“解析几何初步(一)”测试卷
- 格式:pdf
- 大小:103.87 KB
- 文档页数:3
2.6 直线与圆、圆与圆的位置关系2.6.1 直线与圆的位置关系A级必备知识基础练1.(2022江苏盐城伍佑中学高二月考)点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是()A.(x-1)2+y2=4B.(x-1)2+y2=2C.x2+y2=2xD.x2+y2=-2x2.圆x2+y2=1与直线y=kx-3有公共点的充要条件是()A.k≤-2或k≥2B.k≤-2C.k≥2D.k≤-2或k>23.(2022山东高二学情联考)过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,则切线长为()A. B.2C.2D.4.(多选题)(2022重庆育才中学高二月考)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法正确的是()A.圆M的圆心为(4,3)B.圆M的半径为5C.圆M被x轴截得的弦长为6D.圆M被y轴截得的弦长为65.圆x2+y2-2x-8y+13=0截直线ax+y-1=0所得的弦长为2,则a=()A.-B.-C. D.26.已知圆C与直线x-y=0及x-y=4都相切,圆心在直线x+y=0上,则圆C的方程为.7.若点P(2,-1)为圆C:(x-1)2+y2=25的弦AB的中点,则直线AB的方程为.8.已知圆C:x2+y2-6x-8y+21=0,直线l过点A(1,0).(1)求圆C的圆心坐标及半径;(2)若直线l与圆C相切,求直线l的方程;(3)当直线l的斜率存在且与圆C相切于点B时,求|AB|.B级关键能力提升练9.(2020全国Ⅰ,文6)已知圆x2+y2-6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.410.已知直线l:x-y+m=0与圆x2+y2=4交于A,B两点,O为坐标原点,且=0,则实数m为()A.2B.2C.±2D.±211.(多选题)(2022云南罗平县高二检测)过点(2,2),斜率为k的直线与圆x2+y2-4x=0的位置关系可能是()A.相离B.相切C.相交但不过圆心D.相交且经过圆心12.(多选题)(2022辽宁葫芦岛协作校高二联考)已知直线l:3x+4y=0,圆C:x2-4x+y2=m-5,则()A.m的取值范围为(0,+∞)B.当直线l与圆C相切时,m=C.当1<m<2时,l与圆C相离D.当直线l与圆C相交时,m的取值范围是13.已知k∈R,若直线l:y=kx+1被圆x2-2x+y2-3=0所截,则截得的弦长最短为,此时直线l的方程为.14.如图,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A交于M,N两点.(1)求圆A的方程;(2)当|MN|=2时,求直线l的方程.C级学科素养创新练15.(2022黑龙江大庆中学高二月考)若圆x2+y2-2x-6y+1=0上恰有三点到直线y=kx的距离为2,则k的值为()A.2B.1C.D.16.若直线l:y=ax-3与圆C:x2+y2=4相交,求a的取值范围.参考答案2.6直线与圆、圆与圆的位置关系2.6.1直线与圆的位置关系1.B∵PA是圆的切线,|PA|=1且圆的半径为r=1,∴点P到圆心的距离恒为.又圆心(1,0),设P(x,y),由两点间的距离公式得(x-1)2+y2=2,即点P的轨迹方程是(x-1)2+y2=2.故选B.2.A若直线与圆有公共点,则圆心(0,0)到直线kx-y-3=0的距离d=≤1,即≥3,∴k2+1≥9,即k2≥8,解得k≤-2或k≥2.∴圆x2+y2=1与直线y=kx-3有公共点的充要条件是k≤-2或k≥2.故选A.3.D由圆C:(x+2)2+(y-1)2=5,可得圆心C(-2,1),半径r=,过点P(1,-2)的直线与圆C:(x+2)2+(y-1)2=5相切,两条切线长相等,只取其中一条切线,设切点为M,则CM⊥PM,由题得|PC|==3,|CM|=r=,所以切线|PM|=.故选D.4.BD将x2+y2-8x+6y=0化为圆的标准方程是(x-4)2+(y+3)2=25,所以圆M的圆心坐标为(4,-3),半径为5,故A错误,B正确;圆心(4,-3)到x轴的距离为3,所以圆M被x轴截得的弦长为2=8,故C错误;对选项D,圆心(4,-3)到y轴的距离为4,所以圆M被y轴截得的弦长为2=6,故D正确.故选BD.5.A将x2+y2-2x-8y+13=0化为(x-1)2+(y-4)2=4,则该圆圆心为(1,4),半径为2.又弦长为2,则圆心到直线距离为=1.根据点到直线距离公式可知d==1,化简可得(a+3)2=a2+1.解得a=-,故选A.6.(x-1)2+(y+1)2=2设圆心为点C(a,-a),由点到直线的距离公式得,解得a=1,所以圆心为(1,-1),且半径为,故圆的方程为(x-1)2+(y+1)2=2.7.x-y-3=0圆心坐标为点C(1,0),由题可得,k PC==-1.又|CP|⊥|AB|,因此k AB=1.因为直线AB过点P,可知直线AB的方程为y+1=x-2,即x-y-3=0.8.解将圆C的方程化成标准式方程得(x-3)2+(y-4)2=22.(1)圆C的圆心坐标是(3,4),半径为2.(2)当直线l的斜率不存在时,直线l的方程是x=1,满足题意;当直线l的斜率存在时,可设直线l的方程是y=k(x-1),即kx-y-k=0.由圆心(3,4)到直线l的距离等于圆C的半径,可得=2,解得k=,故直线l的方程是3x-4y-3=0.综上所述,直线l的方程是x=1或3x-4y-3=0.(3)由(2)可得直线l的方程是3x-4y-3=0.圆C的圆心是点C(3,4),则|AC|==2,所以|AB|==4.9.B圆的方程可化为(x-3)2+y2=9.因为=2<3,所以点(1,2)在圆内.如图所示,设圆心O1(3,0),A(1,2),当弦BC与O1A垂直时弦最短,因为|O1A|==2,|O1B|=3,所以|AB|==1,所以|BC|=2|AB|=2.10.C由=0可知∠AOB=90°.由于圆半径为r=2,则圆心(0,0)到直线l的距离d=,解得|m|=2,即m=±2,故选C.11.BC由题得,圆的标准方程为(x-2)2+y2=4,则圆心为(2,0),半径为2.设过点(2,2),斜率为k的直线为y=k(x-2)+2,即kx-y-2k+2=0,∴圆心到kx-y-2k+2=0的距离d=≤2,∴当d=2时,直线与圆相切;当d<2时,直线与圆相交但直线不过圆心.故B,C正确,A,D错误.故选BC.12.BC圆C的标准方程为(x-2)2+y2=m-1,则圆C的圆心为C(2,0),半径r=,由r=>0,得m>1,故A错误;因为C(2,0)到直线l的距离为,所以当直线l与圆C相切时,r=,解得m=,故B正确; 当1<m<2时,0<r<1<,所以直线l与圆C相离,故C正确;当直线l与圆C相交时,,解得m>,故D错误.故选BC.13.2y=x+1圆x2-2x+y2-3=0的标准方程为(x-1)2+y2=22,所以圆心为O(1,0),半径为r=2.直线l:y=kx+1过定点P(0,1).故|OP|=.当l⊥OP时,截得的弦长最短,则最短弦长为2=2.由题得,k OP=-1,所以k l=1,故直线l的方程为y=x+1.14.解(1)设圆A的半径为r.∵圆A与直线l1:x+2y+7=0相切,∴r==2.故圆A的方程为(x+1)2+(y-2)2=20.(2)①当直线l的斜率不存在时,可得直线l的方程为x=-2,易得|MN|=2,符合题意;②当直线l的斜率存在时,设直线l的方程为y=k(x+2),即kx-y+2k=0.取MN的中点Q,连接AQ,则AQ⊥MN.∵|MN|=2,∴|AQ|==1.∴=1,解得k=.∴直线l的方程为3x-4y+6=0.综上,直线l的方程为x=-2或3x-4y+6=0.15.C将方程x2+y2-2x-6y+1=0化为(x-1)2+(y-3)2=9,则圆心(1,3),半径为3.∵圆上恰有三点到直线y=kx的距离为2,∴圆心(1,3)到直线y=kx的距离为1,即=1,解得k=.故选C.16.解(方法1)圆C:x2+y2=4的圆心C(0,0),r2=4.直线l:y=ax-3可化为ax-y-3=0.圆心C(0,0)到直线l:ax-y-3=0的距离d=.由直线l与圆C相交可得r>d,则r2>d2,即4>,解得a>或a<-.因此a 的取值范围是-∞,-∪,+∞.(方法2)将y=ax-3代入x2+y2=4得到x2+(ax-3)2=4,整理可得(1+a2)x2-6ax+5=0.因为直线与圆相交,则Δ=(-6a)2-4×(1+a2)×5=36a2-20-20a2=16a2-20>0,即a2>,解得a>或a<-,故a 的取值范围是-∞,-∪,+∞.11。
