻力).则下列说法错误的是( ACD )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为RC .小球从B 点离开小车不会再落回轨道内D .小球从B 点离开小车后又会从B 点落回轨道,再次恰好到达A 点时速度为零不会从A 点冲出【解析】 小球与小车组成的系统在水平方向不受外力,所以只是系统水平方向动量守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m2R -x t =m xt解得x =R ,故B 正确;由于小球第二次在车中滚动时,对应位置的速度减小,因此小车给小球的弹力变小,摩擦力变小,克服摩擦力做的功小于12mgh 0,因此小球一定能从A 点冲出,故D 错误;小球与小车组成的系统水平方向上动量守恒,则知小球由B 点离开小车时水平方向动量为零,小球与小车水平方向速度均为零,小球离开小车后竖直上抛运动,最后又从B 点落回,故C 错误.故选ACD.6. (多选)(2022·湖南长沙二模)如图所示一平板车A 质量为2m ,静止于光滑水平面上,其右端与竖直固定挡板相距为L .小物块B 的质量为m ,以大小为v 0的初速度从平板车左端开始向右滑行,一段时间后车与挡板发生碰撞,已知车碰撞挡板时间极短,碰撞前后瞬间的速度大小不变但方向相反.A 、B 之间的动摩擦因数为μ,平板车A 表面足够长,物块B 总不能到平板车的右端,重力加速度大小为g .L 为何值,车与挡板能发生3次及以上的碰撞( CD )A .L =v20μgB .L =v2032μgC .L =v2065μgD .L =v2096μg【解析】 在车与挡板碰撞前,有mv 0=2mv A +mv B ,如果L 为某个值L 1,使A 与挡板能发生二次碰撞,从A 开始运动到与挡板第一次碰撞前瞬间,对A 由动能定理可得μmgL 1=12·2mv 2A ,设A 第二次与挡板碰撞前瞬间A 、B 的速度大小分别为v A ′、v B ′,从A 与挡板第一次碰撞后瞬间到第二次碰撞前瞬间,由动量守恒定律可得mv B -2mv A =2mv A ′+mv B ′且第二次碰撞前,A 、B 未达到共同速度,A 在这段时间内先向左后向右运动,加速度保持不变,根据匀变速直线运动的对称性可知v A ′=v A ,A 与挡板第二次碰撞后经一段时间后A 、B 同时停止运动,即mv B ′-2mv A ′=0,联立解得L 1=v2064μg ,车与挡板能发生3次及以上的碰撞的条件L <v 2064μg,故C 、D 可能,A 、B 不可能.7. (多选)(2022·江西贵溪二模)如图所示,在光滑水平面上放置一个质量为M 的滑块,滑块的一侧是一个14弧形凹槽OAB ,凹槽半径为R ,A 点切线水平,另有一个质量为m (m >M )的小球以速度v 0从A 点冲上凹槽,重力加速度大小为g ,不计摩擦.下列说法中正确的是( AB )A .当v 0=2gR 时,小球不可能到达B 点B .当v 0=2gR 时,小球在弧形凹槽上运动的过程中,滑块的动能一直增大C .如果小球的速度足够大,小球将从滑块的左侧离开滑块后落到水平面上D .当v 0=gR 时,小球返回A 点后可能做自由落体运动【解析】 当小球能够恰好到达B 点时,设小球和滑块达到共同速度v ,根据动量守恒定律有mv 0=(m +M )v ,根据机械能守恒定律有12mv 20=12(m +M )v 2+mgR ,联立以上两式解得v 0=2M +mMgR >2gR ,所以当v 0=2gR 时,小球不能到达B 点,A 正确;当v 0=2gR 时,小球未到达B 点,小球从进入凹槽至最高点的过程中,小球对滑块的作用力始终做正功,所以滑块的动能一直增大,B 正确;如果小球的初速度足够大,小球将从B 点冲出,由于B 点的切线方向竖直,小球离开滑块时,二者水平方向的速度相同,小球相对滑块做竖直上抛运动,最后将从B 再次进入凹槽,最后从滑块的右侧离开,C 错误;当v 0=gR 时,小球再次回到凹槽底部时的速度为v 1,凹槽的速度为v 2,根据系统机械能守恒和水平方向动量守恒可得12mv 20=12mv 21+12Mv 22,mv 0=mv 1+Mv 2,解得v 1=m -M m +M v 0,因为m >M ,则可知v 1=m -M m +M v 0>0,小球返回A 点后做平抛运动,而不是自由落体运动,D 错误.