【教育资料】12.1全等三角形学习专用
- 格式:doc
- 大小:18.00 KB
- 文档页数:3
人教版八年级上册数学教学设计《12.1 全等三角形》一. 教材分析《12.1 全等三角形》是人教版八年级上册数学的一个重要章节,主要内容包括全等三角形的概念、全等三角形的性质、全等三角形的判定方法等。
本章通过全等三角形的学习,培养学生对几何图形的认识和理解,提高学生的空间想象力,为后续几何学习打下基础。
二. 学情分析八年级的学生已经掌握了三角形的基本知识,对三角形的性质和判定方法有一定的了解。
但全等三角形作为三角形的一个重要分支,其概念和性质较为抽象,学生理解和掌握全等三角形的难度较大。
因此,在教学过程中,要注重引导学生从实际问题中抽象出全等三角形的概念,并通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
三. 教学目标1.了解全等三角形的概念,掌握全等三角形的性质和判定方法。
2.培养学生对几何图形的认识和理解,提高学生的空间想象力。
3.培养学生运用全等三角形的知识解决实际问题的能力。
四. 教学重难点1.全等三角形的概念及其性质。
2.全等三角形的判定方法。
3.全等三角形在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中抽象出全等三角形的概念。
2.通过大量的实例分析,使学生熟练掌握全等三角形的性质和判定方法。
3.运用多媒体辅助教学,提高学生的空间想象力。
4.采用小组合作学习的方式,培养学生的团队合作精神。
六. 教学准备1.准备相关教学课件和教学素材。
2.设计具有代表性的例题和练习题。
3.准备全等三角形的模型或图片,用于直观展示。
七. 教学过程1.导入(5分钟)通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考:如何判断两个三角形是否完全相同?从而引出全等三角形的概念。
2.呈现(10分钟)介绍全等三角形的定义、性质和判定方法。
通过PPT展示全等三角形的图形,让学生直观地感受全等三角形的特征。
同时,给出全等三角形的判定方法,如SSS、SAS、ASA、AAS等。
全等三角形的概念和性质〔提高〕【学习目标】1.理解全等三角形及其对应边、对应角的概念;能准确识别全等三角形的对应元素.2.掌握全等三角形的性质;会用全等三角形的性质进行简单的推理和计算,解决某些实际问题.【要点梳理】要点一、全等形形状、大小相同的图形放在一起能够完全重合.能够完全重合的两个图形叫做全等形.要点诠释:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.两个全等形的周长相等,面积相等.要点二、全等三角形能够完全重合的两个三角形叫全等三角形.要点三、对应顶点,对应边,对应角1. 对应顶点,对应边,对应角定义两个全等三角形重合在一起,重合的顶点叫对应顶点,重合的边叫对应边,重合的角叫对应角.要点诠释:在写两个三角形全等时,通常把对应顶点的字母写在对应位置上,这样容易找出对应边、对应角.如以下列图,△ABC与△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.2. 找对应边、对应角的方法〔1〕全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;〔2〕全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;〔3〕有公共边的,公共边是对应边;〔4〕有公共角的,公共角是对应角;〔5〕有对顶角的,对顶角一定是对应角;〔6〕两个全等三角形中一对最长的边〔或最大的角〕是对应边〔或角〕,一对最短的边〔或最小的角〕是对应边〔或角〕,等等.要点四、全等三角形的性质全等三角形的对应边相等;全等三角形的对应角相等;要点诠释:全等三角形对应边上的高相等,对应边上的中线相等,周长相等,面积相等.全等三角形的性质是今后研究其它全等图形的重要工具.【典型例题】类型一、全等形和全等三角形的概念1、请观察以下列图中的6组图案,其中是全等形的是__________.【答案】〔1〕〔4〕〔5〕〔6〕;【解析】〔1〕〔5〕是由其中一个图形旋转一定角度得到另一个图形的,〔4〕是将其中一个图形翻折后得到另一个图形的,〔6〕是将其中一个图形旋转180°再平移得到的,〔2〕〔3〕形状相同,但大小不等.【总结升华】是不是全等形,既要看形状是否相同,还要看大小是否相等.