高中数学平面解析几何初步检测考试题(附答案)试卷分析第2章平面解析几何初步综合检测(时间:120分钟;满分:150分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线3a_-y-1=0与直线(a-23)_+y+1=0垂直,则a的值是()A.-1或13 B.1或13C.-13或-1 D.-13或1解析:选D.由3a(a-23)+(-1)1=0,得a=-13或a=1.2.直线l1:a_-y+b=0,l2:b_-y+a=0(a0,b0,ab)在同一坐标系中的图形大致是图中的()解析:选C.直线l1:a_-y+b=0,斜率为a,在y轴上的截距为b,设k1=a,m1=b.直线l2:b_-y+a=0,斜率为b,在y轴上的截距为a,设k2=b,m2=a.由A知:因为l1∥l2,k1=k20,m10,即a=b0,b0,矛盾.由B知:k1k2,m10,即ab,b0,矛盾.由C知:k10,m20,即a0,可以成立.由D知:k10,m2m1,即a0,ab,矛盾.3.已知点A(-1,1)和圆C:(_-5)2+(y-7)2=4,一束光线从A经_轴反射到圆C上的最短路程是()A.62-2 B.8C.46 D.10解析:选B.点A关于_轴对称点A(-1,-1),A与圆心(5,7)的距离为5+12+7+12=10.所求最短路程为10-2=8.4.圆_2+y2=1与圆_2+y2=4的位置关系是()A.相离 B.相切C.相交 D.内含解析:选D.圆_2+y2=1的圆心为(0,0),半径为1,圆_2+y2=4的圆心为(0,0),半径为2,则圆心距02-1=1,所以两圆内含.5.已知圆C:(_-a)2+(y-2)2=4(a0)及直线l:_-y+3=0,当直线l被圆C截得的弦长为23时,a的值等于()A.2B.2-1C.2-2 D.2+1解析:选B.圆心(a,2)到直线l:_-y+3=0的距离d=|a-2+3|2=|a+1|2,依题意|a+1|22+2322=4,解得a=2-1.6.与直线2_+3y-6=0关于点(1,-1)对称的直线是()A.3_-2y-6=0B.2_+3y+7=0C.3_-2y-12=0D.2_+3y+8=0解析:选D.∵所求直线平行于直线2_+3y-6=0,设所求直线方程为2_+3y+c=0,由|2-3+c|22+32=|2-3-6|22+32,c=8,或c=-6(舍去),所求直线方程为2_+3y+8=0.7.若直线y-2=k(_-1)与圆_2+y2=1相切,则切线方程为()A.y-2=34(1-_)B.y-2=34(_-1)C._=1或y-2=34(1-_)D._=1或y-2=34(_-1)解析:选B.数形结合答案容易错选D,但要注意直线的表达式是点斜式,说明直线的斜率存在,它与直线过点(1,2)要有所区分.8.圆_2+y2-2_=3与直线y=a_+1的公共点有()A.0个 B.1个C.2个 D.随a值变化而变化解析:选C.直线y=a_+1过定点(0,1),而该点一定在圆内部.9.过P(5,4)作圆C:_2+y2-2_-2y-3=0的切线,切点分别为A、B,四边形PACB的面积是()A.5 B.10C.15 D.20解析:选B.∵圆C的圆心为(1,1),半径为5.|PC|=5-12+4-12=5,|PA|=|PB|=52-52=25,S=122552=10.10.若直线m_+2ny-4=0(m、nR,nm)始终平分圆_2+y2-4_-2y-4=0的周长,则mn的取值范围是()A.(0,1) B.(0,-1)C.(-,1) D.(-,-1)解析:选C.圆_2+y2-4_-2y-4=0可化为(_-2)2+(y-1)2=9,直线m_+2ny-4=0始终平分圆周,即直线过圆心(2,1),所以2m+2n-4=0,即m+n=2,mn=m(2-m)=-m2+2m=-(m-1)2+11,当m=1时等号成立,此时n=1,与“mn”矛盾,所以mn<1.11.已知直线l:y=_+m与曲线y=1-_2有两个公共点,则实数m的取值范围是()A.(-2,2) B.(-1,1)C.[1,2) D.(-2,2)解析:选C. 曲线y=1-_2表示单位圆的上半部分,画出直线l与曲线在同一坐标系中的图象,可观察出仅当直线l在过点(-1,0)与点(0,1)的直线与圆的上切线之间时,直线l与曲线有两个交点.当直线l过点(-1,0)时,m=1;当直线l为圆的上切线时,m=2(注:m=-2,直线l为下切线).12.过点P(-2,4)作圆O:(_-2)2+(y-1)2=25的切线l,直线m:a_-3y=0与直线l平行,则直线l与m的距离为()A.4 B.2C.85D.125解析:选A.∵点P在圆上,切线l的斜率k=-1kOP=-11-42+2=43.直线l的方程为y-4=43(_+2),即4_-3y+20=0.又直线m与l平行,直线m的方程为4_-3y=0.故两平行直线的距离为d=|0-20|42+-32=4.二、填空题(本大题共4小题,请把答案填在题中横线上)13.过点A(1,-1),B(-1,1)且圆心在直线_+y-2=0上的圆的方程是________.解析:易求得AB的中点为(0,0),斜率为-1,从而其垂直平分线为直线y=_,根据圆的几何性质,这条直线应该过圆心,将它与直线_+y-2=0联立得到圆心O(1,1),半径r=|OA|=2.答案:(_-1)2+(y-1)2=414.过点P(-2,0)作直线l交圆_2+y2=1于A、B两点,则|PA||PB|=________. 解析:过P作圆的切线PC,切点为C,在Rt△POC中,易求|PC|=3,由切割线定理,|PA||PB|=|PC|2=3.答案:315.若垂直于直线2_+y=0,且与圆_2+y2=5相切的切线方程为a_+2y+c=0,则ac的值为________.解析:已知直线斜率k1=-2,直线a_+2y+c=0的斜率为-a2.∵两直线垂直,(-2)(-a2)=-1,得a=-1.圆心到切线的距离为5,即|c|5=5,c=5,故ac =5.答案:516.若直线3_+4y+m=0与圆_2+y2-2_+4y+4=0没有公共点,则实数m的取值范围是__________.解析:将圆_2+y2-2_+4y+4=0化为标准方程,得(_-1)2+(y+2)2=1,圆心为(1,-2),半径为1.若直线与圆无公共点,即圆心到直线的距离大于半径,即d=|31+4-2+m|32+42=|m-5|5>1,m<0或m>10.答案:(-,0)(10,+)三、解答题(本大题共6小题,解答时应写出必要的文字说明、证明过程或演算步骤)17.三角形ABC的边AC,AB的高所在直线方程分别为2_-3y+1=0,_+y=0,顶点A(1,2),求BC边所在的直线方程.解:AC边上的高线2_-3y+1=0,所以kAC=-32.所以AC的方程为y-2=-32(_-1),即3_+2y-7=0,同理可求直线AB的方程为_-y+1=0.下面求直线BC的方程,由3_+2y-7=0,_+y=0,得顶点C(7,-7),由_-y+1=0,2_-3y+1=0,得顶点B(-2,-1).所以kBC=-23,直线BC:y+1=-23(_+2),即2_+3y+7=0.18.一束光线l自A(-3,3)发出,射到_轴上,被_轴反射后与圆C:_2+y2-4_-4y+7=0有公共点.(1)求反射光线通过圆心C时,光线l所在直线的方程;(2)求在_轴上,反射点M的横坐标的取值范围.解:圆C的方程可化为(_-2)2+(y-2)2=1.(1)圆心C关于_轴的对称点为C(2,-2),过点A,C的直线的方程_+y=0即为光线l所在直线的方程.(2)A关于_轴的对称点为A(-3,-3),设过点A的直线为y+3=k(_+3).当该直线与圆C相切时,有|2k-2+3k-3|1+k2=1,解得k=43或k=34,所以过点A的圆C的两条切线分别为y+3=43(_+3),y+3=34(_+3).