故选AB.应用题——强化学以致用8. (多选)(2022·重庆二诊)喷丸处理是一种表面强化工艺,即使用丸粒轰击工件表面,提升工件疲劳强度的冷加工工艺.用于提高零件机械强度以及耐磨性、抗疲劳性和耐腐蚀性等.某款喷丸发射器采用离心的方式发射喷丸,转轮直径为530 mm ,角速度为230 rad/s ,喷丸离开转轮时的速度与转轮上最大线速度相同.喷丸撞击到器件表面后发生反弹,碰撞后垂直器件方向的动能变为碰撞前动能的81%,沿器件表面方向的速度不变.一粒喷丸的质量为3.3×10-5kg ,若喷丸与器件的作用时间相同,且不计喷丸重力,则关于图甲、乙所示的两种喷射方式的说法正确的是( AD )A .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.06 JB .喷丸发出过程喷丸发射器对一粒喷丸做的功约为0.12 JC .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶1D .图甲、乙所示一粒喷丸对器件表面的平均作用力之比为2∶ 3【解析】 喷丸离开转轮时的速度与转轮上最大线速度相同,转轮上线速度的最大值为v =ωr =60.95 m/s ,则喷丸发出过程喷丸发射器对喷丸做的功约为W =12mv 2≈0.06 J,选项A 正确,B 错误;结合题述可知,喷丸碰撞后垂直器件表面的速度大小变为碰撞前的90%,设喷丸速度为v ,垂直喷射时有F 1=0.9mv --mvt,以60°角喷射时,有F 2=0.9×32mv -⎝ ⎛⎭⎪⎫-32mv t,解得F 1F 2=23,选项C 错误,D 正确.故选AD.9. (多选)(2022·河北衡水四调)质量为3m 足够长的木板静止在光滑的水平面上,木板上依次排放质量均为m 的木块1、2、3,木块与木板间的动摩擦因数均为μ.现同时给木块1、2、3水平向右的初速度v 0、2v 0、3v 0,已知重力加速度为g .则下列说法正确的是( BCD )A .木块1相对木板静止前,木板是静止不动的B .木块1的最小速度是12v 0C .木块2的最小速度是56v 0D .木块3从开始运动到相对木板静止时对地位移是4v 2μg【解析】 木块1在木板上向右减速运动,该过程木板向右做加速运动,当木块1与木板速度相等时相对木板静止,由此可知,木块1相对静止前木板向右做加速运动,故A 错误;木块与木板组成的系统所受合外力为零,当木块1与木板共速时木板的速度最小,设木块与木板间的摩擦力为f ,则木块1的加速度a 1=f m 做匀减速运动,而木板a =3f 3m =fm做匀加速运动,则v 1=v 0-a 1t =at ,v 1=12v 0,故B 正确;设木块2的最小速度为v 2,此时木块2与木板刚刚共速,木块2此时速度的变量为2v 0-v 2,则木块3此时速度为3v 0-(2v 0-v 2)=v 0+v 2,由动量守恒定律得:m (v 0+2v 0+3v 0)=5mv 2+m (v 0+v 2),解得v 2=56v 0,故C 正确;木块与木板组成的系统动量守恒,以向右为正方向,木块3相对木板静止过程,由动量守恒定律得m (v 0+2v 0+3v 0)=(3m +3m )v 3,解得v 3=v 0,对木块3,由动能定理得-μmgx =12mv 23-12m (3v 0)2,解得x =4v20μg,故D 正确.