相交线与平行线复习课导学案
- 格式:doc
- 大小:133.50 KB
- 文档页数:3
相交线与平行线复习导学案班级 姓名学习目标:复习巩固相交线与平行线的有关概念和性质,使学生会用这些概念和性质进行简单的推理或计算;能用直尺、三角板、量角器画垂线和平行线;加深理解推理证明,提高学生分析问题解决问题能力。
知识梳理1.邻补角、对顶角定义两条直线相交所构成的四个角中,有公共顶点 的两个角是邻补角。
两条直线相交所构成的四个角中,有公共顶点 的两个角是对顶角。
对顶角有如下性质:对顶角 。
2.余角与补角如果两个角的和是 ,那么称这两个角互为补角.如果两个角的和是 ,那么称这两个角互为余角.3.余角与补角的性质同角或等角的 相等,同角或等角的 相等。
4.垂直定义两条直线相交,所成四个角中有一个角是_____ 时,我们称这两条直线_______, 其中一条直线是另一条的_____ ,他们的交点叫做_____ 。
5.①平面内,过一点有且只有一条直线与已知直线 。
②直线外一点与直线上各个点连接的所有 中 最短6.判定两条直线平行的方法:⑴平行线的定义:⑵平行线的传递性:⑶平行线的判定公理1:⑷平行线的判定定理2:⑸平行线的判定定理3:7.两条直线平行的性质 : 两直线平行, 同位角 两直线平行, 内错角 两直线平行, 同旁内角8.平行线的性质与判定的区别与联系1、区别:性质是:根据两条直线平行,去证角的相等或互补.2、判定是:根据两角相等或互补,去证两条直线平行.联系:它们都是以两条直线被第三条直线所截为前提; 它们的条件和结论是互逆的。
3、总结:已知平行用性质,要证平行用判定自主学习1、 如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2互为____角;∠1和∠4互为_____角; 第1题 第2题 ∠2和∠3互为_____角; ∠1和∠3互为____角;∠2和∠4互为_ _角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠____=____°-____°=_____°; ∠4=∠____-∠1=____°-____°=_____°.2、如图所示, AC ⊥BC, C 为垂足, CD ⊥AB, 点D 为垂足,BC=8,CD=4.8, BD=6.4,AD=3.6,AC= 6,那么点C 到AB 的距离是_______,点A 到BC 的距离是 ,点B 到CD 的距离是 ,A 、B 两点的距离是 ;3、若直线a ,b 被直线c 所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______; C B A(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.(第3题)(第4题)(第5题)(第6题)4、如图所示,图中用数字标出的角中,同位角有______ ;内错角有;同旁内角有.5、如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________ ,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________ )(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)6、如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________ .(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________ .(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是_______________________ .三、达标检测1、在下列四个图中,∠1与∠2是同位角的图是( ).图①图②图③图④(A)①②(B)①③C)②③(D)③④(第2题)2、如图,直线AB、CD相交于O如果∠AOC=2x°,∠BOC=(x+y+9)°,∠BOD=(y+4)°,则∠AOD的度数为____.3.同一平面内的四条直线满足a⊥b,b⊥c,c⊥d,则下列式子成立的是()A.a∥b B.b⊥d C.a⊥d D.b∥c4、已知点P在直线m外,点A、B、C均在直线m上,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离是()A等于2cm B小于2 cm C大于2cm D不大于2cm (第5题)5、如图,DC∥EF∥AB,EH∥DB,则图中与∠DGE相等的角有________________________________.6、在下列条件中:①∠1=∠2;②∠BAD=∠BCD;③∠ABC=∠ADC且∠3=∠4;④∠BAD+∠ABC=180°,能判定AB∥CD的有( ).(A)3个(B)2个(C)1个(D)0个(第6题)7、如图,AB ∥CD ,若EM 平分∠BEF ,FM 平分∠EFD ,EN 平分∠AEF ,则与∠BEM 互余的角有( ).(A)6个 (B)5个 C)4个 (D)3个8、以下五个条件中,能得到互相垂直关系的有( ).