令y=0,得_1=-34,_2=1,所以在_轴上反射点M的横坐标的取值范围是[-34,1].19.已知圆_2+y2-2_-4y+m=0.(1)此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线_+2y-4=0相交于M、N两点,且OMON(O为坐标原点),求m的值;(3)在(2)的条件下,求以MN为直径的圆的方程.解:(1)方程_2+y2-2_-4y+m=0,可化为(_-1)2+(y-2)2=5-m,∵此方程表示圆,5-m>0,即m<5.(2)_2+y2-2_-4y+m=0,_+2y-4=0,消去_得(4-2y)2+y2-2(4-2y)-4y+m=0,化简得5y2-16y+m+8=0.设M(_1,y1),N(_2,y2),则y1+y2=165,①y1y2=m+85. ②由OMON得y1y2+_1_2=0即y1y2+(4-2y1)(4-2y2)=0,16-8(y1+y2)+5y1y2=0.将①②两式代入上式得16-8165+5m+85=0,解之得m=85.(3)由m=85,代入5y2-16y+m+8=0,化简整理得25y2-80y+48=0,解得y1=125,y2=45._1=4-2y1=-45,_2=4-2y2=125.M-45,125,N125,45,MN的中点C的坐标为45,85.又|MN|= 125+452+45-1252=855,所求圆的半径为455.所求圆的方程为_-452+y-852=165.20. 已知圆O:_2+y2=1和定点A(2,1),由圆O外一点P(a,b)向圆O引切线PQ,切点为Q,|PQ|=|PA|成立,如图.(1)求a、b间关系;(2)求|PQ|的最小值;(3)以P为圆心作圆,使它与圆O有公共点,试在其中求出半径最小的圆的方程.解:(1)连接OQ、OP,则△OQP为直角三角形,又|PQ|=|PA|,所以|OP|2=|OQ|2+|PQ|2=1+|PA|2,所以a2+b2=1+(a-2)2+(b-1)2,故2a+b-3=0.(2)由(1)知,P在直线l:2_+y-3=0上,所以|PQ|min=|PA|min,为A到直线l的距离,所以|PQ|min=|22+1-3|22+12=255.(或由|PQ|2=|OP|2-1=a2+b2-1=a2+9-12a+4a2-1=5a2-12a+8=5(a-1.2)2+0.8,得|PQ|min=255.)(3)以P为圆心的圆与圆O有公共点,半径最小时为与圆O相切的情形,而这些半径的最小值为圆O到直线l的距离减去圆O的半径,圆心P为过原点与l垂直的直线l与l的交点P0,所以r=322+12-1=355-1,又l:_-2y=0,联立l:2_+y-3=0得P0(65,35).所以所求圆的方程为(_-65)2+(y-35)2=(355-1)2.21.有一圆与直线l:4_-3y+6=0相切于点A(3,6),且经过点B(5,2),求此圆的方程.解:法一:由题意可设所求的方程为(_-3)2+(y-6)2+(4_-3y+6)=0,又因为此圆过点(5,2),将坐标(5,2)代入圆的方程求得=-1,所以所求圆的方程为_2+y2-10_-9y+39=0.法二:设圆的方程为(_-a)2+(y-b)2=r2,则圆心为C(a,b),由|CA|=|CB|,CAl,得3-a2+6-b2=r2,5-a2+2-b2=r2,b-6a-343=-1,解得a=5,b=92,r2=254.所以所求圆的方程为(_-5)2+(y-92)2=254.法三:设圆的方程为_2+y2+D_+Ey+F=0,由CAl,A(3,6),B(5,2)在圆上,得32+62+3D+6E+F=0,52+22+5D+2E+F=0,-E2-6-D2-343=-1,解得D=-10,E=-9,F=39.所以所求圆的方程为_2+y2-10_-9y+39=0.法四:设圆心为C,则CAl,又设AC与圆的另一交点为P,则CA的方程为y-6=-34(_-3),即3_+4y-33=0.又因为kAB=6-23-5=-2,所以kBP=12,所以直线BP的方程为_-2y-1=0.解方程组3_+4y-33=0,_-2y-1=0,得_=7,y=3.所以P(7,3).所以圆心为AP的中点(5,92),半径为|AC|=52.所以所求圆的方程为(_-5)2+(y-92)2=254.22.如图在平面直角坐标系_Oy中,已知圆C1:(_+3)2+(y-1)2=4和圆C2:(_-4)2+(y-5)2=4.(1)若直线l过点A(4,0),且被圆C1截得的弦长为23,求直线l的方程;(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和C2相交,且直线l1被圆C1截得的弦长与直线l2被C2截得的弦长相等.试求所有满足条件的点P的坐标.解:(1)由于直线_=4与圆C1不相交,所以直线l的斜率存在.设直线l的方程为y=k(_-4),圆C1的圆心到直线l的距离为d,因为圆C1被直线l截得的弦长为23,所以d=22-32=1.由点到直线的距离公式得d=|1-k-3-4|1+k2,从而k(24k+7)=0,即k=0或k=-724,所以直线l的方程为y=0或7_+24y-28=0.(2)设点P(a,b)满足条件,不妨设直线l1的方程为y-b=k(_-a),k0,则直线l2的方程为y-b=-1k(_-a).因为圆C1和C2的半径相等,且圆C1被直线l1截得的弦长与圆C2被直线l2截得的弦长相等,所以圆C1的圆心到直线l1的距离和圆C2的圆心到直线l2的距离相等,即|1-k-3-a-b|1+k2=|5+1k4-a-b|1+1k2,整理得|1+3k+ak-b|=|5k+4-a-bk|,从而1+3k+ak-b=5k+4-a-bk 或1+3k+ak-b=-5k-4+a+bk,即(a+b-2)k=b-a+3或(a-b+8)k=a+b-5,因为k的取值有无穷多个,所以a+b-2=0,b-a+3=0,或a-b+8=0,a+b-5=0,解得a=52,b=-12,或a=-32,b=132.这样点P只可能是点P152,-12或点P2-32,132.经检验点P1和P2满足题目条件.。
x y O x y O x y O xyO第二章 解析几何初步检测试题第Ⅰ卷 一、选择题(本大题共10小题,每小题5分,共50分)1.下列命题中为真命题的是 ( ) A .平行直线的倾斜角相等 B .平行直线的斜率相等C .互相垂直的两直线的倾斜角互补D .互相垂直的两直线的斜率互为相反 2. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是 ( )A .B .C .D .3.已知点(1,2)A 、(3,1)B ,则线段AB 的垂直平分线l 的方程是 ( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x4.如果直线022=++y ax 与直线023=--y x 平行,那么系数a 为 ( ) A .23-B .6-C .3-D .325.过直线013=-+y x 与072=-+y x 的交点,且与第一条直线垂直的直线l 的方程是( ) A .073=+-y x B .0133=+-y x C .072=+-y x D .053=--y x 6.与圆02422=+-+y y x 相切,并在x 轴、y 轴上的截距相等的直线共有 ( ) A.6条 B.5条 C.4条 D.3条7.直线2x =被圆422=+-y a x )(所截得的弦长等于32,则a 的值为 ( ) A 、-1或-3 B 、22-或 C 、1或3 D 、3 8.已知1O :06422=+-+y x y x 和2O :0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是 ( ) A. 30x y ++= B. 250x y --= C. 390x y --= D. 4370x y -+=9.两点)2,2(++b a A 、B ),(b a b --关于直线1134=+y x 对称,则 ( ) A.2,4=-=b a B.2,4-==b a C.2,4==b a D. 2,4a b ==10.空间直角坐标系中,点(3,4,0)A -和点(2,1,6)B -的距离是 ( )A .B .C .9D 二、填空题(本大题共6小题,每小题5分,共30分)11.直线x y 2=关于x 轴对称的直线方程为 .12.