高考物理专题汇编物理动能与动能定理(一)
- 格式:doc
- 大小:671.00 KB
- 文档页数:14
高中物理专题汇编物理动量定理(一)及解析一、高考物理精讲专题动量定理1.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;2.质量为0.2kg的小球竖直向下以6m/s的速度落至水平地面,再以4m/s的速度反向弹回,取竖直向上为正方向,(1)求小球与地面碰撞前后的动量变化;(2)若小球与地面的作用时间为0.2s,则小球受到地面的平均作用力大小?(取g=10m/s2).【答案】(1)2kg•m/s;方向竖直向上;(2)12N;方向竖直向上;【解析】【分析】【详解】(1)小球与地面碰撞前的动量为:p1=m(-v1)=0.2×(-6) kg·m/s=-1.2 kg·m/s小球与地面碰撞后的动量为p2=mv2=0.2×4 kg·m/s=0.8 kg·m/s小球与地面碰撞前后动量的变化量为Δp=p2-p1=2 kg·m/s(2)由动量定理得(F-mg)Δt=Δp所以F=pt∆∆+mg=20.2N+0.2×10N=12N,方向竖直向上.3.如图所示,两个小球A和B质量分别是m A=2.0kg,m B=1.6kg,球A静止在光滑水平面上的M点,球B在水平面上从远处沿两球的中心连线向着球A运动,假设两球相距L≤18m时存在着恒定的斥力F,L>18m时无相互作用力.当两球相距最近时,它们间的距离为d=2m,此时球B的速度是4m/s.求:(1)球B 的初速度大小; (2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间. 【答案】(1) 09B m v s= ;(2) 2.25F N =;(3) 3.56t s =【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力 (3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。
(物理)50套高考物理动能与动能定理及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在某竖直平面内,光滑曲面AB 与水平面BC 平滑连接于B 点,BC 右端连接内壁光滑、半径r =0.2m 的四分之一细圆管CD ,管口D 端正下方直立一根劲度系数为k =100N/m 的轻弹簧,弹簧一端固定,另一端恰好与管口D 端平齐,一个质量为1kg 的小球放在曲面AB 上,现从距BC 的高度为h =0.6m 处静止释放小球,它与BC 间的动摩擦因数μ=0.5,小球进入管口C 端时,它对上管壁有F N =2.5mg 的相互作用力,通过CD 后,在压缩弹簧过程中滑块速度最大时弹簧弹性势能E p =0.5J 。
取重力加速度g =10m/s 2。
求: (1)小球在C 处受到的向心力大小; (2)在压缩弹簧过程中小球的最大动能E km ; (3)小球最终停止的位置。
【答案】(1)35N ;(2)6J ;(3)距离B 0.2m 或距离C 端0.3m 【解析】 【详解】(1)小球进入管口C 端时它与圆管上管壁有大小为 2.5F mg =的相互作用力 故小球受到的向心力为2.53.5 3.511035N F mg mg mg =+==⨯⨯=向(2)在C 点,由2=c v F r向代入数据得21 3.5J 2c mv = 在压缩弹簧过程中,速度最大时,合力为零,设此时滑块离D 端的距离为0x 则有0kx mg =解得00.1m mgx k== 设最大速度位置为零势能面,由机械能守恒定律有201()2c km p mg r x mv E E ++=+得201()3 3.50.56J 2km c p E mg r x mv E =++-=+-=(3)滑块从A 点运动到C 点过程,由动能定理得2132c mg r mgs mv μ⋅-=解得BC 间距离0.5m s =小球与弹簧作用后返回C 处动能不变,小滑块的动能最终消耗在与BC 水平面相互作用的过程中,设物块在BC 上的运动路程为s ',由动能定理有212c mgs mv μ-=-'解得0.7m s '=故最终小滑动距离B 为0.70.5m 0.2m -=处停下. 【点睛】经典力学问题一般先分析物理过程,然后对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
高中物理动能与动能定理解题技巧讲解及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,粗糙水平桌面上有一轻质弹簧左端固定在A 点,自然状态时其右端位于B 点。