①对顶角的平分线②邻补角的平分线③平行线截得的一组同位角的平分线④平行线截得的一组内错角的平分线⑤平行线截得的一组同旁内角的平分线(A)1个 (B)2个 (C)3个 (D)4个9、把一张对边互相平行的纸条折成如图所示,EF 是折痕,若∠EFB =32°,则下列结论正确的有( ).(1)∠C ′EF =32° (2)∠AEC =148° (3)∠BGE =64° (4)∠BFD =116°(A)1个 B)2个 (C)3个 (D)4个10、如图,AB ∥CD ,FG ⊥CD 于N ,∠EMB =α,则∠EFG 等于( ).(A)180°-α (B)90°+α (C)180°+α( D)270°-α11.如图,AB ∥CD ,∠DCE=80°,则∠BEF=( )A 、120°B 、110°C 、100°D 、80°12.如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )A .60°B .50°C . 45°D . 40°13.如图,已知直线AB ∥CD ,∠C=125°,∠A=45°,那么∠E 的大小为( )A .70°B .80°C .90°D .100°14..如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =40°,∠AOB =75°.则∠C 等于( )A 、40°B 、65°C 、75°D 、115° 15、如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG 的度数.16.如图,CD ⊥AB ,EF ⊥AB ,∠E =∠EMC ;求证:CD 是∠ACB 的平分线.17..已知:如图,CD ⊥AB 于D ,DE ∥BC ,EF ⊥AB 于F ,求证:∠FED =∠BCD .A B D C第12题18.已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC.且∠1=∠3.求证:AB∥DC.19..已知AD与AB、CD交于A、D两点,EC、BF与AB、CD交于E、C、B、F,且∠1=∠2,∠B=∠C.试判断∠A与∠D的数量关系并说明原因。
第五章 相交线与平行线《相交线与平行线复习》导学案N0:11班级 姓名____________小组 小组评价 教师评价_____ 一、学习目标①了解邻补角、对顶角,知道对顶角相等,邻补角互补.②了解垂线、垂线段等概念,了解垂线段最短的性质,体会点到直线距离的意义. ③知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线.④知道过直线外一点有且仅有一条直线平行于已知直线,会用三角尺和直尺过已知直线外一点画这条直线的平行线.⑤知道两直线平行的条件并会正确判断.⑥知道两直线平行同位角相等,进一步探索平行线的性质.⑦体会两条平行线之间距离的意义,会度量两条平行线之间的距离. ⑧利用相关知识会进行有关推理和计算 二、重点与难点:重点:系统归纳本章有关概念、性质、定理等知识。
难点:运用本章相关知识进行有关推理、计算、解题。
三、自主学习: Ⅰ.知识网络结构Ⅱ.知识要点剖析(一)关系角及其性质1.对顶角、余角、补角(邻补角)、同位角,内错角、同旁内角;2.对顶角相等; (二)相交线、平行线1.垂线、垂线段最短(点到直线的距离);2.过一点(直线上或直线外)有且只有一条直线和已知直线垂直; 3.会过一点画(作)已知直线的垂线;(一落,二靠,三画) 4.过直线外一点,有且只有一条直线与已知直线平行; 5.如果两条直线都与第三条直线平行,那么这两条直线也互相平行. 6.三线八角与平行线的关系;①判定公理: 同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a ∥b . ②判定定理1:内错角相等,两直线平行. ∵ ∠2=∠3, ∴ a ∥b .③判定定理2:同旁内角互补,两直线平行. ∵∠2+∠4=1800, ∴ a ∥b .平移判定性质同位角,内错角,同旁内角点到直线的距离垂线及其性质对顶角相等邻补角,对顶角平行公理两三条条 直直线线被所第截两线条相直交平行相交平线 面的 内位两置条关直系④性质公理: 两直线平行,同位角相等. ∵ a ∥b , ∴∠1=∠2. ⑤性质定理1:两直线平行,内错角相等. ∵ a ∥b , ∴∠2=∠3.⑥性质定理2:两直线平行,同旁内角互补. ∵ a ∥b , ∴ ∠2+∠4=1800. 7.平行线之间的距离;8.会过直线外一点,画已知直线的平行线. 四.合作探究探索一:基础训练 (一)关系角及性质1.指出图中:对顶角: ,同位角: , 内错角: ,同旁内角: ; 图中哪些角是相等的 .2.若∠A +∠B =90°,则∠A 与∠B 互为 , 若∠α+∠β=180°,则∠α与∠β互为 .3.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3( ); ∵∠1+∠2=180°,∠3+∠4=180°,∠2=∠4,∴∠1=∠3( ). (二)相交线与平行线1.如图,过点P 画直线l 的垂线,这样的垂线有 条. 理由是: .若过点P 画直线l 的平行线,能画 条. 理由是: .在图中试着画一画,你能说出它的画法吗?2.如图,这是小明在体育课上跳远后留下的脚印, 请你谈谈怎样量他的成绩?3.若AB ∥CD ,CD ∥EF ,则 ∥ ,理由: . 4.