故选BCD.10. (2022·辽宁沈阳二模)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a t 图像如图(b)所示,S 1表示0到t 1时间内A的a t 图线与坐标轴所围面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a t 图线与坐标轴所围面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( C )A .m A <mB B .S 1+S 2=S 3C .0到t 1时间内,墙对B 的冲量大小等于m A v 0D .B 运动后,弹簧的最大形变量等于x【解析】 a t 图线与坐标轴所围图形的面积大小等于物体速度的变化量,因t =0时刻A 的速度为零,t 1时刻A 的速度大小v 0=S 1,t 2时刻A 的速度大小v A =S 1-S 2,B 的速度大小v B=S3,由图(b)所示图像可知,t1时刻A的加速度为零,此时弹簧恢复原长,B开始离开墙壁,到t2时刻两者加速度均达到最大,弹簧伸长量达到最大,此时两者速度相同,即v A=v B,则S1-S2=S3,t1到t2时间内,A与B组成的系统动量守恒,取向右为正方向,由动量守恒定律得m A v0=(m A+m B)v A,联立解得m A∶m B=S3∶S2,由图知S3>S2,所以m A>m B,故A、B错误;撤去外力后A受到的合力等于弹簧的弹力,0到t1时间内,对A,由动量定理可知,合力即弹簧弹力对A的冲量大小I=m A v0,弹簧对A与对B的弹力大小相等、方向相反、作用时间相等,因此弹簧对B的冲量大小与对A的冲量大小相等、方向相反,即弹簧对B的冲量大小I弹簧=m A v0,对B,以向右为正方向,由动量定理得I墙壁-I弹簧=0,解得,墙对B的冲量大小I墙壁=m A v0,方向水平向右,故C正确;B运动后,当A、B速度相等时弹簧形变量(伸长量或压缩量)最大,此时A、B的速度不为零,A、B的动能不为零,由能量守恒定律可知,B运动后弹簧形变量最大时A、B的动能与弹簧的弹性势能之和与撤去外力时弹簧的弹性势能相等,则B 运动后弹簧形变量最大时弹簧弹性势能小于撤去外力时弹簧的弹性势能,即B运动后弹簧形变量最大时弹簧的形变量小于撤去外力时弹簧的形变量x,故D错误.11. (2022·山东押题练)2022年北京冬奥会自由式滑雪女子大跳台决赛中,中国选手谷爱凌以188.25分的成绩获得金牌.北京冬奥会报道中利用“Al+8K”技术,把全新的“时间切片”特技效果首次运用在8K直播中,更精准清晰地抓拍运动员比赛精彩瞬间,给观众带来全新的视觉体验.将谷爱凌视为质点,其轨迹视为一段抛物线图.图(a)是“时间切片”特技的图片,图(b)是谷爱凌从3 m高跳台斜向上冲出的运动示意图,图(c)是谷爱凌在空中运动时离跳台底部所在水平面的高度y随时间t变化的图线.已知t=1 s时,图线所对应的切线斜率为4(单位:m/s),重力加速度g取10 m/s2,忽略空气阻力.(1)求谷爱凌冲出跳台时竖直速度的大小;(2)求谷爱凌离跳台底部所在水平面的最大高度;(3)若谷爱凌从空中落到跳台底部所在水平地面时与地面的碰撞时间Δt=0.4 s,经缓冲没有脱离地面,水平速度不受影响,求碰撞过程中谷爱凌受到地面的平均作用力大小与自身重力大小的比值.【答案】(1)14 m/s (2)12.8 m (3)5【解析】(1)运动员竖直方向做匀减速直线运动,有v y=v y0-gty t 图线斜率表示竖直分速度,t =1 s 时v y =4 m/s解得谷爱凌冲出跳台时的竖直分速度v y 0=14 m/s 谷爱凌冲出跳台时竖直速度的大小为14 m/s.(2)最高点竖直分速度为0,竖直方向做匀减速直线运动,设离开跳台可以上升h 高度,则0-v 2y 0=-2gh代入数据解得h =9.8 m 跳台离地面高度y 0=3 m解得离跳台底部所在水平面的最大高度为y =h +y 0=12.8 m.