高考动能定理专题
- 格式:doc
- 大小:657.00 KB
- 文档页数:23
高考物理动能与动能定理题20套(带答案)含解析一、高中物理精讲专题测试动能与动能定理1.如图所示,光滑水平平台AB 与竖直光滑半圆轨道AC 平滑连接,C 点切线水平,长为L =4m 的粗糙水平传送带BD 与平台无缝对接。
质量分别为m 1=0.3kg 和m 2=1kg 两个小物体中间有一被压缩的轻质弹簧,用细绳将它们连接。
已知传送带以v 0=1.5m/s 的速度向左匀速运动,小物体与传送带间动摩擦因数为μ=0.15.某时剪断细绳,小物体m 1向左运动,m 2向右运动速度大小为v 2=3m/s ,g 取10m/s 2.求:(1)剪断细绳前弹簧的弹性势能E p(2)从小物体m 2滑上传送带到第一次滑离传送带的过程中,为了维持传送带匀速运动,电动机需对传送带多提供的电能E(3)为了让小物体m 1从C 点水平飞出后落至AB 平面的水平位移最大,竖直光滑半圆轨道AC 的半径R 和小物体m 1平抛的最大水平位移x 的大小。
【答案】(1)19.5J(2)6.75J(3)R =1.25m 时水平位移最大为x =5m 【解析】 【详解】(1)对m 1和m 2弹开过程,取向左为正方向,由动量守恒定律有:0=m 1v 1-m 2v 2解得v 1=10m/s剪断细绳前弹簧的弹性势能为:2211221122p E m v m v =+ 解得E p =19.5J(2)设m 2向右减速运动的最大距离为x ,由动能定理得:-μm 2gx =0-12m 2v 22 解得x =3m <L =4m则m 2先向右减速至速度为零,向左加速至速度为v 0=1.5m/s ,然后向左匀速运动,直至离开传送带。
设小物体m 2滑上传送带到第一次滑离传送带的所用时间为t 。
取向左为正方向。
根据动量定理得:μm 2gt =m 2v 0-(-m 2v 2)解得:t =3s该过程皮带运动的距离为:x 带=v 0t =4.5m故为了维持传送带匀速运动,电动机需对传送带多提供的电能为:E =μm 2gx 带解得:E =6.75J(3)设竖直光滑轨道AC 的半径为R 时小物体m 1平抛的水平位移最大为x 。
考点规范练16 动能定理及其应用一、单项选择题1.下列有关动能的说法正确的是( ) A.物体只有做匀速运动时,动能才不变 B.物体的动能变化时,速度不一定变化C.物体做平抛运动时,水平速度不变,动能不变D.物体做自由落体运动时,物体的动能增加 答案:D解析:物体只要速率不变,动能就不变,A 错误;物体的动能变化时,速度的大小一定变化,B 错误;物体做平抛运动时,速率增大动能就会增大,C 错误;物体做自由落体运动时,其速率增大,物体的动能增加,D 正确。
2.质量m=2 kg 的物体,在光滑水平面上以v 1=6 m/s 的速度匀速向西运动,若有一个F=8 N 方向向北的恒力作用于物体,在t=2 s 内物体的动能增加了( ) A.28 J B.64 J C.32 J D.36 J 答案:B解析:由于力F 与速度v 1垂直,物体做曲线运动,其两个分运动为向西的匀速运动和向北的匀加速直线运动,对匀加速运动:a=Fm =4m/s 2,v 2=at=8m/s,2s 末物体的速度v=√v 12+v 22=10m/s,2s 内物体的动能增加了ΔE k =12mv 2-12mv 12=64J,故选项B 正确。
3.一个质量为0.3 kg 的弹性小球,在光滑水平面上以6 m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同,则下列碰撞前后小球速度变化量的大小Δv 和碰撞过程中小球的动能变化量ΔE k 正确的是( ) A .Δv=0 B .Δv=12 m/s C .ΔE k =1.8 J D .ΔE k =10.8 J 答案:B解析:速度是矢量,规定反弹后速度方向为正,则Δv=6m/s-(-6m/s)=12m/s,故B 正确,A 错误;动能是标量,速度大小不变,动能不变,则ΔE k =0,C 、D 错误。
4.光滑斜面上有一个小球自高为h 的A 处由静止开始滚下,抵达光滑水平面上的B 点时速度大小为v 0。