如图,直线a 、b 被c 所截,(1)∵∠1=∠2 ∴ ∥ ( ); (2)∵∠2=∠3 ∴ ∥ ( ); (3)∵∠2+∠4=180°∴ ∥ ( ). 5.如图,直线AB 、CD 被EF 所截,若AB ∥CD , 则∠EMB = ( );∠AMF = ( ); ∠BMF + =180°( )6.如图直线AB ∥CD ,且被EF 所截,EG ⊥CD ,EF =5,FG =3, 则AB 、CD 之间的距离为 . 探索二:考题回放1.已知∠α=35°19′,则∠α的余角等于 ( )A .144°41′B .144°81′C .54°41′D .54°81′2.已知,如图(1)直线AB 、CD 被直线EF 所截,则∠EMB 的同位角是( ) A .∠AMF B .∠BMF C .∠ENC D .∠END(2),AB ∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于G,若∠EFG=72°,则∠EGF 等于()A.36° B.54° C.72° D.108°4.如图(3),在正方体ABCD—A1B1C1D1中,下列棱中与面CC1D1D垂直的棱()A.A1B1 B.CC1 C.BC D.CD探索三:知识整合1.如图所示,已知∠AOB的两边OA、OB均为平面反光镜,∠AOB=40°.在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB平行,则∠QPB的度数是()A.60° B.80° C.100° D.120°2.如图,已知∠C=∠AOC,OC平分∠AOD,OC⊥OE,∠D=54°.求∠C、∠BOE的度数.归纳:解答(证明)三条原则:①条理清晰;②言必有据;③因果相应.五、课堂小结1.区分命题的组成;识别命题的真命题、假命题.2.灵活运用学过的定理、定义、性质进行证明简单的题目.六、拓展提高如图所示,已知: AB∥CD,分别探究下面三个图形中∠A、∠C、∠P之间的数量关系,并选一个给予证明.七、课后作业:教材 P35--2、3; P36--6、12、13 .八、达标检测:一.判断题:(1)和为180°的两个角是邻补角.()(2)如果两个角不相等,那么这两个角不是对顶角.()(3)两条直线被第三条直线所截,同位角相等.()(4)邻补角的角平分线所在的两条直线互相垂直.()(5)两条直线相交,所成的四个角中,一定有一个是锐角.()二.选择题:(1)下列命题中,是真命题的是()A.相等的两个角是对顶角 B.有公共顶点的两个角是对顶角C.一条直线只有一条垂线D.过直线外一点有且只有一条直线垂直于已知直线(2)如图,如果AD∥BC,则有①∠A+∠B=180°;②∠B+∠C=180°;③∠C+∠D=180°,上述结论中正确的是()A .只有①;B .只有②;C .只有③;D .只有①和③ (3)如图,如果AB ∥CD ,CD ∥EF ,那么∠BCE 等于 ( ) A .∠1+∠2 B .∠2-∠1 C .180°-∠2 +∠1 D .180°-∠1+∠2 三.填空1.如图1,直线AB 、CD 相交于点O ,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.2.把命题“直角都相等”改写为“如果…,那么…”的形式是______________________. 3.如图2,要从水渠向水池C 引水,在哪里开沟可使水渠最短,请画出图形.理由是—— —.4.如图3,已知,∠1=35°,AB ⊥CD ,垂足为O ,EF 经过点O .则∠2= 度,∠3= 度,∠4= 度.5.如图4,将一副三角板的直角顶点重合,•摆放在桌面上,• 若∠AOD =145°,则∠BOC =_______度.6.如图,一条公路修到湖边时,需拐弯绕湖而过;如果第一次拐的角∠A是120○,第二次拐的角∠B 是150○,第三次拐的角是∠C ,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是 . 四.解答题1.如图,已知:AB ∥CD ,∠1=55°∠2=80°, 求∠3的度数.2.如图,已知: AB ∥CD ,BE ∥CF .求证:∠1=∠4.2. 一块边长为8m 的正方形土地,上面修了横竖各两条的 道路,宽都是2m ,空白的部分种上各种花草,请利用平移 的知识求出种花草的面积。
第五章相交线与平行线复习一、教学目标:1.知识与技能:1.统过对知识的梳理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形。
2.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行的性质。
2.过程与方法:1.经历把现实物体抽象成几何对象(点、线、面等)的数学化过程.2.经历把文字语言、符号语言和图形语言的相互转化过程.3.通过说理过程,培养逻辑推理和数学表述的能力.4.通过自主知识回顾与整理,经历数学知识系系统化与条理化过程,探索数学复习的方法.3.情感态度与价值观:1.感受数学来源于生活又服务于生活,激发学习数学的乐趣.2.体验用运动变换的观点来揭示知识间内在联系.二、教学重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的综合应用。
三、教学难点:垂直、平行的性质和判定的综合应用。