水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =1.0m 的圆环剪去了左上角120°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离是h =2.4m 。
用质量为m =0.2kg 的物块将弹簧由B 点缓慢压缩至C 点后由静止释放,弹簧在C 点时储存的弹性势能E p =3.2J ,物块飞离桌面后恰好P 点沿切线落入圆轨道。
已知物块与桌面间的动摩擦因数μ=0.4,重力加速度g 值取10m/s 2,不计空气阻力,求∶(1)物块通过P 点的速度大小;(2)物块经过轨道最高点M 时对轨道的压力大小; (3)C 、D 两点间的距离;【答案】(1)8m/s ;(2)4.8N ;(3)2m 【解析】 【分析】 【详解】(1)通过P 点时,由几何关系可知,速度方向与水平方向夹角为60o ,则22y v gh =o sin 60y v v=整理可得,物块通过P 点的速度8m/s v =(2)从P 到M 点的过程中,机械能守恒2211=(1cos60)+22o M mv mgR mv + 在最高点时根据牛顿第二定律2MN mv F mg R+= 整理得4.8N N F =根据牛顿第三定律可知,物块对轨道的压力大小为4.8N(3)从D 到P 物块做平抛运动,因此o cos 604m/s D v v ==从C 到D 的过程中,根据能量守恒定律212p D E mgx mv μ=+C 、D 两点间的距离2m x =2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭ 对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭3.儿童乐园里的弹珠游戏不仅具有娱乐性还可以锻炼儿童的眼手合一能力。
高中物理专题讲义动能 动能定理知识简析 一、动能如果一个物体能对外做功, 我们就说这个物体具有能量. 物体由于运动而具有的能. E k= ?mv 2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。
二、动能定理做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W 1+ W 2+W 32 2 2 2 + = v v 0 1 m 1 m 1.反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加, 物体克服外力做功等于物体动能的减小. 所以正功是加号,负功是减号。
2.“增量”是末动能减初动能. E K > 0 表示动能增加, E K < 0 表示动能减小.3、动能定理适用单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理. 由于此时内力的功也可引起物体动能向其他形式能 (比如内能) 的转化.在动能定理中.总功指各外力对物体做功的代数和. 这里我们所说的外力包括重力、 弹力、摩擦力、电场力等. 4.各力位移相同时,可求合外力做的功,各力位移不同时,分别求力做功,然后求代数和. 5.力的独立作用原理使我们有了牛顿第二定律、 动量定理、 动量守恒定律的分量表达式. 但 动能定理是标量式. 功和动能都是标量, 不能利用矢量法则分解. 故动能定理无分量式.在 处理一些问题时,可在某一方向应用动能定理. 6.动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于变 为及物体作曲线运动的情况. 即动能定理对恒力、 变力做功都适用; 直线运动与曲线运动也 均适用. 7.对动能定理中的位移与速度必须相对同一参照物. 三、由牛顿第二定律与运动学公式推出动能定理 设物体的质量为 m ,在恒力 F 作用下,通过位移为 S ,其速度由 v 0 变为 v t , 2 2 则:根据牛顿第二定律 F=ma ① 根据运动学公式 2as v t v 0②11 2 1 2由①②得: FS= 2 m v t2m v0四.应用动能定理可解决的问题恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解一般比用牛顿定律及运动学公式求解要简单的多.用动能定理还能解决一些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动等问题.规律方法1 、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能E k1及 E K2④列方程W=E K2一 E k1,必要时注意分析题目的潜在条件,补充方程进行求解.2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3) 用动能定理可求变力所做的功.