已知点)1,1(P 和直线l :02043=--y x ,则过P 与直线l 平行的直线方程是 ,过点P 与l 垂直的直线方程是 .13.直线l 经过直线0623=++y x 和0752=-+y x 的交点,且在两坐标轴上的截距相等,则直线l 的方程是_____ _.14.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4)A -,(0,2)B -,则圆C 的方程为 .15.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为 16.经过)1,2(-A 和直线1x y +=相切,且圆心在直线x y 2-=上的圆的方程为_____________ _________ __________ .第Ⅱ卷二、填空题(本大题共6小题,每小题5分,共30分.把答案填在题中横线上)11.________________________ 12._______________________ 13._________________________ 14.______________________ 15._________________________ 16._______________________ 三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(12分)求经过点)2,1(A 且到原点的距离等于1的直线方程.18. (14分) 已知一曲线是与两个定点(0,0)O 、(3,0)A 距离的比为21的点的轨迹,则求此曲线的方程.19.(14分) 求垂直于直线0743=--y x ,且与两坐标轴构成周长为10的三角形的直线方程20.(15分) 自点A(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射光线所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线L 所在直线的方程.21(15分)圆822=+y x 内有一点(1,2)P -,AB 为过点P 且倾斜角为α的弦, (1)当α=1350时,求AB ;(2)当弦AB 被点P 平分时,求出直线AB 的方程;(3)设过P点的弦的中点为M,求点M的坐标所满足的关系式.参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分)二、填空题(本大题共6小题,每小题5分,共30分)11. x y 2-=. 12. 0143=+-y x 或0734=-+y x . 13. 340x y +=或10x y ++= 14. 22(2)(3)5x y -++= 15. 316. 22(1)(2)2x y -++=三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(12分) (1)当过点)2,1(A 的直线与x 轴垂直时,则点)2,1(A 到原点的距离为1,所以1=x 为所求直线方程. …………5分 (2)当过点)2,1(A 且与x 轴不垂直时,可设所求直线方程为)1(2-=-x k y , 即:02=+--k y kx ,由题意有11|2|2=++-k k ,解得43=k , …………10分 故所求的直线方程为)1(432-=-x y ,即0543=+-y x . 综上,所求直线方程为1=x 或0543=+-y x . …………12分18.(14分) 解:在给定的坐标系里,设点(,)M x y 是曲线上的任意一点,则||1.||2OM AM = …………4分由两点间的距离公式,点M 所适合的条件可以表示为21)3(2222=+-+y x y x , …………8分 两边平方,得41)3(2222=+-+yx y x ,化简整理有:22230x y x ++-=, 化为标准形式:22(1)4x y ++=, …………12分 所以,所求曲线是以C (-1,0)为圆心,2为半径的圆 …………14分19.(14分)解:由所求直线能与坐标轴围成三角形,则所求直线在坐标轴上的截距不为0,故可设该直线在x 轴、y 轴上的截距分别为b a ,,又该直线垂直于直线0743=--y x ,且与两坐标轴构成周长为10的三角形,故有⎪⎩⎪⎨⎧=+++=10||||3422b a b a a b , …………9分解得:52103a b ⎧=⎪⎪⎨⎪=⎪⎩或52103a b ⎧=-⎪⎪⎨⎪=-⎪⎩, …………12分所以所求直线方程为0103y 4x =-+或0103y 4x =++. …………14分20. (15分)解法一:,已知圆的标准方程是:(x-2)2+(y-2)2=1,它关于x 轴的对称圆的方程是(x-2)2+(y+2)2=1. …………5分 设光线L 所在的直线的方程是y-3=k(x+3)(其中斜率k 待定), 由题设知对称圆的圆心C ′(2,-2)到这条直线的距离等于1,即…………10分整理得:12k 2+25k+12=0,解得k= -34或k= -43. …………13分 故所求直线方程是y-3= -43(x+3),或y-3= -43(x+3),即3x+4y+3=0或4x+3y+3=0. …………15分解法二:已知圆的标准方程是:(x-2)2+(y-2)2=1,设光线L 所在的直线的方程是:y-3=k(x+3)(其中斜率k 待定),由题意知k ≠0,则L 的反射点的坐标是(-3(1)k k +,0),因为光线的入射角等于反射角, 所以反射光线L '所在直线的方程为y= -k(x+3(1)k k+), 即y+kx+3(1+k)=0.这条直线与已知圆相切,故圆心到直线的距离为1,即=1.以下同解法一21(15分)解:(1)过点O 做OG AB ⊥于G ,连结OA ,当α=1350时,直线AB 的斜率为-1, 故直线AB 的方程x+y-1=0,∴OG=d=222100=-+, …………2分 又∵r=22,∴OA ===2A B O A == …………5分 (2)当弦AB 被P 平分时,OP AB ⊥,此时K OP =21-, ∴AB 的点斜式方程为0521212=+-+=-y x x y ),即(. …………10分(3)设AB 的中点为(,)M x y ,AB 的斜率为K ,OM AB ⊥,则⎪⎩⎪⎨⎧-=+=-x k y x k y 112)(, 消去K ,得:0222=+-+x y y x ,当AB 的斜率K 不存在时也成立,故过点P 的弦的中点的轨迹方程为:0222=+-+x y y x . …………15分。
第2章测评一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2022江苏南京六校高二联考)直线2x+3y+1=0的斜率和它在y轴上的截距分别为( )A.2,1B.C.-,-D.-,-2.已知直线l经过点(3,1),且直线l的一个法向量是(1,1),则l的方程是( )A.y=-x+4B.y=x-2C.y=-x+2D.y=x+23.(2022安徽池州高二期末)若圆C1:x2+y2-2x-4y-4=0,圆C2:x2+y2-6x-10y-2=0,则圆C1,C2的公切线条数为( )A.1B.2C.3D.44.(2022北京第十二中学高二期中)已知圆的一条直径的端点分别是A(-1,0),B(3,-4),则该圆的方程为( )A.(x+1)2+(y-2)2=8B.(x-1)2+(y+2)2=8C.(x+1)2+(y-2)2=32D.(x-1)2+(y+2)2=325.经过两条直线2x+y+2=0和3x+4y-2=0的交点,且垂直于直线3x-2y+4=0的直线方程为( )A.2x+3y-2=0B.2x+3y+3=0C.3x+2y-2=0D.3x+2y+3=06.经过点A(1,2)可作圆x2+y2+mx-2y+4=0的两条切线,则实数m的取值范围是( )A.(-∞,-2)∪(2,+∞)B.(-5,-2)∪(2,+∞)C.(-∞,-2)∪(2,+∞)D.(-5,-2)∪(2,+∞)7.(2022江苏阜宁中学高二月考)已知圆C1与圆C2:(x+2)2+(y-1)2=4关于直线y=x对称,则圆C1的方程为( )A.(x+1)2+(y-2)2=4B.(x-1)2+(y-2)2=4C.(x+1)2+(y+2)2=4D.(x-1)2+(y+2)2=48.