四、教学过程;综合运用一、选择题:(每小题3分,共21分)1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有( )A.5个B.4个C.3个D.2个DCBA1EDCBAOFEDCBA(1) (2) (3)2.如图2所示,已知DE∥BC,CD是∠ACB的平分线,∠B=72°,∠ACB=40°,•那么∠BDC等于( )A.78°B.90°C.88°D.92°3.下列说法:①两条直线平行,同旁内角互补;②同位角相等,两直线平行;•③内错角相等,两直线平行;④垂直于同一直线的两直线平行,其中是平行线的性质的是( )A.①B.②和③C.④D.①和④4.若两条平行线被第三条直线所截,则一组同位角的平分线互相( ) A.垂直 B.平行 C.重合 D.相交5.如图3所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( )A.35°B.30°C.25°D.20°6.如图4所示,AB∥CD,则∠A+∠E+∠F+∠C等于( )A.180°B.360°C.540°D.720°FEDCBAGFED CBA1F ED CBA(4) (5) (6)7.如图5所示,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(∠1生:独立解答,相互交流。
EODCB A 第五章 相交线与平行线复习导学案(1)主备 王凤珍 审查 七年级数学备课组 时间2012、6一.知识点回顾1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________. 3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4. 直线外一点到这条直线的垂线段的长度,叫做________________________.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8. 平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________. ⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10. 平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成: _____.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:___________________________⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成_________________________. 11. 判断一件事情的语句,叫做_______.命题由________和_________两部分组成.题设是已知事项,结论是______________________.命题常可以写成“如果……那么……”的形式,这时“如果”后接的部分是_____,“那么”后接的部分是_________.如果题设成立,那么结论一定成立.像这样的命题叫做___________.如果题设成立时,不能保证结论一定成立,像这样的命题叫做___________.定理都是真命题.12. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做平移变换,简称_______.图形平移的方向不一定是水平的.平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________.二.典型题集萃(一)、相交线、三线八角1.平面内三条直线交点的个数有 个。
七年级下册数学 第五章 相交线与平行线导学12 相交线与平行线复习导学案 (二)一、学习目标:1通过对知识的梳理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形。
2、使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和3在活动过程中培养合作团结的精神,提高学习数学的兴趣,养成互相交流、互相帮助的学习习惯。
二、自主学习、1.若三条直线交于一点,则共有对顶角(平角除外)( ) A.六对 B.五对 C.四对 D.三对2.如图1所示,∠1的邻补角是( )A.∠BOCB.∠BOE 和∠AOFC.∠AOFD.∠BOC 和∠AOFF EO 1C BA D 4321AEC DBDAPC BCB A D图1 图2 图3 图43. 如图2,点E 在BC 的延长线上,在下列四个条件中,不能判定AB ∥CD 的是( ) A.∠1=∠2 B.∠B=∠DCE C.∠3=∠4 D.∠D+∠DAB=180°4. 一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的角度是( )A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50°5. 如图3,AB ∥CD ,那么∠A ,∠P ,∠C 的数量关系是( ) A.∠A+∠P+∠C=90° B.∠A+∠P+∠C=180°C.∠A+∠P+∠C=360°D.∠P+∠C=∠A三、合作探究、6. 