在某些问题中,由于力 F 的大小、方向的变化,不能直接用 W=Fscosα求出变力做功的值,但可由动能定理求解.23、应用动能定理要注意的问题注意 1.由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.注意2.用动能定理求变力做功,在某些问题中由于力 F 的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变为 F 所做的功.注意 3.区别动量、动能两个物理概念.动量、动能都是描述物体某一时刻运动状态的状态量,动量是矢量,动能是标量.动量的改变必须经过一个冲量的过程,动能的改变必须经过一个做功的过程.动量是矢量,它的改变包括大小和方向的改变或者其中之一的改变.而动能是标量,它的改变仅是数量的变化.动量的数量与动能的数量可以通过P2=2mE K联系在一起,对于同一物体来说,动能E K变化了,动量P 必然变化了,但动量变化了动能不一定变化.例如动量仅仅是方向改变了,这样动能就不改变.对于不同的物体,还应考虑质量的多少.注意 4.动量定理与动能定理的区别,两个定理分别描述了力对物体作用效应,动量定理描述了为对物体作用的时间积累效应,使物体的动量发生变化,且动量定理是矢量武;而动能定理描述了力对物体作用的空间积累效应,使物体的动能发生变化,动能定理是标量式。
高考物理专题汇编物理动能与动能定理(一)一、高中物理精讲专题测试动能与动能定理1.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
A 套在光滑水平杆上,定滑轮离水平杆的高度为h 。
开始时让连着A 的细线与水平杆的夹角α。
现将A 由静止释放(设B 不会碰到水平杆,A 、B 均可视为质点;重力加速度为g )求:(1)当细线与水平杆的夹角为β(90αβ<<︒)时,A 的速度为多大? (2)从开始运动到A 获得最大速度的过程中,绳拉力对A 做了多少功?【答案】(1)22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)T sin h W mg h α⎛⎫=- ⎪⎝⎭ 【解析】 【详解】(2)A 、B 的系统机械能守恒P K E E ∆=∆减加2211sin sin 22A B h h mg mv mv αβ⎛⎫-=+ ⎪⎝⎭cos A B v v α=解得22111cos sin sin A gh v ααβ⎛⎫=-⎪+⎝⎭(2)当A 速度最大时,B 的速度为零,由机械能守恒定律得P K E E ∆=∆减加21sin 2Am h mg h mv α⎛⎫-= ⎪⎝⎭对A 列动能定理方程2T 12Am W mv =联立解得T sin h W mg h α⎛⎫=- ⎪⎝⎭2.如图,在竖直平面内,半径R =0.5m 的光滑圆弧轨道ABC 与粗糙的足够长斜面CD 相切于C 点,CD 与水平面的夹角θ=37°,B 是轨道最低点,其最大承受力F m =21N ,过A 点的切线沿竖直方向。
现有一质量m =0.1kg 的小物块,从A 点正上方的P 点由静止落下。
已知物块与斜面之间的动摩擦因数μ=0.5.取sin37°=0.6.co37°=0.8,g=10m/s 2,不计空气阻力。
(1)为保证轨道不会被破坏,求P 、A 间的最大高度差H 及物块能沿斜面上滑的最大距离L ; (2)若P 、A 间的高度差h =3.6m ,求系统最终因摩擦所产生的总热量Q 。
【答案】(1) 4.5m ,4.9m ;(2) 4J 【解析】 【详解】(1)设物块在B 点的最大速度为v B ,由牛顿第二定律得:2Bm v F mg m R-=从P 到B,由动能定理得21()02B mg H R mv +=- 解得H =4.5m物块从B 点运动到斜面最高处的过程中,根据动能定理得:-mg [R (1-cos37°)+L sin37°]-μmg cos37°•L =2102B mv -解得L =4.9m(3)物块在斜面上,由于mg sin37°>μmg cos37°,物块不会停在斜面上,物块最后以B 点为中心,C 点为最高点沿圆弧轨道做往复运动,由功能关系得系统最终因摩擦所产生的总热量Q =mg (h +R cos37°)解得Q =4J3.如图所示,光滑水平轨道距地面高h=0.8m ,其左端固定有半径R=0.6m 的内壁光滑的半圆管形轨道,轨道的最低点和水平轨道平滑连接.质量m 1=1.0kg 的小球A 以v 0=9m/s 的速度与静止在水平轨道上的质量m 2=2.0kg 的小球B 发生对心碰撞,碰撞时间极短,小球A 被反向弹回并从水平轨道右侧边缘飞出,落地点到轨道右边缘的水平距离s=1.2m.