高考物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图所示是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O 点、圆心角 θ=60°,半径OC 与水平轨道CD 垂直,滑板与水平轨道CD 间的动摩擦因数μ=0.2.某运动员从轨道上的A 点以v 0=3m/s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为m =60kg ,B 、E 两点与水平轨道CD 的竖直高度分别为h =2m 和H =2.5m.求:(1)运动员从A 点运动到B 点过程中,到达B 点时的速度大小v B ; (2)水平轨道CD 段的长度L ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,请求出最后停止的位置距C 点的距离. 【答案】(1)v B =6m/s (2) L =6.5m (3)停在C 点右侧6m 处 【解析】 【分析】 【详解】(1)在B 点时有v B =cos60︒v ,得v B =6m/s (2)从B 点到E 点有2102B mgh mgL mgH mv μ--=-,得L =6.5m (3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处有21'202B mgh mgh mg L mv μ--⋅=-,得h ′=1.2m<h =2 m ,故第一次返回时,运动员不能回到B 点,从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得2102B mgh mgs mv μ-=-,得s =19m ,s =2L +6 m ,故运动员最后停在C 点右侧6m 处.2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
2024全国高考真题物理汇编动能和动能定理一、单选题 1.(2024江西高考真题)两个质量相同的卫星绕月球做匀速圆周运动,半径分别为1r 、2r ,则动能和周期的比值为( )A.k121k212,E r T E r T ==B.k111k222,E r T E r T ==C.k121k212,E r T E r T ==D.k111k222E r T E r T ==,2.(2024北京高考真题)水平传送带匀速运动,将一物体无初速度地放置在传送带上,最终物体随传送带一起匀速运动。
下列说法正确的是( ) A .刚开始物体相对传送带向前运动 B .物体匀速运动过程中,受到静摩擦力 C .物体加速运动过程中,摩擦力对物体做负功 D .传送带运动速度越大,物体加速运动的时间越长3.(2024安徽高考真题)某同学参加户外拓展活动,遵照安全规范,坐在滑板上,从高为h 的粗糙斜坡顶端由静止下滑,至底端时速度为v .已知人与滑板的总质量为m ,可视为质点.重力加速度大小为g ,不计空气阻力.则此过程中人与滑板克服摩擦力做的功为( ) A .mghB .212mvC .212mgh mv +D .212mgh mv -4.(2024测试,测试时配重小车被弹射器从甲板上水平弹出后,落到海面上。
调整弹射装置,使小车水平离开甲板时的动能变为调整前的4倍。
忽略空气阻力,则小车在海面上的落点与其离开甲板处的水平距离为调整前的( ) A .0.25倍B .0.5倍C .2倍D .4倍5.(2024福建高考真题)先后两次从高为 1.4m OH =高处斜向上抛出质量为0.2kg m =同一物体落于12Q Q 、,测得128.4m,9.8m OQ OQ ==,两轨迹交于P 点,两条轨迹最高点等高且距水平地面高为3.2m ,下列说法正确的是( )A4 B .第一次过P 点比第二次机械能少1.3J C .落地瞬间,第一次,第二次动能之比为72:85D .第二次抛出时速度方向与落地瞬间速度方向夹角比第一次大二、解答题 6.(2024全国高考真题)将重物从高层楼房的窗外运到地面时,为安全起见,要求下降过程中重物与楼墙保持一定的距离。