(3)谷爱凌落到跳台底部所在水平面的竖直分速度大小v yt =2gy =16 m/s落在水平地面时,在竖直方向上,运动员受重力和水平地面的作用力,水平方向速度不变,以竖直向上为正方向,由动量定理得(F -mg )Δt =0-(-mv yt )代入数据解得Fmg=5.12. (2021·浙江6月选考)如图所示,水平地面上有一高H =0.4 m 的水平台面,台面上竖直放置倾角θ=37°的粗糙直轨道AB 、水平光滑直轨道BC 、四分之一圆周光滑细圆管道CD 和半圆形光滑轨道DEF ,它们平滑连接,其中管道CD 的半径r =0.1 m 、圆心在O 1点,轨道DEF 的半径R =0.2 m 、圆心在O 2点,O 1、D 、O 2和F 点均处在同一水平线上.小滑块从轨道AB 上距台面高为h 的P 点由静止下滑,与静止在轨道BC 上等质量的小球发生弹性碰撞,碰后小球经管道CD 、轨道DEF 从F 点竖直向下运动,与正下方固定在直杆上的三棱柱G 碰撞,碰后速度方向水平向右,大小与碰前相同,最终落在地面上Q 点.已知小滑块与轨道AB 间的动摩擦因数μ=112,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.(1)若小滑块的初始高度h =0.9 m ,求小滑块到达B 点时速度v 0的大小; (2)若小球能完成整个运动过程,求h 的最小值h min ;(3)若小球恰好能过最高点E ,且三棱柱G 的位置上下可调,求落地点Q 与F 点的水平距离x 的最大值x max .【答案】 (1)4 m/s (2)0.45 m (3)0.8 m【解析】 (1)小滑块在AB 轨道上运动,根据动能定理得mgh -μmg cos θ·hsin θ=12mv 20,解得v 0=4 m/s.(2)小滑块与小球碰撞后动量守恒,机械能守恒,因此有mv 0min =mv 块+mv 球min ,12mv 20min =12mv 2块+12mv 2球min , 解得v 块=0,v 球min =v 0min ,小球沿CDEF 轨道运动,在最高点可得mg =m v 2E minR,从C 点到E 点由机械能守恒可得 12mv 2E min +mg (R +r )=12mv 2球min , 由(1)问可知,小滑块提供给小球的初速度v 0min =43gh min ,解得h min =0.45 m.(3)设F 点到G 点的距离为y ,小球从E 点到G 点的运动,由动能定理得mg (R +y )=12mv2G -12mv 2E min , 由平抛运动可得x =v G t ,H +r -y =12gt 2,联立可得水平距离为x =20.5-y0.3+y ,由数学知识可得当0.5-y =0.3+y ,x 取最大值,最大值为x max =0.8 m.。
高三高考物理二轮复习资料2 动量和能量动量和能量是高三物理二轮复习的重要内容之一。
本文将详细介绍动量和能量的概念、公式和应用,并提供一些复习资料供参考。
一、动量的概念和公式动量是物体运动状态的量度,表示物体运动的惯性大小。
动量的公式为:动量(p)= 质量(m) ×速度(v)。
动量的单位是千克·米/秒(kg·m/s)。
二、动量守恒定律动量守恒定律是指在没有外力作用下,一个系统的总动量在运动过程中保持不变。
这意味着系统中各个物体的动量之和保持恒定。
根据动量守恒定律,我们可以解决一些与碰撞有关的问题。
三、碰撞碰撞是指物体之间发生直接接触或间接作用力的过程。
根据碰撞过程中动量守恒定律,我们可以分为完全弹性碰撞和完全非弹性碰撞。
1. 完全弹性碰撞完全弹性碰撞是指碰撞后物体之间没有能量损失的碰撞。
在完全弹性碰撞中,动量守恒定律和动能守恒定律同时成立。
根据动量守恒定律和动能守恒定律,我们可以解决完全弹性碰撞问题。
2. 完全非弹性碰撞完全非弹性碰撞是指碰撞后物体之间有能量损失的碰撞。
在完全非弹性碰撞中,动量守恒定律成立,但动能守恒定律不成立。
根据动量守恒定律,我们可以解决完全非弹性碰撞问题。
四、能量的概念和公式能量是物体具有的做功能力,是物体运动和变化的基本原因。
常见的能量形式包括动能和势能。