重力加速度g=10m/s2.求:(1)碰后小球B的速度大小v B;(2)小球B运动到半圆管形轨道最高点C时对轨道的压力.【答案】(1)6m/s(2)20N,向下【解析】【详解】(1)根据得:则规定A的初速度方向为正方向,AB碰撞过程中,系统动量守恒,以A运动的方向为正方向,有:m1v0=m2v B-m1v A,代入数据解得:v B=6m/s.(2)根据动能定理得:代入数据解得:根据牛顿第二定律得:解得:,方向向下根据牛顿第三定律得,小球对轨道最高点的压力大小为20N,方向向上.【点睛】本题考查了动能定理、动量守恒定律、牛顿第二定律的综合,涉及到平抛运动、圆周运动,综合性较强,关键要理清过程,选择合适的规律进行求解.4.如图(a)所示,倾角θ=30°的光滑固定斜杆底端固定一电量为Q=2×10﹣4C的正点电荷,将一带正电小球(可视为点电荷)从斜杆的底端(但与Q未接触)静止释放,小球沿斜杆向上滑动过程中能量随位移的变化图象如图(b)所示,其中线1为重力势能随位移变化图象,线2为动能随位移变化图象.(g=10m/s2,静电力恒量K=9×109N•m2/C2)则(1)描述小球向上运动过程中的速度与加速度的变化情况;(2)求小球的质量m和电量q;(3)斜杆底端至小球速度最大处由底端正点电荷形成的电场的电势差U;(4)在图(b)中画出小球的电势能ε 随位移s变化的图线.(取杆上离底端3m处为电势零点)【答案】(1)小球的速度先增大,后减小;小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.(2)4kg;1.11×10﹣5C;(3)4.2×106V(4)图像如图,线3即为小球电势能随位移s变化的图线;【解析】【分析】【详解】(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.(2)由线1可得:E P=mgh=mgs sinθ斜率:k=20=mg sin30°所以m=4kg当达到最大速度时带电小球受力平衡:20sin kqQ mg s θ=由线2可得s 0=1m , 得:20sin mg s q kQθ==1.11×10﹣5C(3)由线2可得,当带电小球运动至1m 处动能最大为27J . 根据动能定理:W G +W 电=△E k即有:﹣mgh +qU =E km ﹣0代入数据得:U =4.2×106V(4)图中线3即为小球电势能ε随位移s 变化的图线5.如图所示,斜面ABC 下端与光滑的圆弧轨道CDE 相切于C ,整个装置竖直固定,D 是最低点,圆心角∠DOC =37°,E 、B 与圆心O 等高,圆弧轨道半径R =0.30m ,斜面长L =1.90m ,AB 部分光滑,BC 部分粗糙.现有一个质量m =0.10kg 的小物块P 从斜面上端A 点无初速下滑,物块P 与斜面BC 部分之间的动摩擦因数μ=0.75.取sin37o =0.6,cos37o =0.8,重力加速度g =10m/s 2,忽略空气阻力.求:(1)物块从A 到C 过程重力势能的增量ΔE P ; (2)物块第一次通过B 点时的速度大小v B ;(3)物块第一次通过D 点时受到轨道的支持力大小N . 【答案】(1)-1.14J (2)4.2m/s (3)7.4N 【解析】 【分析】 【详解】(1)从A 到C 物块的重力做正功为:sin 37 1.14G W mgL J ==o故重力势能的增量 1.14P G E W J ∆=-=-(2)根据几何关系得,斜面BC 部分的长度为:cot 370.40l R m ==o 设物块第一次通过B 点时的速度为B v ,根据动能定理有:()213702B mg L l sin mv -︒=- 解得: 4.2/B v m s =(3)物块在BC 部分滑动受到的摩擦力大小为:370.60f mgcos N μ=︒= 在BC 部分下滑过程受到的合力为:370F mgsin f =︒-= 则物块第一次通过C 点时的速度为: 4.2/C B v v m s == 物块从C 到D ,根据动能定理有:()221113722D C mgR cos mv mv -︒=- 在D ,由牛顿第二定律得:2Dv N mg m R-=联立解得:7.4N N = 【点睛】本题考查了动能定理与牛顿第二定律的综合运用,运用动能定理解题关键确定出研究的过程,分析过程中有哪些力做功,再根据动能定理列式求解.6.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件.