一个人从点A 点出发向北偏东60°方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 等于( ) A.75° B.105° C.45° D.135°7.如图4所示,内错角共有( ) A.4对 B.6对 C.8对 D.10对8.如图5所示,已知∠3=∠4,若要使∠1=∠2,则需( ) A.∠1=∠3 B.∠2=∠3 C.∠1=∠4 D.AB ∥CD9.下列说法正确的个数是( )①同位角相等; ②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;;④三条直线两两相交,总有三个交点; ⑤若a ∥b ,b ∥c ,则a ∥c. A.1个 B.2个 C.3个 D.4个10. 如图6,O 是正六边形ABCDEF 的中心,下列图形:△OCD ,△ODE ,△OEF ,•△OAF ,•△OAB ,其中可由△OBC 平移得到的有( ) A.1个 B.2个 C.3个 D.4个 11.•命题“垂直于同一直线的两直线平行”的题设是•____________,•结论是__________.四、拓广延伸、12.三条直线两两相交,最少有_____个交点,最多有______个交点.13.观察图7中角的位置关系,∠1和∠2是______角,∠3和∠1是_____角,∠1•和∠4是_______角,∠3和∠4是_____角,∠3和∠5是______角.14. 已知a 、b 、c 是同一平面内的3条直线,给出下面6个命题:a ∥b , b ∥c ,a ∥c ,a ⊥b ,b ⊥c ,a ⊥c ,请从中选取3个命题(其中2个作为题设,1个作为结论)尽可能多地去组成一个真命题,并说出是运用了数学中的哪个道理。
人教版七年级数学下册复习课导学案第五章《相交线与平行线》【合作探究】1.对顶角、邻补角。
①两条直线相交、构成哪两种特殊位置关系的角?指出图(1) 中具有这两种位置的角.②如图(2)中,若∠AOD=90°,那么直线AB,CD的位置关系如何?③如图(3)中,∠1与∠2,∠2与∠3,∠3与∠4是怎么位置关系的角?2.垂线及其性质.①如图(4),直线AB、CD、EF相交于点O,CD⊥EF,∠1=35°,求∠2的度数.FE21DCBADCB AlCBA(4) (5) (6)②如图(5),AB ⊥L,BC ⊥L,B 为重足,那么A 、B 、C 三点在同一条直线上吗?为什么?③如图(6),四边形ABCD,AD ∥BC,AB ∥CD,过A 作AE ⊥BC,过A 作AF ⊥CD,垂足分别是E 、F,量出点A 到BC 的距离和AB 、CD 平行线间的距离. ④请归纳一下与垂直有关的知识中,有哪些重要结论? 3.同位角、内错角、同旁内角.如图(7),找出∠1、∠2、∠3中哪两个是同位角、内错角、同旁内角? 4.平行线判定与性质学生练习:①填空:如图(8),当_______时,a ∥c, 理由是________;当______时,b ∥c,理由是_________;当a ∥b, b ∥c 时,______∥______,理由是_________.cbda 4321DCB AB 'DCBA(8) (9) (10) ②如图(9),AB ∥CD,∠A=∠C,试判断AD 与BC 的位置关系?为什么? 5.关于平移,让学生思考:(1)图形平移时,连接对应点有什么关系?(2)如何确定图形平移的方向和平移的距离?练习:如图(10),平移四边形ABCD,使点B 移动到点B′,画出平移后的四边形A′B′C′D′. 【提升】1.如图所示,直线L1∥L2,AB⊥L1,垂足为点O,BC与L2相交于点E,若∠1=43°,则∠2=____2.如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2=_____3.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为_______4.如图,已知∠1=∠2,∠DAB=∠CBA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?5.如图,在四边形BFCD中,点E、A两点在FC上,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么?第五章 相交线与平行线练习一、填空题1.a 、b 、c 是直线,且a ∥b,b ⊥c,则a 与c 的位置关系是________.2.如图(11),MN ⊥AB,垂足为M 点,MN 交CD 于N,过M 点作MG ⊥CD,垂足为G ,EF 过点N 点,且EF ∥AB,交MG 于H 点,其中线段GM 的长度是________到________的距离, 线段MN 的长度是________到________的距离,又是_______的距离,点N 到直线MG 的距离是___.G H NMF EDC BAFEODCBA(11) (12)3.如图(12),AD ∥BC,EF ∥BC,BD 平分∠ABC,图中与∠ADO 相等的角有_______ 个,分别是___________.4.因为AB ∥CD,EF ∥AB,根据_________,所以_____________.5.命题“等角的补角相等”的题设__________,结论是__________.6.如图(13),给出下列论断:①AD ∥BC:②AB ∥CD;③∠A=∠C.