(2022四川成都树德中学高二月考)阿波罗尼斯证明过这样一个命题:平面内到两定点距离之比为常数k(k>0,k≠1)的点的轨迹是圆,后人将该圆称为阿波罗尼斯圆.若平面内两定点A,B间的距离为2,动点P满足,当P,A,B不共线时,△PAB面积的最大值是( )A.2B.C.D.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022山西长治二中高二月考)若l1与l2为两条不重合的直线,它们的倾斜角分别是α1,α2,下列命题是真命题的为( )A.若l1∥l2,则两条直线的斜率相等B.若两条直线的斜率相等,则l1∥l2C.若l1∥l2,则α1=α2D.若α1=α2,则l1∥l210.(2022湖北宜昌夷陵中学等高二联考)已知直线l的一个方向向量为u=-,且直线l经过点(1,-2),则下列结论中正确的是( )A.直线l的倾斜角等于150°B.直线l在x轴上的截距等于C.直线l与直线x-3y+2=0垂直D.直线l与直线x+y+2=0平行11.(2022江苏苏州第十中学高二月考)已知直线l1:x-y-1=0,动直线l2:(k+1)x+ky+k=0(k∈R),则下列结论正确的是( )A.存在k,使得直线l2的倾斜角为90°B.对任意的k,直线l1与l2都有公共点C.对任意的k,直线l1与l2都不重合D.对任意的k,直线l1与l2都不垂直12.(2022辽宁实验中学高二月考)已知实数x,y满足方程x2+y2-2x-4y+1=0,则下列说法正确的是( )A.x2+y2的最大值为2+B.(x+2)2+(y+1)2的最大值为22+12C.x+y的最大值为3+2D.4x-3y的最大值为8三、填空题:本题共4小题,每小题5分,共20分.13.我国古代名著《墨经》中给出了圆的定义为“一中同长也”.已知O为坐标原点,P(-1,),若☉O,☉P的“长”分别为1,r(r>0),且两圆相切,则r= .14.(2022江苏阜宁中学高二月考)已知直线l:mx-y=1,若直线l与直线x-my-1=0平行,则实数m 的值为 .动直线l被圆C:x2+y2+2x-24=0截得弦长的最小值为 .15.(2022福建南安第三中学高二月考)一个圆过圆C:x2+y2-2x=0与直线l:x+2y-3=0的交点,且圆心在y轴上,则这个圆的方程为 .16.(2022山东潍坊高二联考)已知P(3,-2),M为圆x2+(y-2)2=4上的动点,则线段MP长度的取值范围是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知直线l1:ax+2y+6=0和l2:x+(a-1)y+a2-1=0(a≠1),试求a为何值时,(1)l1∥l2; (2)l1⊥l2.18.(12分)已知圆C:x2+y2+2x-4y-4=0.(1)在下列两个条件中任选一个作答.①已知不过原点的直线l与圆C相切,且在x轴,y轴上的截距相等,求直线l的方程;②从圆外一点P(2,1)向圆引切线,求切线方程.(注:如果选择两个条件分别解答,按第一个解答计分)(2)若圆C2:x2+y2=4与圆C相交于D,E两点,求线段DE的长.19.(12分)(2022山东高二“学情检测”)已知△ABC的顶点A(4,2),AB边上的中线CM所在直线方程为x-y-3=0,AC边上的高BH所在直线方程为x+2y-2=0.求:(1)顶点C的坐标;(2)点B到直线AC的距离.20.(12分)已知A(0,3),O为坐标原点,直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线方程;(2)若圆C上存在点M,使|MA|=2|MO|,求圆心C的横坐标a的取值范围.21.(12分)(2022四川绵阳重点高中高二联考)已知圆C经过(2,4),(1,3)两点,圆心C在直线x-y+1=0上,过点A(0,1)且斜率为k的直线l与圆C相交于M,N两点.(1)求圆C的标准方程;(2)若=12(O为坐标原点),求直线l的斜率.22.(12分)(2022黑龙江哈尔滨九中高二期中)已知线段AB的端点B的坐标是(6,8),端点A在圆x2+y2=16上运动,M是线段AB的中点,且直线l过定点(1,0).(1)求点M的轨迹方程;(2)记(1)中求得的图形的圆心为C,若直线l与圆C交于P,Q两点,求△CPQ面积的最大值,并求此时直线l的方程.参考答案第2章测评1.D 将直线2x+3y+1=0化为斜截式,得y=-x-,所以直线的斜率为-,在y轴上的截距为-,故选D.2.A 由直线l的一个法向量可知直线的斜率为-1.∵直线l经过点(3,1),且直线l的斜率为-1,根据直线的点斜式可得直线l的方程是y-1=-(x-3),整理得y=-x+4,故选A.3.B 依题意,圆C1:(x-1)2+(y-2)2=9,圆心为C1(1,2),半径为r1=3,圆C2:(x-3)2+(y-5)2=36,圆心为C2(3,5),半径为r2=6.因为|C1C2|=,且r2-r1<<r1+r2,故圆C1,C2相交,则圆C1,C2有2条公切线.故选B.4.B 由题意可知,线段AB的中点为(1,-2),即该圆的圆心为(1,-2).又圆的半径为r=|AB|==2,故圆的方程为(x-1)2+(y+2)2=8.故选B.5.A 联立方程组解得则交点为A(-2,2).因为所求直线垂直于直线3x-2y+4=0,故所求直线的斜率k=-.故所求直线方程为y-2=-(x+2),即2x+3y-2=0.故选A.6.B 由圆x2+y2+mx-2y+4=0整理得x+2+(y-1)2=-3,∴-3>0,解得m<-2或m>2.由题意知点A在圆外,∴1+4+m-4+4>0,解得m>-5.综上可得,-5<m<-2或m>2.故选B.7.D 设圆心C2(-2,1)关于直线y=x的对称点C1的坐标为(a,b),则线段C1C2的中点为,且.则解得即圆C1的圆心为C1(1,-2).因为两圆关于直线对称,则圆的半径长度不变,即圆C1的半径为2,所以圆C1的方程为(x-1)2+(y+2)2=4.故选D.8.A 如图所示,以经过A,B两点的直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,则A(-1,0),B(1,0).设P(x,y),因为,所以,整理得x2+y2-6x+1=0,即(x-3)2+y2=8.因为P,A,B三点不共线,故当P点在y轴上时,△PAB面积最大,此时三角形的高为OP=2,所以△PAB面积的最大值是×2×2=2.故选A.9.CD 当α1=α2=90°时,l1∥l2,但两条直线斜率不存在,故A错误;若两条直线的斜率相等,且两直线不重合,可得l1∥l2,故B错误;若l1∥l2,由平行线的性质,可得α1=α2,故C正确;若α1=α2,由平行线的性质,可得l1∥l2,故D正确.故选CD.10.CD 因为直线l的一个方向向量为u=-,所以直线l的斜率为k==-.设直线的倾斜角为α(0≤α<π),则tanα=-,所以α==120°,故A错误;因为直线l经过点(1,-2),所以直线l的方程为y+2=-(x-1),令y=0,则x=-+1,所以直线l在x轴上的截距为-+1,故B错误;因为直线x-3y+2=0的斜率为,直线l的斜率为-,所以-=-1,所以直线l与直线x-3y+2=0垂直,故C正确;因为直线x+y+2=0的斜率为-,直线l的斜率也为-,且两直线截距不等,故两直线平行,故D 正确.故选CD.11.ABD 当k=0时,直线l2斜率不存在,此时l2的倾斜角为90°,故A正确;由可得x(2k+1)=0,对于任意的k,此方程组都有解,所以对任意的k,直线l1与l2都有公共点,故B正确;当k=-时,直线l2:x-y-=0,即x-y-1=0,此时直线l1与l2重合,故C不正确;由x-y-1=0可得直线l1的斜率为1,若直线l2与l1垂直,则直线l2的斜率为=-1,此方程无解,所以对任意的k,直线l1与l2都不垂直,故D正确.故选ABD.12.BCD 方程x2+y2-2x-4y+1=0整理可得(x-1)2+(y-2)2=4,则方程x2+y2-2x-4y+1=0表示的图形是以点C(1,2)为圆心,2为半径的圆,如图所示.