【答案】(1)B v =;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-… 【解析】 【分析】 【详解】(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:21cos 1cos cos sin 2R mgR mg mv θθμθθ-= 解得:B v =物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有cos cos 0mgR mgL θμθ-=得物体在AB 轨道上通过的总路程为RL μ=(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:221(1cos )2v mgR m θ-=在E 点,由牛顿第二定律有22N mv F mg R-= 解得物体受到的支持力(32cos )N F mg θ=-根据牛顿第三定律,物体对轨道的压力大小为(32cos )N N F F mg θ'==-,方向竖直向下.(3)设物体刚好到达D 点时的速度为D v 此时有2Dmv mg R= 解得:D v =设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:2001[sin (1cos )]cos 2D mg L R mg L mv θθμθ-+-=联立解得:0(32cos )2(sin cos )RL θθμθ+=-则:(32cos )2(sin cos )R L θθμθ+-… 答案:(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-…7.如图所示,半径R = 0.1m 的竖直半圆形光滑轨道BC 与水平面AB 相切,AB 距离x = 1m .质量m = 0.1kg 的小滑块1放在半圆形轨道末端的B 点,另一质量也为m = 0.1kg 的小滑块2,从A 点以0210v =m/s 的初速度在水平面上滑行,两滑块相碰,碰撞时间极短,碰后两滑块粘在一起滑上半圆形轨道.已知滑块2与水平面之间的动摩擦因数μ= 0.2.取重力加速度210m/s g =.两滑块均可视为质点.求(1)碰后瞬间两滑块共同的速度大小v ; (2)两滑块在碰撞过程中损失的机械能E ∆; (3)在C 点轨道对两滑块的作用力F .【答案】(1)v =3m/s (2)ΔE = 0.9J (3)F =8N ,方向竖直向下 【解析】 【详解】(1)物块2由A 到B 应用动能定理:22101122mgx mv mv μ-=- 解得v 1=6m/s两滑块碰撞前后动量守恒,根据动量守恒有:12mv mv = 解得:3/v m s = 方向:水平向右(2)两滑块在碰撞过程中损失的机械能22111222E mv mv ∆=-⨯ 解得:0.9J E ∆=(3)两滑块从B 到C 机械能守恒,根据机械能守恒定律有:221122222c mv mv mgR ⨯=⨯+ 两滑块在C 点时:2N 22Cv mg F m R+=解得:N 8N F =据牛顿第三定律可得:在C 点轨道对两滑块的作用力F =8N ,方向竖直向下8.图示为一过山车的简易模型,它由水平轨道和在竖直平面内的光滑圆形轨道组成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m ,一质量m =1kg 的小物块(视为质点)从左側水平轨道上的A 点以大小v 0=12m /s 的初速度出发,通过竖直平面的圆形轨道后,停在右侧水平轨道上的D 点.已知A 、B 两点间的距离L 1=5.75m ,物块与水平轨道写的动摩擦因数μ=0.2,取g =10m /s 2,圆形轨道间不相互重叠,求:(1)物块经过B 点时的速度大小v B ; (2)物块到达C 点时的速度大小v C ;(3)BD 两点之间的距离L 2,以及整个过程中因摩擦产生的总热量Q 【答案】(1) 11/m s (2) 9/m s (3) 72J 【解析】 【分析】 【详解】(1)物块从A 到B 运动过程中,根据动能定理得:22101122B mgL mv mv μ-=- 解得:11/B v m s =(2)物块从B 到C 运动过程中,根据机械能守恒得:2211·222B C mv mv mg R =+ 解得:9/C v m s =(3)物块从B 到D 运动过程中,根据动能定理得:22102B mgL mv μ-=- 解得:230.25L m =对整个过程,由能量守恒定律有:20102Q mv =- 解得:Q=72J 【点睛】选取研究过程,运用动能定理解题.动能定理的优点在于适用任何运动包括曲线运动.知道小滑块能通过圆形轨道的含义以及要使小滑块不能脱离轨道的含义.9.