考点1:功和功率1.一个人乘电梯从1楼到18楼,在此过程中经历了先加速,后匀速,再减速的运动过程,则电梯支持力对人做功情况是( )A .始终做正功B .加速时做正功,匀速时不做功,减速时做负功C .加速时做正功,匀速和减速时做负功D .加速和匀速时做正功,减速时做负功2.起重机以1 m/s 2的加速度将质量为1 000 kg 的货物由静止开始匀加速向上提升,g 取10 m/s 2,则在1 s 内起重机对货物做的功是A .500 JB .4 500 JC .5 000 JD .5 500 J3.一质量为m 的木块静止在光滑的水平面上,从t=0开始,将一个大小为F 的水平恒力作用在该木块上。
在t=t 1时刻力F 的功率是A .122t m FB .2122t mF C .12t m F D .212t m F 4.某车以相同功率在两种不同的水平路面上行驶,受到的阻力分别为车重的k 1和k 2倍,最大速率分别为v 1和v 2,则A .v 2=k 1v 1B .1212v k k v =C .1122v k k v = D .v 2=k 2v 1 例.一列火车总质量m=500t ,发动机的额定功率P=6×105 W ,在轨道上行驶时,轨道对列车的阻力F f 是车重的0.01倍。
(1)求列车在水平轨道上行驶的最大速度;(2)在水平轨道上,发动机以额定功率P 工作,求当行驶速度为v 1=1m/s 和v 2=10m/s 时,列车的瞬时加速度a 1、a 2的大小;(3)列车在水平轨道上以36 km/h 的速度匀速行驶时,求发动机的实际功率P′;(4)若列车从静止开始,保持0.5 m/s 2的加速度做匀加速运动,求这一过程维持的最长时间。
5.图示为修建高层建筑常用的塔式起重机。
在起重机将质量m=5×103kg 的重物竖直吊起的过程中,重物由静止开始向上作匀加速直线运动,加速度a=0.2m/s 2,当起重机输出功率达到其允许的最大值时,保持该功率直到重物做v m =1.02m/s 的匀速运动,不计额外功,求:(1)起重机允许输出的最大功率(2)重物做匀加速运动所经历的时间和起重机在第2s 末的输出功率6.一质量为1kg 的质点静止于光滑水平面上,从t=0时起,第1s 内受到2N 的水平外力作用,第2s 内受到同方向的1N 的外力作用,下列判断正确的是A .0~2s 内外力的平均功率是9/4WB .第2s 内外力所做的功是5/4JC .第2s 末外力的瞬时功率最大D .第1s 内与第2s 内质点动能增加量的比值是4/57.质量为m 的物体静止在光滑水平面上,从t=0时刻开始受到水平力的作用。
高考物理动能定理的综合应用解题技巧及经典题型及练习题(含答案)一、高中物理精讲专题测试动能定理的综合应用1.质量 1.5m kg =的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行 2.0t s =停在B 点,已知A 、B 两点间的距离 5.0s m =,物块与水平面间的动摩擦因数0.20μ=,求恒力F 多大.(210/g m s =)【答案】15N 【解析】 设撤去力前物块的位移为,撤去力时物块的速度为,物块受到的滑动摩擦力对撤去力后物块滑动过程应用动量定理得由运动学公式得对物块运动的全过程应用动能定理由以上各式得 代入数据解得思路分析:撤去F 后物体只受摩擦力作用,做减速运动,根据动量定理分析,然后结合动能定律解题试题点评:本题结合力的作用综合考查了运动学规律,是一道综合性题目.2.如图,I 、II 为极限运动中的两部分赛道,其中I 的AB 部分为竖直平面内半径为R 的14光滑圆弧赛道,最低点B 的切线水平; II 上CD 为倾角为30°的斜面,最低点C 处于B 点的正下方,B 、C 两点距离也等于R.质量为m 的极限运动员(可视为质点)从AB 上P 点处由静止开始滑下,恰好垂直CD 落到斜面上.求:(1) 极限运动员落到CD 上的位置与C 的距离; (2)极限运动员通过B 点时对圆弧轨道的压力; (3)P 点与B 点的高度差.