举一反三:【变式1】全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B 与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,假设运动方向相同,那么称它们是真正合同三角形(如图1),假设运动方向相反,那么称它们是镜面合同三角形(如图2),两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,以下各组合同三角形中,是镜面合同三角形的是( )【答案】B;提示:抓住关键语句,两个镜面合同三角形要重合,那么必须将其中一个翻转180°,B答案中的两个三角形经过翻转180°就可以重合,应选B;其它三个选项都需要通过平移或旋转使它们重合.类型二、全等三角形的对应边,对应角2、如图,△ABD≌△CDB,假设AB∥CD,那么AB的对应边是〔〕A.DB B. BC C. CD D. AD【答案】C【解析】因为AB∥CD,所以∠CDB=∠ABD,这两个角为对应角,对应角所对的边为对应边,所以,BC和DA为对应边,所以AB的对应边为CD.【总结升华】公共边是对应边,对应角所对的边是对应边.类型三、全等三角形性质3、如图,将长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,那么∠DAE等于〔〕.A.60°B.45°C.30°D.15°【思路点拨】△AFE是由△ADE折叠形成的,由全等三角形的性质,∠FAE=∠DAE,再由∠BAD=90°,∠BAF=60°可以计算出结果.【答案】D;【解析】因为△AFE是由△ADE折叠形成的,所以△AFE≌△ADE,所以∠FAE=∠DAE,又因为∠BAF=60°,所以∠FAE=∠DAE=90602︒-︒=15°.【总结升华】折叠所形成的三角形与原三角形是全等的关系,抓住全等三角形对应角相等来解题.举一反三:【变式】如图,在长方形ABCD中,将△BCD沿其对角线BD翻折得到△BED,假设∠1=35°,那么∠2=________.【答案】35°;提示:将△BCD沿其对角线BD翻折得到△BED,所以∠2=∠CBD,又因为AD∥BC,所以∠1=∠CBD,所以∠2=35°.4、如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,假设∠1∶∠2∶∠3=28∶5∶3,∠α的度数是_________.【思路点拨】〔1〕由∠1,∠2,∠3之间的比例关系及利用三角形内角和可求出∠1,∠2,∠3的度数;〔2〕由全等三角形的性质求∠EBC,∠BCD的度数;〔3〕运用外角求∠α的度数.【答案】∠α=80°【解析】∵∠1∶∠2∶∠3=28∶5∶3,设∠1=28x,∠2=5x,∠3=3x,∴28x+5x+3x=36x=180°,x=5°即∠1=140°,∠2=25°,∠3=15°∵△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的,∴△ABE≌△ADC≌△ABC∴∠2=∠ABE,∠3=∠ACD∴∠α=∠EBC+∠BCD=2∠2+2∠3=50°+30°=80°【总结升华】此题涉及到了三角形内角和,外角和定理,并且要运用全等三角形对应角相等的性质来解决问题.见“比例〞设未知数x是比较常用的解题思路.举一反三:【变式】如图,在△ABC中,∠A:∠ABC:∠BCA =3:5:10,又△MNC≌△ABC,那么∠BCM:∠BCN等于〔〕A.1:2 B.1:3 C.2:3 D.1:4【答案】D;提示:设∠A=3x,∠ABC=5x,∠BCA=10x,那么3x+5x+10x=18x=180°,x=10°. 又因为△MNC≌△ABC,所以∠N=∠B=50°,CN=CB,所以∠N=∠CBN=50°,∠ACB=∠MCN=100°,∠BCN=180°-50°-50°=80°,所以∠BCM:∠BCN=20°:80°=1:4.。
12.1全等三角形一、教学目标1.了解全等形、全等三角形的概念,理解全等三角形中对应顶点、对应边、对应角的含义.2.经历实验、操作的过程,理解、掌握全等三角形的性质.二、教学重难点重点:全等三角形的概念与性质.难点:全等三角形中对应边、对应角的确定.教学过程一、情境引入在我们的周围,经常可以看到形状、大小完全相同的图形.通过多媒体展示下列实例:教材图12.1-1所示的例子中都有形状、大小完全相同的图形.【探究】把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?从同一张底片冲洗出来的两张尺寸相同的照片上的图形,放在一起也能够完全重合吗?(1)你能找出生活实际中形状、大小完全相同的图形吗?说说你的理由.