1. 动能动能是物体由于运动而具有的能量。
动能的公式为:动能(KE)= 1/2 ×质量(m) ×速度的平方(v²)。
动能的单位是焦耳(J)。
2. 势能势能是物体由于位置或形状而具有的能量。
常见的势能形式包括重力势能、弹性势能和化学能等。
势能的公式根据具体情况而定。
五、能量守恒定律能量守恒定律是指在一个封闭系统中,能量总量在运动过程中保持不变。
根据能量守恒定律,我们可以解决一些与能量转化和能量损失有关的问题。
六、动量和能量的应用动量和能量的概念和公式在实际生活中有广泛的应用。
二、要点解析1、理解功的六个基本问题( 1)做功与否的判断问题:要点看功的两个必需要素,第一是力;第二是力的方向上的位移。
而所谓的“力的方向上的位移”可作以下理解:当位移平行于力,则位移就是力的方向上的位的位移;当位移垂直于力,则位移垂直于力,则位移就不是力的方向上的位移;当位移与力既不垂直又不平行于力, 则可对位移进行正交分解, 其平行于力的方向上的分位移仍被称为力的方向上的位移。
( 2)对于功的计算问题:① W=FS cos α 这类方法只合用于恒力做功。
②用动能定理W=E k 或功能关系求功。
当F 为变力时,高中阶段常常考虑用这类方法求功。
这类方法的依照是:做功的过程就是能量转变的过程, 功是能的转变的量度。
假如知道某一过程中能量转变的数值,那么也就知道了该过程中对应的功的数值。
( 3)对于求功率问题: ① PW t 内的均匀功率。
②功率的计算式:所求出的功率是时间tP Fv cos ,此中 θ是力与速度间的夹角。
一般用于求某一时辰的刹时功率。
( 4)一对作使劲和反作使劲做功的关系问题:①一对作使劲和反作使劲在同一段时间内做的总功可能为正、 可能为负、 也可能为零; ②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力) 、可能为负(滑动摩擦力) ,但不行能为正。
( 5)认识常有力做功的特色 : ①重力做功和路径没关, 只与物体始末地点的高度差h 相关:W=mgh ,当末地点低于初地点时, W > 0,即重力做正功;反之重力做负功。
②滑动摩擦力做功与路径相关。
当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。
在两个接触面上因相对滑动而产生的热量QF 滑 S 相对 ,此中F 滑 为滑动摩擦力,S 相对 为接触的两个物体的相对行程。
( 6)做功意义的理解问题:做功意味着能量的转移与转变,做多少功,相应就有多少能量发生转移或转变。
2. 理解动能和动能定理(1) 动能E k1 2 是物体运动的状态量,而动能的变化K是与物理过程相关的mVE2过程量。
高考二轮复习资料专题二2.2 动能定理和动量定理(二)例1 如图2-2所示,BD 为一水平面,AC 是斜面,一物体从A 点由静止开始沿AC 滑下,滑至D 点时速度恰好为零.已知物体与各接触面间的动摩擦因素处处相同且为μ,AC 之间的水平距离BC =x ,CD =s ,重力加速度为g .试求:(1)该物体从A 点沿AC 运动到C 点的过程中克服摩擦力做的功是多少? (2)若让该物体从A 点由静止开始沿AE 滑下,最终物体静止于水平面上的F 点(图中未画出).试推断F 点在D 点的左边、右边、还是与D 点重合.(不计物体通过E 或C 点时动能的损失)例2 如图2-3所示,质量为m 的小球用长为L 的轻质细线悬于O 点,与O 点处于同一水平线上的P 点处有一根光滑的细钉,已知OP = L /2,在A 点给小球一个水平向左的初速度v 0,发现小球恰能到达跟P 点在同一竖直线上的最高点B .则:(1)小球到达B 点时的速率?(2)若不计空气阻力,则初速度v 0为多少?(3)若初速度v 0=3gL ,则在小球从A 到B 的过程中克服空气阻力做了多少功?例3 如图2-4所示,水平放置的光滑平行金属导轨,相距为l ,导轨所在平面距地面高度为h .