代数式x2+y2表示圆C上的点P(x,y)到原点O的距离的平方,当点P为直线OC与圆C的交点,且C在线段OP上时,|OP|取得最大值,即|OP|max=|OC|+2=2+,所以(x2+y2)max==9+4,故A错误;由于代数式(x+2)2+(y+1)2表示圆C上的点Q(x,y)到点A(-2,-1)的距离的平方,当点Q为直线AC与圆C的交点,且点C在线段AQ上时,|AQ|取得最大值,即|AQ|max=|AC|+2=+2=3+2,所以[(x+2)2+(y+1)2]max==22+12,故B正确;设x+y=k,则直线x+y-k=0与圆C有公共点,所以圆心到直线的距离≤2,解得3-2≤k≤3+2,所以x+y的最大值为3+2,故C正确;设4x-3y=t,则直线4x-3y-t=0与圆C有公共点,所以≤2,解得-12≤t≤8,所以4x-3y的最大值为8,故D正确.故选BCD.13.1或3 由题意,O为坐标原点,P(-1,).根据圆的定义可知,☉O的圆心为O(0,0),半径为1,☉P的圆心为P(-1,),半径为r.因为两圆相切,则有|PO|=r+1或|PO|=|r-1|.因为|PO|==2,则有r+1=2或|r-1|=2,解得r=1或3.14.-1 2 由题意得m×(-m)-(-1)×1=0,所以m=±1.当m=1时,两直线重合,舍去,故m=-1.因为圆C的方程x2+y2+2x-24=0可化为(x+1)2+y2=25,即圆C的圆心为C(-1,0),半径为5.由于直线l:mx-y-1=0过定点P(0,-1),所以过点P且与PC垂直的弦的弦长最短,|PC|=,则最短弦长为2×=2.15.x2+(y+2)2=10 由解得所以圆C与直线l的交点为,B(1,1).因为直线AB的斜率为-,线段AB,所以线段AB的垂直平分线的斜率为2,则可得y-=2x-,即y=2x-2.又因为圆心在y轴,所以圆心为(0,-2),半径为圆心到交点B的距离,则所求圆的方程为x2+(y+2)2=10.16.[3,8] 因为圆x2+(y-2)2=4的圆心坐标为C(0,2),半径r=2.又P(3,-2),所以|PC|==5.因为M为圆上的动点,所以5-r≤|MP|≤5+r,即3≤| MP|≤8,所以线段MP长度的取值范围是[3,8].17.解(1)若l1∥l2,则解得故a=-1.(2)若l1⊥l2,则a+2(a-1)=0,解得a=.18.解(1)①将圆C的方程化为(x+1)2+(y-2)2=9,∴圆心C的坐标为(-1,2),半径为3.∵直线l在两坐标轴上的截距相等且不为零,故直线l的斜率为-1.设直线l的方程为y=-x+b,∵直线l与圆(x+1)2+(y-2)2=9相切,∴=3,整理得b=1±3.故所求直线l的方程为y=-x+1±3.②将圆C的方程化为(x+1)2+(y-2)2=9,∴圆心C的坐标为(-1,2),半径为3.当过点P的直线斜率不存在时,直线方程为x=2,此时圆心C到直线的距离为3,所以直线x=2是圆C的切线.当过点P的直线斜率存在时,设切线方程为y-1=k(x-2),即kx-y+1-2k=0.由题意可知=3,解得k=,∴切线方程为x-y+1-2×=0,整理得4x-3y-5=0.综上所述,切线方程为4x-3y-5=0或x=2.(2)联立两圆方程得①-②得2x-4y=0,则DE所在直线的方程为x-2y=0.则圆心C到直线DE的距离为d=.∴线段DE的长为2=4.19.解(1)设C(m,n),由于AB边上的中线CM所在直线方程为x-y-3=0,AC边上的高BH所在直线方程为x+2y-2=0.则解得故可得顶点C的坐标为(3,0).(2)设B(a,b),则解得则可得B点坐标为,-.由(1)可得直线AC的方程为,整理得2x-y-6=0.故点B到直线AC的距离d=.20.解(1)由题得圆心在直线l:y=2x-4和直线y=x-1上,则可得解得即圆心C的坐标为(3,2).设过A(0,3)的圆C的切线方程为y-3=k(x-0),即kx-y+3=0,由直线kx-y+3=0与圆C相切,可得=1,解得k=0或k=-,故所求切线方程为y=3或3x+4y-12=0.(2)根据圆心C在直线l:y=2x-4上,可设圆心C为(a,2a-4),则圆的方程为(x-a)2+(y-2a+4)2=1.若圆C上存在点M,使|MA|=2|MO|,设M(x,y),∵|MA|=2|MO|,∴=2,整理可得x2+(y+1)2=4,故点M在以D(0,-1)为圆心,2为半径的圆上.又点M也在圆C上,故圆C和圆D有交点,∴2-1≤|CD|≤1+2,即1≤≤3,得解得0≤a≤,即a的取值范围为.21.解(1)设圆C的标准方程为(x-a)2+(y-b)2=r2(r>0),则由题意可得解得所以圆C的标准方程为(x-2)2+(y-3)2=1.(2)设直线l的方程为y=kx+1,设M(x1,y1),N(x2,y2),将y=kx+1代入(x-2)2+(y-3)2=1,整理得(1+k2)x2-4(1+k)x+7=0,x1+x2=,x1x2=.=x1x2+y1y2=(1+k2)x1x2+k(x1+x2)+1=+8=12,即=4,解得k=1.经检验,符合题意,所以直线l的斜率为1.22.解(1)设M(x,y),A(x0,y0),∵M是线段AB中点,∴整理可得∵点A在圆x2+y2=16上,∴(2x-6)2+(2y-8)2=16,整理得(x-3)2+(y-4)2=4,即M点的轨迹方程为(x-3)2+(y-4)2=4.(2)由直线l与圆C交于P,Q两点知直线l斜率存在且不为0.设直线l的方程为y=k(x-1),即kx-y-k=0,则圆心C到直线l距离d=,∵S△CPQ=|PQ|·d=d=2,当且仅当4-d2=d2,即d2=2时,等号成立.由d2=2得=2,解得k=1或k=7.故△CPQ面积的最大值为2,此时直线l的方程为x-y-1=0或7x-y-7=0.。
历届高考中的“解析几何初步”试题精选一、选择题:(每小题5分,计60分)题号123456789101112答案1.(2008全国Ⅱ卷文)原点到直线052=-+y x 的距离为( )A .1B .3C .2D .52.(2001春招上海)若直线1=x 的倾斜角为α,则α( )(A )等于0 (B )等于4π (C )等于2π(D )不存在3.(2006福建文)已知两条直线2y ax =-和(2)1y a x =++互相垂直,则a 等于( ) (A )2 (B )1 (C )0 (D )1-4.(2004全国卷Ⅱ文)已知点A (1,2),B(3,1),则线段AB 的垂直平分线的方程为( )(A )4x +2y =5 (B )4x -2y =5 (C )x +2y =5 (D )x -2y =55.(2008广东文)经过圆0222=++y x x 的圆心C ,且与直线x+y=0垂直的直线方程是( ) A .01=+-y x B. 01=--y x C. 01=-+y x D. 01=++y x6. (2008重庆理)圆O 1: x 2+y 2-2x =0和圆O 2: x 2+y 2-4y =0的位置关系是 ( )(A)相离 (B)相交 (C)外切 (D)内切7.(2007浙江文、理)直线x -2y +1=0关于直线x =1对称的直线方程是( ) (A)x +2y -1=0 (B)2 x +y -1=0 (C )2 x +y -3=0 (D) x +2y -3=0 8.(2006江苏)圆1)3()1(22=++-y x 的切线方程中有一个是( )(A )x -y =0 (B )x +y =0 (C )x =0 (D )y =09.(2007上海文)圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x 222210.(2004天津理)若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A.03=--y xB.032=-+y xC.01=-+y xD.052=--y x11.(2006全国Ⅰ卷文)从圆222210x x y y -+-+=外一点()3,2P 向这个圆作两条切线, 则两切线夹角的余弦值为( )A .12 B .35 C D .012.(2003广东)在同一坐标系中,表示直线ax y =与a x y +=正确的是( )二、填空题:(每小题5分,计30分)13.(2007上海理)若直线1210l x my ++=: 与直线231l y x =-:平行,则=m .14.(2008四川文、理)已知直线:40l x y -+=与圆()()22:112C x y -+-=,则C 上各点到l 的距离的最小值为_______ ______。