鼓励学生踊跃说出生活中的实例,并提问:大家举出的实例中,怎样能判别两个图形的形状、大小是完全相同的呢?学生通过同伴间的相互讨论、交流,在探索活动中逐渐体会:将两个图形重叠,看看它们是否能够完全重合,能完全重合的,它们的形状、大小就完全相同.在认识上形成两个图形完全重合的初步体验.(2)什么是“全等形”?在学生从“两个图形的形状、大小完全相同”到“两个图形完全重合”的知识建构的基础上,教师适时点题,提出“全等形”的概念.教师指出:能够完全重合的两个图形叫做全等形.追问:上述各实例中,哪些是全等形?动口说一说,为什么这些图形是全等形?你能再举些实际的例子,说明他们是全等形吗?教师期待学生能说出自己正确的生活体验或亲手制作的模型.教师适时地引导学生发散思维,回想和链接起生活中的全等形,并实现认识上从“两个图形的形状、大小完全相同”到“两个图形完全重合”再到“全等形”的飞跃.二、互动新授1.全等三角形将两个图形相互重叠,就可以发现它们是否完全重合,从而判别它们是不是全等形.那么,请同学们来说说看,什么是全等三角形呢?从“全等形”这个概念,导出“全等三角形”这个子概念,蕴含着思维上的逻辑推理,学生把“全等形”中的“图形”换成“三角形”,正好符合了“三段论式”的要求.这样导出“全等三角形”的概念就是水到渠成的事情.让学生说出什么是“全等三角形”,并进行讨论,让学生得到逻辑推理的初步体验.教师总结:能够完全重合的两个三角形叫做全等三角形.全等用符号“≌”表示,读作“全等于”.【思考】在教材图12.1-2(1)中,把△ABC沿直线BC平移,得到△DEF.在教材图12.1-2(2)中,把△ABC沿直线BC翻折180°,得到△DBC. 在教材图12.1-2(3)中,把△ABC绕点A旋转,得到△ADE.各图中的两个三角形全等吗?(1)(2)一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.例如教材图12.1-2(1)中的△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.指名个别同学说说图(2)(3)中的对应顶点,对应边和对应角.其他学生一起来评判是否正确.2.巩固应用【例题】如下图,用字母表示出各图中全等三角形的对应顶点、对应边和对应角.(1)(2)(3)【分析】根据“全等三角形中互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角”,利用三角形纸板模型找出两个三角形互相重合的过程、重合的边、重合的角,从而正确地找出全等三角形的对应边和对应角.【解】图(1)中,对应顶点:A与A,B与B,C与D;对应边:AB与AB,AC与AD,BC 与BD.对应角:∠BAC与∠BAD,∠C与∠D,∠CBA与∠DBA;图(2)中,对应顶点:A与A,B与C,D与E;对应边:AB与AC,AD与AE,BD与CE.对应角:∠A与∠A,∠B与∠C,∠ADB与∠AEC;图(3)中,对应顶点:A与B,B与A,C与D;对应边:AB与BA,BD与AC,AD与BC.对应角:∠BAD与∠ABC,∠ABD与∠BAC,∠D与∠C.3.反思与归纳通过上述的探索,你有哪些新的体会?若已经确定了对应顶点,你能快速地确定出对应边和对应角吗?同样,确定了对应边或对应角,能确定其他的对应元素吗?说说你的发现和体会.比如:(1)按相同对应点的顺序确定的边一定是对应边,按相同对应点的顺序确定的角一定是对应角;(2)对应边所夹角是对应角;对应角夹的边是对应边;(3)对应边所对的角是对应角;对应角所对的边为对应边.教师说明:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.这样,确定了对应顶点,就容易确定对应边和对应角了.【思考】教材图12.1-2(1)中,△ABC≌△DEF,对应边有什么关系?对应角呢?师生合作探究:从教材图12.1-2(1)中容易看出:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F.让学生观察教材图12.1-2(2)、(3),写出发现的结论.教师总结:全等三角形有这样的性质:全等三角形的对应边相等,全等三角形的对应角相等.三、课堂小结四、板书设计五、教学反思本节课的主要内容是全等三角形的概念和性质.重点要让学生学会正确确定全等三角形的对应顶点、对应边和对应角,养成按对应顶点的顺序表示三角形的习惯,同时,可提出全等三角形判定的说法,为后续内容的学习做好准备.课堂上,教师引导学生通过模型演示与想象结合,通过不断的探索活动,逐步积累学习的经验与体会.