导轨左端与电源相连,右端放有质量为m 的静止的金属棒,竖直向上的匀强磁场B .当电键S 闭合后,金属棒无转动地做平抛运动,落地点的水平距离为s ,则电路接通的瞬间,通过金属棒的电量有多少?图 2-2图 2-3b ’2.2 动能定理和动量定理(二)1.水力采煤是利用高速水流冲击煤层而进行的,假如煤层受到3.6×106N/m 2的压强冲击即可被破碎,若高速水流沿水平方向冲击煤层,不考虑水的反向溅射作用,则冲击煤层的水流速度至少应为 ( )A .30m/sB .40m/sC .45m/sD .60m/s 2.水平抛出的物体在空中飞行时,不计空气阻力,则 ( )A .在相等的时间间隔内动量的变化相同B .在任何时间内,动量变化的方向一定竖直向下C .在任何时间内,动量对时间的变化率恒定D .在刚抛出的瞬间,动量对时间的变化率为零 3.如图图 2-2-1所示,一个物体以初速度v 1由A 点开始运动,沿水平面滑到B 点时的速度为v 2,该物体以相同大小的初速度v ′1由A ′点沿图示的A ′C 和CB ′两个斜面滑到B ′点时的速度为v ′2,若水平面、斜面和物体间的动摩擦因数均相同,且A ′B ′的水平距离与AB 相等,那么v 2与v ′2之间大小关系为A .v 2= v ′2B .v 2>v ′2C .v 2<v ′2D .无法确定 ( ) 4.如图2-2-2所示,质量为m 的物体放在水平地面上,物体上方安装一劲度系数为k 的轻弹簧,在弹簧处于原长时,用手拉着其上端P 点很缓慢地向上移动,直到物体脱离地面向上移动一段距离.在这一过程中,P 点的位移为H ,则物体重力势能的增加量为( )A .mgHB .mgH +m 2g 2 /kC .mgH -m 2g 2 /kD .mgH -mg /k5.如图2-2-3所示,一物体(可看作质点)以5m/s 的初速度从A 点沿AB 圆弧下滑到B 点,速度仍为5m/s ,若物体以6m/s 的初速度从A 点沿同一路径滑到B 点,则物体到达B 点时的速率为( )A .大于6m/sB .小于6m/sC .等于6m/sD .不能确定6.“蹦极跳”是一种惊险的现代娱乐活动。
某人身系弹性绳子,绳子的另一端系于高桥上的某一点,如图2-2-4所示.a 点是弹性绳的原长位置,b 点是人静止时的平衡位置,c 点是人到达的最低点.不计空气阻力,当一个游乐者从桥上由静止开始跳向水面的过程中,下列说法中正确的有( )A .游乐者从P 至a 的过程中会感受到失重,从a 到c 会感受到超重B .从P 至c 的下落过程中,人所受重力的冲量等于弹力的冲量C .从P 至c 的下落过程中,重力对人所做的功大于弹力对人所做的功图 2-2-4图 2-2-3图 2-2-2图 2-2-D .游乐者在b 处的动能最大7.一轻杆下端固定一质量为m 的小球,上端连在轴上,并可绕轴在竖直平面内运动,不计轴及空气的阻力.当小球在最低点时受到水平冲量I 0时,刚好能到达最高点.若小球在最低点受到水平冲量I 0不断增大,则()A .小球在最高点对杆的作用力不断增大B .小球在最高点对杆的作用力先减小后增大C .小球在最低点对杆的作用力不断增大D .小球在最低点对杆的作用力先减小后增大8.如图2-2-5所示,用汽车通过定滑轮拉动水平平台上的货物,若货物的质量为m ,与平台间的动摩擦因数为μ,汽车从静止开始把货物从A 拉到B 的过程中,汽车从O 到达C 点处时速度为v ,若平台的高度为h ,滑轮的大小和摩擦不计,则这一过程中汽车对货物做的功?9.课本上运用有关知识计算了第一宇宙速度并介绍了第二、三宇宙速度,请解答有关这三个宇宙速度问题。