一质量为m =0.5kg 的电动玩具车,从倾角为θ=30°的长直轨道底端,由静止开始沿轨道向上运动,4s 末功率达到最大值,之后保持该功率不变继续运动,运动的v -t 图象如图所示,其中AB 段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g =10m/s 2.(1)求玩具车运动过程中的最大功率P ;(2)求玩具车在4s 末时(图中A 点)的速度大小v 1; (3)若玩具车在12s 末刚好到达轨道的顶端,求轨道长度L . 【答案】(1)P =40W (2)v 1=8m/s (3)L =93.75m 【解析】 【详解】(1)由题意得,当玩具车达到最大速度v =10m/s 匀速运动时, 牵引力:F =mg sin30°+0.3mg 由P =Fv代入数据解得:P =40W(2)玩具车在0-4s 内做匀加速直线运动,设加速度为a ,牵引力为F 1, 由牛顿第二定律得:F 1-(mg sin30°+0.3mg )=ma 4s 末时玩具车功率达到最大,则P =F 1v 1 由运动学公式v 1=at 1 (其中t 1=4s ) 代入数据解得:v 1=8m/s(3)玩具车在0~4s 内运动位移x 1=2112at得:x 1=16m玩具车在4~12s 功率恒定,设运动位移为x 2,设t 2=12s 木时玩具车速度为v ,由动能定理得P (t 2-t 1)-(mg sin30°+0.3mg )x 2=2211122mv mv - 代入数据解得:x 2=77.75m所以轨道长度L =x 1+x 2=93.75m10.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ;(2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m .【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v =【解析】【详解】(1)在P 点,根据牛顿第二定律:2P P v mg N m R+= 解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒- 联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒- 解得:6m/s m v =11.如图所示,一轻质弹簧左端固定在轻杆的A 点,右端与一质量1m kg =套在轻杆的小物块相连但不栓接,轻杆AC 部分粗糙糙,与小物块间动摩擦因数02μ=.,CD 部分为一段光滑的竖直半圆轨道.小物块在外力作用下压缩弹簧至B 点由静止释放,小物块恰好运动到半圆轨道最高点D ,5BC m =,小物块刚经过C 点速度4v m s =/,g 取210/m s ,不计空气阻力,求:(1)半圆轨道的半径R ;(2)小物块刚经过C 点时对轨道的压力;(3)小物块在外力作用下压缩弹簧在B 点时,弹簧的弹性势能p E .【答案】⑴0.4m ⑵50N 方向垂直向下(3)18J【解析】【分析】【详解】(1)物块由C 点运动到D 点,根据机械能守恒定律2122mgR mv =R=0.4m⑵小物块刚过C 点时F N -mg = m 2v R所以250N v F mg m N R=+= 根据牛顿第三定律知小物块刚经过C 点时对轨道的压力:50N F F N ==方向垂直向下(3)小物块由B 点运动到C 点过程中,根据动能定理212BC W mgL mv μ-=弹 带入数据解得:=18W J 弹 所以18p E J =.12.一束初速度不计的电子流在经U =5000V 的加速电压加速后在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若板间距离d =1.0cm ,板长l =5.0cm ,电子电量e =191.610-⨯C ,那么(1)电子经过加速电场加速后的动能为多少?(2)要使电子能从平行板间飞出,两个极板上最多能加多大的电压?【答案】(1) 16810k E -=⨯J (2)要使电子能飞出,所加电压最大为400V【解析】【详解】(1)加速过程,由动能定理得:2012ls E eU mv ==① 解得:5000k E =eV 16810-=⨯J(2)在加速电压一定时,偏转电压U 越大,电子在极板间的偏转距离就越大当偏转电压大到使电子刚好擦着极板的边缘飞出,此时的偏转电压,即为题目要求的最大电压. 进入偏转电场,电子在平行于板面的方向上做匀速运动0l v t =② 在垂直于板面的方向上做匀加速直线运动,加速度:F eU a m dm'==③ 偏转距离212y at =④能飞出的条件为12y d ≤⑤解①~⑤式得:()()222222225000 1.01024.0105.010UdUl--⨯⨯⨯'==⨯⨯…V即要使电子能飞出,所加电压最大为400V。