以上其中两个作为题设,另一个作为结论,用“如果……,那么……”形式,写出一个你认为正确的命题是___________.DCBAFEO D C BAclNMb a21(13) (14) (15) 7.如图(14),直线AB 、CD 、EF相交于同一点O,而且∠BOC=23∠AOC,∠DOF=13∠AOD,那么∠FOC=______度. 8.如图(15),直线a 、b 被C 所截,a ⊥L 于M,b ⊥L 于N,∠1=66°,则∠2=________.三、选择题.1.下列语句错误的是( )A.连接两点的线段的长度叫做两点间的距离B.两条直线平行,同旁内角互补C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角D.平移变换中,各组对应点连成两线段平行且相等2.如图(16),如果AB∥CD,那么图中相等的内错角是( )A.∠1与∠5,∠2与∠6;B.∠3与∠7,∠4与∠8;C.∠5与∠1,∠4与∠8;D.∠2与∠6,∠7与∠33.下列语句:①三条直线只有两个交点,则其中两条直线互相平行; ②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直; ③过一点有且只有一条直线与已知直线平行,其中( )A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错4.下列与垂直相交的洗法:①平面内,垂直于同一条直线的两条直线互相平行; ②一条直线如果它与两条平行线中的一条垂直,那么它与另一条也垂直;③平行内, 一条直线不可能与两条相交直线都垂直,其中说法错误个数有( )A.3个B.2个C.1个D.0个四、解答题1.如图(17),是一条河,C河边AB外一点:(1)过点C要修一条与河平行的绿化带,请作出正确的示意图.(2)现欲用水管从河边AB,将水引到C处,请在图上测量并计算出水管至少要多少?(本图比例尺为1:2000)2.如图(18),ABA⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.(1)判断CD与AB的位置关系;(2)BE与DE平行吗?为什么?3、已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
第五章相交线与平行线复习导学案教学目标1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化, 梳理本章的知识结构.2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.重点、难点重点:复习平面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.难点:垂直、平行的性质和判定的综合应用.一.知识点回顾1.两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________.2.两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为__________.对顶角的性质:______ _________.3.两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直.⑵连接直线外一点与直线上各点的所在线段中,_______________.4.直线外一点到这条直线的垂线段的长度,叫做________________________.5.两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________.6.在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种.7.平行公理:经过直线外一点,有且只有一条直线与这条直线______.推论:如果两条直线都与第三条直线平行,那么_____________________.8.平行线的判定:⑴两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_____________________________________.⑵两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:___________________________.⑶两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:________________________________________. 9.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_______ .10.平行线的性质:⑴两条平行直线被第三条直线所截,同位角相等.简单说成:_________________.⑵两条平行直线被第三条直线所截,内错角相等.简单说成:__________________________________.⑶两条平行直线被第三条直线所截,同旁内角互补.简单说成:____________________________________ .自我检测1.如果两个角是邻补角,那么一个角是锐角,另一个角是钝角.( )2.