【答案】(1)45R (2)75mg ,竖直向下(3)15R【解析】 【详解】(1)设极限运动员在B 点的速度为v 0,落在CD 上的位置与C 的距离为x ,速度大小为v ,在空中运动的时间为t ,则xcos300=v 0t R-xsin300=12gt 2 0tan 30v gt =解得x=0.8R(2)由(1)可得:025v gR =通过B 点时轨道对极限运动员的支持力大小为F N20N v F mg m R-=极限运动员对轨道的压力大小为F N ′,则F N ′=F N , 解得'75N F mg =,方向竖直向下; (3) P 点与B 点的高度差为h,则mgh=12mv 02 解得h=R/53.我国将于2022年举办冬奥会,跳台滑雪是其中最具观赏性的项目之一.如图1-所示,质量m =60 kg 的运动员从长直助滑道AB 的A 处由静止开始以加速度a =3.6 m/s 2匀加速滑下,到达助滑道末端B 时速度v B =24 m/s ,A 与B 的竖直高度差H =48 m .为了改变运动员的运动方向,在助滑道与起跳台之间用一段弯曲滑道衔接,其中最低点C 处附近是一段以O 为圆心的圆弧.助滑道末端B 与滑道最低点C 的高度差h =5 m ,运动员在B 、C 间运动时阻力做功W =-1530 J ,g 取10 m/s 2.(1)求运动员在AB 段下滑时受到阻力F f 的大小;(2)若运动员能够承受的最大压力为其所受重力的6倍,则C 点所在圆弧的半径R 至少应为多大?【答案】(1)144 N (2)12.5 m 【解析】试题分析:(1)运动员在AB 上做初速度为零的匀加速运动,设AB 的长度为x ,斜面的倾角为α,则有 v B 2=2ax根据牛顿第二定律得 mgsinα﹣F f =ma 又 sinα=H x由以上三式联立解得 F f=144N(2)设运动员到达C点时的速度为v C,在由B到达C的过程中,由动能定理有mgh+W=12mv C2-12mv B2设运动员在C点所受的支持力为F N,由牛顿第二定律得 F N﹣mg=m2 C v R由运动员能承受的最大压力为其所受重力的6倍,即有 F N=6mg 联立解得 R=12.5m考点:牛顿第二定律;动能定理【名师点睛】本题中运动员先做匀加速运动,后做圆周运动,是牛顿第二定律、运动学公式、动能定理和向心力的综合应用,要知道圆周运动向心力的来源,涉及力在空间的效果,可考虑动能定理.4.在某电视台举办的冲关游戏中,AB是处于竖直平面内的光滑圆弧轨道,半径R=1.6m,BC是长度为L1=3m的水平传送带,CD是长度为L2=3.6m水平粗糙轨道,AB、CD 轨道与传送带平滑连接,参赛者抱紧滑板从A处由静止下滑,参赛者和滑板可视为质点,参赛者质量m=60kg,滑板质量可忽略.已知滑板与传送带、水平轨道的动摩擦因数分别为μ1=0.4、μ2=0.5,g取10m/s2.求:(1)参赛者运动到圆弧轨道B处对轨道的压力;(2)若参赛者恰好能运动至D点,求传送带运转速率及方向;(3)在第(2)问中,传送带由于传送参赛者多消耗的电能.【答案】(1)1200N,方向竖直向下(2)顺时针运转,v=6m/s(3)720J【解析】(1) 对参赛者:A到B过程,由动能定理mgR(1-cos60°)=12m2Bv解得v B=4m/s在B处,由牛顿第二定律N B-mg=m2 B v R解得N B=2mg=1 200N根据牛顿第三定律:参赛者对轨道的压力N′B=N B=1 200N,方向竖直向下.(2) C到D过程,由动能定理-μ2mgL2=0-1 2 m2Cv解得v C=6m/sB到C过程,由牛顿第二定律μ1mg=ma解得a=4m/s2(2分)参赛者加速至v C历时t=C Bv va-=0.5s位移x1=2B Cv v+t=2.5m<L1参赛者从B到C先匀加速后匀速,传送带顺时针运转,速率v=6m/s.(3) 0.5s内传送带位移x2=vt=3m参赛者与传送带的相对位移Δx=x2-x1=0.5m传送带由于传送参赛者多消耗的电能E=μ1mgΔx+12m2Cv-12m2Bv=720J.5.如图所示,一质量为m的滑块从高为h的光滑圆弧形槽的顶端A处无初速度地滑下,槽的底端B与水平传送带相接,传送带的运行速度恒为v0,两轮轴心间距为L,滑块滑到传送带上后做匀加速运动,滑到传送带右端C时,恰好加速到与传送带的速度相同,求:(1)滑块到达底端B时的速度大小v B;(2)滑块与传送带间的动摩擦因数μ;(3)此过程中,由于克服摩擦力做功而产生的热量Q.