2.7 用坐标方法解决几何问题A级必备知识基础练1.一涵洞的横截面是半径为5 m的半圆,则该半圆的方程是()A.x2+y2=25B.x2+y2=25(y≥0)C.(x+5)2+y2=25(y≤0)D.随建立直角坐标系的变化而变化2.在平面内,A,B是两个定点,C是动点,若=2,则点C的轨迹为()A.椭圆B.射线C.圆D.直线3.已知等腰三角形ABC其中一腰的两个端点分别是A(4,2),B(-2,0),|AB|=|AC|,则另一腰的一个端点C的轨迹方程是()A.x2+y2-8x-4y=0B.x2+y2-8x-4y-20=0(x≠-2,x≠10)C.x2+y2+8x+4y-20=0(x≠-2,x≠10)D.x2+y2-8x-4y+20=0(x≠-2,x≠10)4.(2022四川内江第六中学高二月考)当点P在圆x2+y2=1上变动时,它与定点Q(3,0)相连,线段PQ 的中点M的轨迹方程是()A.(x-3)2+y2=1B.(2x-3)2+4y2=1C.(x+3)2+y2=4D.(2x+3)2+4y2=45.已知两定点A(-2,0),B(1,0),如果动点P满足条件|PA|=2|PB|,则点P的轨迹所包围的图形的面积等于()A.πB.4πC.8πD.9π6.过点A(8,0)的直线与圆x2+y2=4交于点B,则线段AB中点P的轨迹方程为.7.已知:四边形ABCD,|AB|2+|CD|2=|BC|2+|AD|2.求证:AC⊥BD.B级关键能力提升练8.在直角三角形ABC中,D是斜边AB的中点,P为线段CD的中点,则=()A.2B.4C.5D.109.在△ABC中,D为BC边上任意一点(D与B,C不重合),且|AB|2=|AD|2+|BD|·|DC|.则△ABC为()A.等腰三角形B.等边三角形C.直角三角形D.以上都不对10.已知圆C:x2+y2-8x-6y+16=0,过点P(4,1)的直线与圆C交于点M,N,线段MN的中点为Q.则点Q 的轨迹方程为.11.正方形ABCD与点P在同一平面内,已知该正方形的边长为1,且|PA|2+|PB|2=|PC|2,则|PD|的取值范围为.12.如图,已知点A,B,C共线,△ABD和△BCE是在直线AC同侧的两个等边三角形,用坐标法证明:|AE|=|CD|.13.(2022四川成都云教联盟高二联考)(1)已知AD是△ABC边BC的中线,用坐标法证明:|AB|2+|AC|2=2(|AD|2+|DC|2).(2)已知动点C与两个定点A(0,0),B(3,0)的距离之比为,若△ABC边BC的中点为D,求动点D的轨迹方程.C级学科素养创新练14.一艘轮船沿直线返回港口的途中,接到气象台的台风预报,台风中心位于轮船正西70 km处,受影响的范围是半径为30 km的圆形区域,已知港口位于台风中心正北40 km处,如果这艘轮船不改变航线,那么它是否会受到台风的影响?参考答案2.7用坐标方法解决几何问题1.D由于建立的平面直角坐标系不同,因此该半圆的方程也不同,故选D.2.C以AB所在直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系,设A(-a,0),B(a,0),C(x,y),则=(x+a,y),=(x-a,y).由=2,得(x-a)(x+a)+y2=2,即x2+y2=a2+2,所以点C的轨迹为圆.3.B设C(x,y),由|AB|=|AC|,得(4+2)2+(2-0)2=(x-4)2+(y-2)2,即x2+y2-8x-4y-20=0.又点B与点C不重合且B,C,A不共线,所以x≠-2,x≠10.故选B.4.B设线段PQ的中点M(x,y),点P与定点Q(3,0)相连,则P(2x-3,2y).点P在圆x2+y2=1上变动时,线段PQ的中点M的轨迹方程是(2x-3)2+4y2=1.故选B.5.B设P点的坐标为(x,y),因为两定点A(-2,0),B(1,0),且动点P满足|PA|=2|PB|,则(x+2)2+y2=4[(x-1)2+y2],整理得(x-2)2+y2=4,所以点P的轨迹是以(2,0)为圆心,2为半径的圆,所以点P的轨迹所包围的图形的面积等于4π.故选B.6.(x-4)2+y2=1设点P的坐标为(x,y),点B为(x1,y1),由题意,结合中点坐标公式可得x1=2x-8,y1=2y,故(2x-8)2+(2y)2=4,化简得(x-4)2+y2=1.即线段AB中点P的轨迹方程为(x-4)2+y2=1.7.证明如图,以AC所在的直线为x轴,过点B垂直于AC的直线为y轴建立直角坐标系.设顶点坐标分别为A(a,0),B(0,b),C(c,0),D(x,y),∵|AB|2+|CD|2=|BC|2+|AD|2,∴a2+b2+(x-c)2+y2=b2+c2+(x-a)2+y2,化简得(a-c)x=0.∵a≠c,即a-c≠0,∴x=0,即D在y轴上,∴AC⊥BD.8.D以直角三角形的直角顶点C为坐标原点建立平面直角坐标系(图略),设B(a,0),A(0,b),则D,P.则=10.故选D.9.A如图所示,作AO⊥BC,垂足为O,以BC所在直线为x轴,OA所在直线为y轴,建立平面直角坐标系.设A(0,a),B(b,0),C(c,0),D(d,0)(b<d<c).因为|AB|2=|AD|2+|BD|·|DC|,所以b2+a2=d2+a2+(d-b)(c-d),所以-(d-b)(b+d)=(d-b)(c-d).又因为d-b≠0,所以-b-d=c-d,即-b=c,所以|OB|=|OC|.又AO⊥BC,故△ABC为等腰三角形.10.(x-4)2+(y-2)2=1(1)由圆C:(x-4)2+(y-3)2=9方程可知(4-4)2+(1-3)2=4<9,故点P(4,1)在圆C内.∵弦MN过点P,Q是MN的中点,则CQ⊥MN,∴点Q的轨迹是以CP为直径的圆,线段CP的中点为(4,2),故其方程为(x-4)2+(y-2)2=1.11.[2-,2+]以A为坐标原点,AB所在直线为x轴,AD所在直线为y轴,建立平面直角坐标系,如图所示.则A(0,0),B(1,0),C(1,1),D(0,1).设点P(x,y),则由|PA|2+|PB|2=|PC|2,得x2+y2+(x-1)2+y2=(x-1)2+(y-1)2,整理得x2+(y+1)2=2,即点P 的轨迹是以点M(0,-1)为圆心,为半径的圆.圆心M到点D的距离为|MD|=2,所以|PD|min=2-,|PD|max=2+,所以|PD|的取值范围是[2-,2+].12.证明如图,以点B为坐标原点,直线AC所在直线为x轴,建立平面直角坐标系.设△ABD和△BCE的边长分别为a,c,则A(-a,0),C(c,0),D-a,E,∴|AE|=,|CD|=,∴|AE|=|CD|.13.解(1)以BC边为x轴,线段BC的中垂线为y轴,建立如图所示的平面直角坐标系.不妨设A(x,y),B(-b,0),C(b,0),其中b>0,所以|AB|2+|AC|2=(x+b)2+y2+(x-b)2+y2=2(x2+y2+b2),2(|AD|2+|DC|2)=2(x2+y2+b2),故|AB|2+|AC|2=2(|AD|2+|DC|2).(2)设C(m,n),由,则点C的轨迹方程为m2+n2+6m-9=0(m≠±3-3或n≠0).设D(x,y),则C(2x-3,2y),将C(2x-3,2y)代入m2+n2+6m-9=0,可得(2x-3)2+(2y)2+6(2x-3)-9=0,整理得x2+y2=.14.解以台风中心为坐标原点,以东西方向为x轴建立直角坐标系(如图所示),其中取10km为单位长度,则受台风影响的圆形区域所对应的圆的方程为x2+y2=9, 港口所对应的点的坐标为(0,4),轮船的初始位置所对应的点的坐标为(7,0),则轮船航线所在直线l的方程为=1,即4x+7y-28=0,圆心(0,0)到航线4x+7y-28=0的距离d=,而半径长r=3,因为>3,所以直线与圆相离.故这艘轮船不改变航线,不会受到台风的影响.。