平面内,一条直线不可能与两条相交直线都平行.( )3.两条直线被第三条直线所截,内错角的对顶角一定相等.( )4.互为补角的两个角的平行线互相垂直.( )5.两条直线都与同一条直线相交,这两条直线必相交.( )6.如果乙船在甲船的北偏西35°的方向线上, 那么从甲船看乙船的方向角是南偏东规定35°.( )6.如图,,8,6,10,BC AC CB cm AC cm AB cm⊥===那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________.7.设a、b、c为平面上三条不同直线,a)若//,//a b b c,则a与c的位置关系是_________;b)若,a b b c⊥⊥,则a与c的位置关系是_________;c)若//a b,b c⊥,则a与c的位置关系是________.8.如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数.9.如图,AOC∠与BOC∠是邻补角,OD、OE分别是AOC∠与BOC∠的平分线,试判断OD与OE的位置关系,并说明理由.10.如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2即∠B +∠E =∠BCE .11.⑴如图,已知∠1=∠2 求证:a ∥b .⑵直线//a b ,求证:12∠=∠.12.阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______∴EP ∥_____.( )11. 已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC ,求:⑴∠BAC 的大小;⑵∠P AG的大小.12. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于G .求证12∠=∠.13. 已知:如图∠1=∠2,∠C =∠D ,问∠A 与∠F 相等吗?试说明理由.。
第五章复习课1.知道对顶角、邻补角、垂线的概念和性质.2.知道平行线的概念、性质,会判断两条直线是否平行,能综合运用平行线的性质和判定解决问题.3.知道平移的概念、性质,在对平移的探索和应用过程中体会数学的美,增强审美意识.4.知道什么是命题,会证明一个命题是真命题,会用举反例的方法说明一个命题是假命题.5.重点:相交线的性质及应用,平行线的性质和判定的综合应用,平移的性质及应用.◆体系构建补全本章知识网络图.◆核心梳理1.对顶角相等.2.两条直线相交所成的四个角中,如果有一个角是直角,那么这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.3.垂线的两条性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.4.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.平行线的判定和性质:6. 判断一件事情的语句叫做命题,命题分为真命题和假命题.其中正确性是经过推理证实的,这样的真命题叫做定理.7.平移的两个要素:平移的方向和平移的距离.平移的特征:(1)平移不改变图形的形状和大小;(2)对应点的连线段平行(或在同一条直线上)且相等.专题一邻补角和对顶角的性质及应用1.如图,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是(D)A.∠1=90°,∠2=30°,∠3=∠4=60°B.∠1=∠3=90°,∠2=∠4=30°C.∠1=∠3=90°,∠2=∠4=60°专题二垂线的性质及应用2.如图,直线AB、CD相交于O,OM⊥AB.(1)若∠1=∠2,求∠NOD的度数.∠BOC,求∠BOD的度数.(2)若∠1=14解:(1)∵OM⊥AB,∴∠1+∠AOC=90°,又∵∠1=∠2,∴∠NOC=90°,∴∠NOD=90°.专题三平行线的判定3.如图,AB⊥BD,CD⊥MN,垂足分别是B、D点,∠FDC=∠EBA.(1)判断CD与AB的位置关系.(2)BE与DF平行吗?为什么?解: (1)CD与AB平行.(2)平行.因为AB⊥BD,CD⊥MN,所以∠ABM=∠CDM=90°.专题四平行线的性质及应用4.如图,l1∥l2,AB⊥l1 ,∠ABC=130°,那么∠θ的度数为(C)A.60°B.50°C.40°D.30°5.如图,AB∥CD,分别探讨下列四个图形中∠APC与∠PAB、∠PCD的关系,请你从所得四个关系中任意选取一个说明理由.解:(1)∠APC+∠PAB+∠PCD=360°;(2)∠APC=∠PAB+∠PCD;(3)∠APC=∠PCD-∠PAB;(4)∠APC=∠PAB-∠PCD.理由如下:不妨选取(1)加以证明:如图,过P作PF∥AB,所以∠A+∠APE=180°.又因为AB∥CD,AB∥PF,所以CD∥PF.所以∠C+∠FPC=180°.所以∠A+∠APC+∠C=360°.【方法归纳交流】平行线间过转折点作平行线,是一种常用的作辅助线的方法.见《导学测评》P9。
第五章-相交线与平行线复习导学案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2第五章 相交线与平行线复习导学案学习目标:1、进一步巩固邻补角、对顶角的概念和性质,理解垂线、垂线段的概念和性质;2、掌握两条直线平行的判定和性质;3、能区分命题的题设和结论以及命题的真假;4、通过平移,理解图形平移变换的性质。