【答案】(12gh2)222v ghglμ-=(3)(222m v gh-【解析】试题分析:(1)滑块在由A到B的过程中,由动能定理得:212Bmgh mv-=,解得:2Bghν=(2)滑块在由B到C的过程中,由动能定理得:μmgL=12mv02−12mv B2,解得,222v ghgLμ-=;(3)产生的热量:Q=μmgL 相对,()2200(2)2B gh L g相对=νννμ--=(或200(2) gh L ν-), 解得,201(2)2Q m gh ν-=; 考点:动能定理【名师点睛】本题考查了求物体速度、动摩擦因数、产生的热量等问题,分析清楚运动过程,熟练应用动能定理即可正确解题.6.如图甲所示,静止在水平地面上一个质量为m =4kg 的物体,其在随位移均匀减小的水平推力作用下运动,推力F 随位移x 变化的图象如图乙所示.已知物体与地面之间的动摩擦因数为μ=0.5,g =10m/s 2.求:(1)运动过程中物体的最大加速度大小为多少; (2)距出发点多远时物体的速度达到最大; (3)物体最终停在何处?【答案】(1)20m/s 2(2)3.2m (3)10m 【解析】 【详解】(1)物体加速运动,由牛顿第二定律得:F -μmg =ma当推力F =100N 时,物体所受的合力最大,加速度最大,代入数据得:2max 20m/s Fa g mμ=-=, (2)由图象得出,推力F 随位移x 变化的数值关系为:F =100 – 25x ,速度最大时,物体加速度为零,则F=μmg=20N ,即x = 3.2m(3)F 与位移x 的关系图线围成的面积表示F 所做的功,即01200J 2F W Fx ==对全过程运用动能定理,W F −μmgx m =0代入数据得:x m =10m7.如图所示,倾角 θ=30°的斜面足够长,上有间距 d =0.9 m 的 P 、Q 两点,Q 点以上斜面光滑,Q 点以下粗糙。
高考动能定理专题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2010高考物理复习精品学案―动能定理和机械能守恒定律【命题趋向】《大纲》对本部分考点均为Ⅱ类要求,即对所列知识要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用。
功能关系一直都是高考的“重中之重”,是高考的热点和难点,涉及这部分内容的考题不但题型全、分量重,而且还经常有高考压轴题。
考查最多的是动能定理和机械能守恒定律。
易与本部分知识发生联系的知识有:牛顿运动定律、圆周运动、带电粒子在电场和磁场中的运动等,一般过程复杂、难度大、能力要求高。
本考点的知识还常考查考生将物理问题经过分析、推理转化为数学问题,然后运用数学知识解决物理问题的能力。
所以复习时要重视对基本概念、规律的理解掌握,加强建立物理模型、运用数学知识解决物理问题的能力。
【考点透视】一、理解功的概念1.功是力的空间积累效应。
它和位移相对应。
计算功的方法有两种:⑴按照定义求功。
即:W=Fscosθ。
在高中阶段,这种方法只适用于恒力做功。
当20πθ<≤时F 做正功,当2πθ=时F 不做功,当πθπ≤<2时F 做负功。
这种方法也可以说成是:功等于恒力和沿该恒力方向上的位移的乘积。
⑵用动能定理W=ΔE k 或功能关系求功。
当F 为变力时,高中阶段往往考虑用这种方法求功。
这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。
如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。
2.会判断正功、负功或不做功。
判断方法有:○1用力和位移的夹角α判断;○2用力和速度的夹角θ判断定;○3用动能变化判断. 3.了解常见力做功的特点:重力(或电场力)做功和路径无关,只与物体始末位置的高度差h (或电势差)有关:W=mgh (或W=qU ),当末位置低于初位置时,W >0,即重力做正功;反之则重力做负功。
滑动摩擦力做功与路径有关。
当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。