(1)设地球的质量M =5.89×1024kg ,地球半径R =6400km ,引力常量G =6.67×10—11N .m 2/Kg 2,试列式计算出第一宇宙速度v 1的数值.(2)当卫星的速度达到一定值时,就能脱离地球引力,不再绕地球运行.理论表明,质量为m 的物体要脱离地球引力,必须克服地球引力做功W =RGMm.你能否由此计算出第二宇宙速度v 2的值.10.如图2-2-6所示,一摆球的质量为m ,带正电荷q ,摆长为L ,固定在O 点,匀强电场水平向右,场强E =mg /q ,摆球平衡位置在点C ,与竖直方向的夹角为θ,开始时让摆球与点O 处于同一水平位置的A 点,且摆绳拉直,然后无初速释放摆球,求摆球在点C 时的速度及此时摆绳对球拉力的大小?(结果用m 、g 、L 表示)图 2-2-611.在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可大大提高工作效率。
水平传送带以恒定速率v =2m/s 运送质量为m =0.5kg 的工件,工件都是以v 0=1m/s 的初速从A 位置滑上传送带。
工件与传送带之间的动摩擦因数为μ=0.2,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带.取g =10m/s 2.求:(1)工件经多长时间停止相对滑动;(2)在正常运行状态下传送带上相邻工件间的距离; (3)摩擦力对每个工件做的功;(4)每个工件与传送带之间因摩擦而产生的热量。
2.2动能定理和动量定理(二)(答案)【例题】例1.(1)克服摩擦力做的功为 W =μmgcos θ×S AC =μmgx ,(2) F 点与 D 点重合.设斜面的高度为h ,则由动能定理得: AC 到D 过程 mgh -μmg (S BC +S CD )=0,AE 到F 过程 mgh -μmg (S BE +S EF )=0,由上两式得S BC +S CD = S BE +S EF ,因此F 点与 D 点重合.例2.(1)小球恰能到达最高点 B ,则小球到达B 点时的速率 v =2gL① (2)由动能定理得:-mg (L +2L )=221mv -2021mv ,由①②得 v 0=27gL(3)由动能定理得:-mg (L +2L )-W f =221mv -2021mv ③,由①③得 W f = mgL 411.例3.合上开关的瞬间,由动量定理得 B I l t =mv -0 ①,棒离开轨道后在空中运动时做平抛运动: t =gh2, s = vt ②,由①②得通过金属棒的电量 q =I t =hgBl m s 2.【练习】1.D 2.ABC 3.A 4.C 5.B 6.D 7.BC 8.对货物由动能定理得: W -μmgs =221B mv -0 ①,货物的位移 s =030sin h -h =h ②,在C 点时对汽车速度进行分解得货物的速度 v B =v ·cos300=v 23③,由①②③得 W =μmgh +243mv . 9.(1)由2R MmG =Rv m21得第一宇宙速度v 1=RGM=7.8km/s .图 4-15(2)由动能定理 -RMm G=0-2221mv 得第二宇宙速度v 2=RGM 2=11 km/s .10.如图所示,在平衡位置C 时悬线与竖直方向的夹角为θ 由tan θ=m gqE=1得θ=450,在A 点时合力F =2mg =ma ,a=2g ①,小球由A 向B 做匀加速直线运动,到达B 点时 v 2=2as=2a 2L ②,在B 点速度分解得沿切线方向的速度v B =vsin 450③,小球由B 到C 做匀速圆周运动 qEL sin 450-mgL (1-cos 450)=221C mv -221B mv ④,在C 点由向心力得T -2mg=mLv C2⑤,由①②③④⑤得T=32mg .11.(1)工件在传送带上匀加速:加速度a=μg ,相对传送带运动的时间t =a v v 0-=gv v μ0-=0.5s .(2)相邻工件间的距离s =(t v v 20++vt )-t v v 2+=vt =1m . (3)摩擦力对每个工件做的功为W =221mv -2021mv =0.75J . (4)每个工件与传送带之间因摩擦而产生的热量Q =f s 相对=μmg ×(vt -t v v 2+)=0.25J .。