练习中让学生多动口、动手,积极参与探索活动,进而更好地理解和掌握知识.导学方案一.学法点津学生在理解全等三角形概念时,要突出两个三角形能够完全重合这一特性.在领会全等三角形性质及全等三角形的对应顶点、对应边、对应角时,要多从全等的三角形中体会哪两个顶点、哪两个角、哪两边会完全重合,从而正确地找出全等三角形的对应顶点、对应边、对应角.不但会说出全等三角形的对应顶点、对应边、对应角,而且还要写得对,如“点A 和点D是对应顶点”,或者“对应顶点是点A和点D”.而不能写成“A=B”之类的错误格式.二、学点归纳总结(一)知识要点总结1.全等三角形能够完全重合的两个三角形是全等三角形.2.全等三角形性质全等三角形的对应边相等,全等三角形的对应角相等.3.一个图形经过平移、旋转、翻折180°后,前后两个图形全等.(二)规律方法总结1.先确定全等三角形的对应顶点,然后按对应顶点的相同顺序就容易找出全等三角形的对应边和对应角.2.对应角所对的边是对应边,对应边所夹的角是对应角.课时作业设计一、选择题1.下列说法中,正确的个数是( ).(1)正方形都是全等形;(2)等边三角形都是全等形;(3)形状相同的图形是全等形;(4)大小相同的图形是全等形;(5)能够完全重合的图形是全等形.A.1个 B.2个C.3个D.4个2.下列说法中,正确的个数是( ).(1)全等三角形对应顶点所对应的角是对应角;(2)全等三角形对应顶点所对应的边是对应边;(3)全等三角形对应边所夹角是对应角;(4)全等三角形对应角夹的边是对应边. A.3 B.4 C.2 D.1二、填空题3.如图所示,△ABC≌△AED,点B和点E,点C和点D是两对对应顶点,∠B的对应角是__________,∠C的对应角是__________,AB的对应边是__________,BC的对应边是__________,AC的对应边是__________.4.如图所示,△ABC≌△DEF,∠A和∠EDF,∠C和∠F分别是两组对应角,如果AE=12cm,BD=3cm,则AB=________.第3题图第4题图三、解答题5.如右图,已知△ABC≌△DEF,A和D是对应顶点,∠B与∠E是对应角,写出图中其他的对应边和对应角.【参考答案】1.A2.B3.∠E∠D AE ED AD4.7.5cm5.对应边:AB与DE,BC与EF,CA与FD,对应角:∠A与∠D,∠ACB与∠DFE.。
12.1全等三角形-人教版八年级数学上册说课稿一、引言本节课所讲的是人教版八年级数学上册的12.1全等三角形。
全等三角形是初中数学的基础知识之一,对于学生之后学习几何知识以及解题能力的提高有着重要的作用。
通过本节课的学习,学生将能够掌握全等三角形的判定条件与性质,并能够运用所学的知识解决与全等三角形相关的问题。
二、教材分析本节课所使用的教材是人教版八年级数学上册。
教材包含了全等三角形的判定条件与性质的讲解以及几个例题的解答。
本节课按照教材内容进行讲解,并辅以一些示例来帮助学生理解和掌握知识。
三、教学目标本节课的教学目标主要包括: 1. 能够准确地判断两个三角形是否全等; 2. 掌握全等三角形的性质和判定条件; 3. 能够应用全等三角形的性质解决问题。
四、教学内容与方法4.1 教学内容本节课的教学内容主要包括以下几个方面: 1. 全等三角形的定义; 2. 全等三角形的判定条件; 3. 全等三角形的性质。
4.2 教学方法本节课将采用多种教学方法,包括讲述、举例、讨论和解题等方法,以提高学生的参与度和学习效果。
5.1 师生互动(5分钟)在开始正式的教学内容之前,与学生进行互动。
可以通过提问的方式快速复习上节课的内容,激发学生的学习兴趣和主动性。
5.2 导入新知(10分钟)通过引入一个生活中的具体实例,引导学生思考:当两个三角形的各对应边和对应角都相等时,我们可以说这两个三角形是全等的吗?引导学生认识到全等三角形与相似三角形之间的差异,并引出全等三角形的定义。
5.3 讲解全等三角形的判定条件(20分钟)根据教材内容,详细讲解全等三角形的判定条件。
通过示意图和具体的例题帮助学生理解并掌握。
5.4 讲解全等三角形的性质(15分钟)根据教材内容,讲解全等三角形的性质。
重点讲解全等三角形的对应边和对应角的性质,并通过示意图和讨论的方式加深学生对性质的理解。
5.5 解题演练(25分钟)选择几个与全等三角形有关的经典习题进行讲解,包括全等三角形的判定和性质运用。
第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。
学生:三角尺、直尺、全等图形、三角形纸板。
六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。