在弹性范围内,弹簧做功与始末状态弹簧的形变量有关系。
二、深刻理解功率的概念1.功率的物理意义:功率是描述做功快慢的物理量。
2.功率的定义式:tW P =,所求出的功率是时间t 内的平均功率。
3.功率的计算式:P=Fvcosθ,其中θ是力与速度间的夹角。
该公式有两种用法:①求某一时刻的瞬时功率。
这时F 是该时刻的作用力大小,v 取瞬时值,对应的P 为F 在该时刻的瞬时功率;②当v 为某段位移(时间)内的平均速度时,则要求这段位移(时间)内F 必须为恒力,对应的P 为F 在该段时间内的平均功率。
4.重力的功率可表示为P G =mgV y ,即重力的瞬时功率等于重力和物体在该时刻的竖直分速度之积。
三、深刻理解动能的概念,掌握动能定理。
1.动能221mV E k =是物体运动的状态量,而动能的变化ΔE K 是与物理过程有关的过程量。
2.动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为W=ΔE K .动能定理建立起过程量(功)和状态量(动能)间的联系。
这样,无论求合外力做的功还是求物体动能的变化,就都有了两个可供选择的途径。
功和动能都是标量,动能定理表达式是一个标量式,不能在某一个方向上应用动能定理。
四、掌握机械能守恒定律。
1.机械能守恒定律的两种表述⑴在只有重力做功的情形下,物体的动能和重力势能发生相互转化,但机械能的总量保持不变。
⑵如果没有摩擦和介质阻力,物体只发生动能和重力势能的相互转化时,机械能的总量保持不变。
2.对机械能守恒定律的理解:①机械能守恒定律的研究对象一定是系统,至少包括地球在内。
通常我们说“小球的机械能守恒”其实一定也就包括地球在内,因为重力势能就是小球和地球所共有的。
另外小球的动能中所用的v ,也是相对于地面的速度。
②当研究对象(除地球以外)只有一个物体时,往往根据是否“只有重力做功”来判定机械能是否守恒;当研究对象(除地球以外)由多个物体组成时,往往根据是否“没有摩擦和介质阻力”来判定机械能是否守恒。
③“只有重力做功”不等于“只受重力作用”。
在该过程中,物体可以受其它力的作用,只要这些力不做功或除重力之外的力做功的代数和为零。
2.机械能守恒定律的各种表达形式 ⑴222121v m h mg mv mgh '+'=+,即k p k p E E E E '+'=+; ⑵0=∆+∆k P E E ;021=∆+∆E E ;减增E E ∆=∆用⑴时,需要规定重力势能的参考平面。
用⑵时则不必规定重力势能的参考平面,因为重力势能的改变量与参考平面的选取没有关系。
尤其是用ΔE 增=ΔE 减,只要把增加的机械能和减少的机械能都写出来,方程自然就列出来了。
五、深刻理解功能关系,掌握能量守恒定律。
1.做功的过程是能量转化的过程,功是能的转化的量度。
能量守恒和转化定律是自然界最基本的规律之一。
而在不同形式的能量发生相互转化的过程中,功扮演着重要的角色。
本章的主要定理、定律都可由这个基本原理出发而得到。
需要强调的是:功是一个过程量,它和一段位移(一段时间)相对应;而能是一个状态量,它与一个时刻相对应。
两者的单位是相同的(都是J),但不能说功就是能,也不能说“功变成了能”。
2.复习本章时的一个重要课题是要研究功和能的关系,尤其是功和机械能的关系。
突出:“功是能量转化的量度”这一基本概念。
,这就是动能定理。
①物体动能的增量由外力做的总功来量度:W外=ΔE k②物体重力势能的增量由重力做的功来量度:W G= -ΔE P,这就是势能定理。
同理:电场力做功量度电势能的变化,即W电= -ΔE P。
③物体机械能的增量由重力以外的其他力做的功来量度:W其=ΔE机,(W 其表示除重力以外的其它力做的功),这就是机械能定理。
④当W其=0时,说明只有重力做功,所以系统的机械能守恒。
⑤一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,也就是系统增加的内能。
Q=fd(d为这两个物体间相对移动的路程)。
【例题解析】类型一:功和功率的计算例1.如下图甲所示,质量为m的物块与倾角为的斜面体相对静止,当斜面体沿水平面向左匀速运动位移时,求物块所受重力、支持力、摩擦力做的功和合力做的功。