2024年数学九年级上册解析几何基础练习题(含答案)试题部分一、选择题:1. 在平面直角坐标系中,点A(2, 3)关于x轴的对称点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (2, 3)2. 已知点P在第二象限,且到x轴的距离是4,到y轴的距离是3,则点P的坐标是()A. (3, 4)B. (3, 4)C. (4, 3)D. (4, 3)3. 直线y=2x+1的斜率是()A. 1B. 2C. 1D. 24. 下列函数中,哪一个是一次函数?()A. y=x^2B. y=2xC. y=x^3D. y=1/x5. 在平面直角坐标系中,点A(1, 2)和点B(2, 4)所在的直线方程是()A. y=2x+4B. y=2x+4C. y=x+3D. y=x+36. 一次函数y=kx+b的图象经过一、二、四象限,则k和b的取值范围是()A. k>0, b>0B. k<0, b>0C. k>0, b<0D. k<0, b<07. 下列各点中,哪一个点不在直线y=x+3上?()A. (1, 2)B. (2, 1)C. (1, 4)D. (2, 5)8. 已知直线y=2x+1与y轴的交点坐标是(0, a),则a的值为()A. 0B. 1C. 2D. 19. 在平面直角坐标系中,两条平行线的斜率分别是2和2,则这两条直线()A. 相交B. 平行C. 重合D. 垂直10. 已知一次函数y=kx+b的图象与y轴交于点(0, 3),且过点(1,5),则该函数的解析式为()A. y=2x+3B. y=3x+3C. y=2x+3D. y=3x+3二、判断题:1. 一次函数的图象是一条直线。
()2. 两条平行线的斜率一定相等。
()3. 一次函数y=kx+b中,当k>0时,直线必经过第一象限。
()4. 点(0, 0)是所有直线上的点。
()5. 直线y=2x+1的斜率为2,说明直线与x轴的夹角为60度。
平面解析几何初步检测题考试时间 45分钟 总分 100分一、选择题(7’× 5)1.已知直线的方程是21y x +=--,则 ( )A.直线经过点(2,-1),斜率为-1 B .直线经过点(1,-2),斜率为-1C.直线经过点(-2,-1),斜率为1D.直线经过点(-1,-2),斜率为-12.过点A(4,1)且在两坐标轴上的截距相等的直线的方程是 ( )A.5x y +=B.5x y -=C.5x y +=或40x y -=D.5x y -=或40x y +=3.斜率为-3,在x 轴上的截距为2的直线的一般式方程是 ( )A.360x y ++=B.320x y -+=C.360x y +-=D.320x y --=4.直线20x y k -+=与4210x y -+=的位置关系是 ( )A.平行B.不平行C.平行或重合D.既不平行也不重合5.已知A(-4,-5)、B(6,-1),则以线段AB 为直径的圆的方程是 ( )A.()()221329x y ++-=B.()()221329x y +++=C.()()2213116x y ++-=D.()()2213116x y -++=二、填空题(7’× 2)6.若直线x +2my -1=0与直线(3m -1)x -my -1=0平行,那么实数m 的值为_________.7.点P(5a +1,12a )在圆()2211x y -+=的内部,则a 的取值范围是_________.三、解答题(14’ + 17’+ 20’)8.已知P(3,m )在过点M(2,-1)和点N(-3,4)的直线上,则m 的值是多少?9.直线l 过点P(-2,3)且与x 轴、y 轴分别交与A 、B 两点,若P 恰为线段AB 的中点,求直线l 的方程.10.已知点P (0,5)及圆C :22412240x y x y ++-+=,(1)若直线l 过P 且被圆C 截得的线段长为l 的方程;(2)求过P 点的弦的中点的轨迹方程.答题纸班级:姓名:分数:I选择题、填空题II解答题第二章平面解析几何初步检测题一、选择题2.D3.C4.C 7.C 8.B二、填空题12. 0或16; 14. 111313a -<<. 三、解答题11. –2;16. 解:(法一)设A(x,0) 、B(0,y),由中点坐标公式得:002,322x y ++=-= 解得:x =-4,y =6 又直线l 过点(-2,3)、(-4,0)∴ 直线l 的方程为:320342y x -+=--+ 即3x -2y +12=0 (法二)设直线l 的斜率为k ,∵直线l 过点(-2,3), ∴直线l 的方程为y -3=k(x +2)令x =0得y =2k +3;令y =0得x =32k --. ∴A 、B 两点的坐标分别为A(32k--,0)、B(0,2k +3). ∵AB 的中点为(-2,3) ∴32222332k k ⎧--⎪=-⎪⎨⎪+=⎪⎩ ,解之得k =32 ∴直线l 的方程为y -3=32(x +2) 即直线l 的方程为3x -2y +12=0.18. 解:(1)圆心为(2,6)-,半径为4,弦长为2d == 若直线l 无斜率,则其方程为0x =,则圆心(2,6)-到直线l 的距离为2,符合条件.若直线l 有斜率,设其方程为5y kx -=,一般式为50kx y -+=,则有2=,解得34k =,综上,直线方程为342000x y x -+==或; (2)设过P 点的弦的中点坐标为(,)x y ,则该弦所在直线与过圆心与弦中点(,)x y 的直线垂直,则有561(0,2)2y y x x x x --∙=-≠≠-+,化简得22211300x y x y ++-+=, 且弦的中点坐标分别为(0,5),(0,6),(2,5),(2,6)--时仍满足上式,因此弦的中点轨迹方程为22211300x y x y ++-+=.。
解析几何初步(一)一、选择题1. 如果直线0=++C By Ax 的倾斜角为 45,则有关系式 ( )A.B A = B.0=+B A C.1=AB D.以上均不可能 2. 直线122=-by ax 在y 轴上的截距是 ( )A. bB. 2bC. 2b -D. b ±3. 下列命题中正确的是 ( ) A .平行的两条直线的斜率一定相等 B.平行的两条直线的倾斜角一定相等 C . 垂直的两直线的斜率之积为-1 D.斜率相等的两条直线一定平行4. 圆2)3()2(22=++-y x 的圆心和半径分别是 ( )A .)3,2(-,1B .)3,2(-,3C .)3,2(-,2D .)3,2(-,2 5. 如果直线l 上的一点A 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到直线l 上,则l 的斜率是 ( )A .3B .13C .-3D .-136. 已知A (1,1,1),B (-3,-3,-3),则线段AB 的长为( )A .4B .2C .D .7. 已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为13,则m ,n的值分别为 ( ) A.4和3 B. -4和3 C. -4和-3 D.4和-3 8. 已知点P (0,-1),点Q 在直线01=+-y x 上,若直线PQ 垂直于直线052=-+y x ,则点Q 的坐标是 ( ) A .(-2,1) B .(2,1) C .(2,3) D .(-2,-1)9. 两圆221:2220C x y x y +++-=,222:4210C x y x y +--+=的公切线有且仅有( ) A .1条 B .2条 C .3条 D .4条10. 平行于直线2x -y+1=0且与圆x 2+y 2=5相切的直线的方程是 ( )A .2x -y+5=0B .2x -y -5=0C .2x +y+5=0或2x +y -5=0D .2x -y+5=0或2x -y -5=0 11.圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是 ( )A .22(7)(1)1x y +++=B .22(7)(2)1x y +++=C . 22(6)(2)1x y +++=D .22(6)(2)1x y ++-=12.如果实数y x ,满足等式22(2)3x y -+=,那么y x 的最大值是 ( )A .12B .3C 2D .3二.填空题13.如图,直线12,l l 的斜率分别为k 1、k 2,则k 1、k 2的大小关系是; .14.如果直线l 与直线x+y -1=0关于y 轴对称,则直线l 的方程是 .15.已知两点A (1,-1)、B (3,3),点C (5,a )在直线AB 上,则实数a 的值是 .16.直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是.三.解答题17.已知一条直线经过两条直线0432:1=--y x l 和0113:2=-+y x l 的交点,并且垂直于这个交点和原点的连线,求此直线方程。