解析:物块受重力,如上图乙所示,物块随斜面体匀速运动,所受合力为零,所以,。
物块位移为 支持力的夹角为,支持力做功。
静摩擦力的夹角为做的功.合力是各个力做功的代数和方法技巧:(1)根据功的定义计算功时一定要明确力的大小、位移的大小和力与位移间的夹角。
本题重力与位移夹角支持力做正功,摩擦力与位移夹角为摩擦力做负功。
一个力是否做功,做正功还是做负功要具体分析。
(2)合力的功一般用各个力做功的代数和来求,因为功是标量,求代数和较简单。
如果先求合力再求功,则本题合力为零,合力功也为零。
变式训练1:质量为m=0.5kg 的物体从高处以水平的初速度V 0=5m/s 抛出,在运动t=2s 内重力对物体做的功是多少这2s 内重力对物体做功的平均功率是多少2s 末,重力对物体做功的瞬时功率是多少(g 取2/10s m )类型二:机车启动问题例2.电动机通过一绳子吊起质量为8 kg 的物体,绳的拉力不能超过120 N ,电动机的功率不能超过1200 W ,要将此物体由静止起用最快的方式吊高90m (已知此物体在被吊高接近90 m 时,已开始以最大速度匀速上升)所需时间为多少?解析:此题可以用机车起动类问题的思路,即将物体吊高分为两个过程处理:第一过程是以绳所能承受的最大拉力拉物体,使物体以最大加速度匀加速上升,第一个过程结束时,电动机刚达到最大功率.第二个过程是电动机一直以最大功率拉物体,拉力逐渐减小,当拉力等于重力时,物体开始匀速上升.在匀加速运动过程中加速度为a =8108120m ⨯-=-m mg F m/s 2=5 m/s 2,末速度V t =1201200=m m F P =10 m/s 上升的时间t 1=510=a V t s=2 s ,上升高度为h =5210222⨯=a V t =10 m 在功率恒定的过程中,最后匀速运动的速率为V m =1081200⨯==mg P F P m m =15 m/s 外力对物体做的总功W =P m t 2-mgh 2,动能变化量为ΔE k =21mV 2m -21mV t 2 由动能定理得P m t 2-mgh 2=21mV m 2-21mV t 2 代入数据后解得t 2=5.75 s ,所以t =t 1+t 2=7.75 s 所需时间至少为7.75 s.点评:机车运动的最大加速度是由机车的最大牵引力决定的,而最大牵引力是由牵引物的强度决定的。
弄清了这一点,利用牛顿第二定律就很容易求出机车运动的最大匀加速度。
变式训练2:汽车的质量为m,发动机的额定功率为P,汽车由静止开始沿平直公路匀加速启动,加速度为a,假定汽车在运动中所受阻力为f(恒定不变),求汽车能保持作匀加速运动的时间。
类型三:动能定理的应用例3.如图所示,质量为m的物体置于光滑水平面上,一根绳子跨过定滑轮一端固定在物体上,另一端在力F作用下,以恒定速率v0竖直向下运动,物体由静止开始运动到绳与水平方向夹角 =45º过程中,绳中拉力对物体做的功为A.14mv02 B.mv02C.12mv02 Dmv02解析:物体由静止开始运动,绳中拉力对物体做的功等于物体增加的动能。
物体运动到绳与水平方向夹角α=45º时的速率设为v,有:v cos45º=v0,则:v0所以绳的拉力对物体做的功为W=22012mv mv答案:B。
题后反思:本题涉及到运动的合成与分解、功、动能定理等多方面知识。
要求考生深刻理解动能定理的含义,并能够应用矢量的分解法则计算瞬时速度。
变式训练3:质量为m的小球用长度为L的轻绳系住,在竖直平面内做圆周运动,运动过程中小球受空气阻力作用.已知小球经过最低点时轻绳受的拉力为7m g,经过半周小球恰好能通过最高点,则此过程中小球克服空气阻力做的功为()A .m g L /4B .m g L /3C .m g L /2D .m g L类型四:机械能守恒定律的应用 例4.如图所示,半径为R 的光滑圆形轨道固定在竖直面内。
小球A 、B 质量分别为m 、βm (β为待定系数)。
A 球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B 球相撞,碰撞后A 、B 球能达到的最大高度均为R 41,碰撞中无机械能损失。
重力加速度为g 。