学习重点: 垂线的性质和平行线的判定和性质. 学习难点: 平行线的判定和性质. 学习过程: 一、知识整理(一)邻补角与对顶角2.练习(1)若∠2=120°,求其他三个角的度数。
(2)如图,直线AB,CD 相交于O ,∠1-∠2=85°,求∠AOC 的度数。
(3)如图,若2∠3=3∠1,求∠2、∠3、∠4的度数。
(二)垂线1.定义:当两条直线相交所成的四个角中,________________ 就说这两条直线互相垂直,其中的一条直线叫做另一条直线的_____,它们的交点叫做___。
如图所示,记为:____________________2.垂线性质1: _______ ___________________________________图13D C B CB AB AC •P A B O 3.垂线性质2:_____________________________________最短。
简称:____________。
4.垂线的画法:画法:一靠,二过,三画。
注意:①画一条线段或射线的垂线,就是画________________;②过一点作线段的 垂线,垂足可在线段上,也可以在线段的延长线上。
5.点到直线的距离____________________,叫做点到直线的距离 如图,PO ⊥AB ,点P 到直线AB 的距离是_________。
PO 是垂线段。
6.⑴垂线与垂线段区别:垂线是一条____,_ __度量长度; 垂线段是一条___,可以度量长度。
课题:相交线与平行线(回顾与思考)学习目标:1.通过有关的角来判断直线平行和反映平行线的性质,发展空间能力和推理能力,提高有关知识解决问题的能力。
2. 经历解决例、习题的过程,体会勇于探索的乐趣。
学习重难点:重点:掌握两直线平行的条件和平行线的特征,并能运用它们解决问题。
难点:对本章知识条理化、系统化学习过程:一、本章知识回顾⑴独立思考,个人回顾《相交线与平行线》一章所学的内容;⑵各自画出知识树并进行相互交流;二、“三基”归纳⑴若∠A与∠B互余,则它们的数量关系是;若∠A与∠B互补,则它们的数量关系是。
⑵余角和补角的性质:同角或等角的余角;同角或等角的补角。
⑶对顶角。
⑷判断两条直线平行的途径有:①;②;③。
结合右图,用“因为……,所以……”的形式说出你的回答。
⑸平行线的特征有:①;②;③。
结合下图,用“因为……,所以……”的形式说出你的回答。
三、基础练习1、在下列给出的条件中,不能判定AB∥DF的是( )A.∠A+∠2=180° B. ∠A=∠3C. ∠1=∠4D. ∠1=∠A2、两条直线被第三条直线所截,则()A 同位角相等B 同旁内角互补C 内错角相等D 以上都不对3、如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有( )A.5个 B.4个 C.3个 D.2个4、如图,填空(1)∵∠B=∠1(已知)∴____//____()(2)∵CG // DF(已知)∴∠2= ()(3)∵∠3=∠A(已知)∴____//____()(4)∵AG // DF(已知)∴∠3=_____()(5)∵∠B+∠4=180°(已知)∴____//____()(6)∵CG // DF(已知)∴∠F+___=180°()四、典型例题精析例1如图所示,∠1=72°,∠2=72°,∠3=60°,求∠4的度数.五、解决跟踪练习一①如图,在同一平面内如果b⊥a,c⊥a,则直线b,c的位置关系为().bac12A.平行B.垂直C.相交但不垂直D.无法确定②如图,不能判别AB ∥CD 的条件是( ) A 、∠B+ ∠BCD=180° B. ∠1= ∠2 C. ∠3= ∠4 D. ∠B= ∠5③如图,在甲、乙两地之间要修一条笔直的公路,从甲地测得公路的走向是北偏东42°,甲、乙两地同时开工,若干天后公路准确接通。
相交线与平行线复习课
一、两条直线的位置关系
1.在河边的A 处,有一个牧童在放牛,牛吃饱后要到河边饮水,问牧童怎样把牛牵到河边,才能走最少的路?能说明理由吗?
应用的定理:_____________________
2.如图,AC ⊥BC ,CD ⊥AB ,垂足分别是C 点、D 点。
(1)点B 到CD 的距离是线段______的长度;
(2)点C 到AB 的距离是线段______的长度;
(3)点A 到CB 的距离是线段______的长度。
3.
直线m 外有点P ,它到直线m 上点A 、B 、C 的距离分别是6厘米、3厘米、5厘米,则点P 到直线m 的距离 ( ) A 等于6厘米. B.等于3厘米 C.等于5厘米 D.不大于3厘米
二、角与平行 1、复习:
(1).如图直线AB 和CD 交于点O ,则图中共有几个角,几种特殊的角?并说出他们的关系
(2).若再添一条直线EF 与AB 交于点P,你又能找到几个角?
(3)请指出其中的同位角、内错角和同旁内角.
(4).你可以添个条件,使直线CD 和 EF
平行吗?
(5)还有其他判断两直线平行的方法吗?
几何步骤书写:
2.练一练
(1).如图, 若∠3=∠4,
则∥;
若AB∥CD,
则∠_____ =∠。
(2). 填空:
(1)、∵∠A=____, (已知)
∴AC∥ED ,(________) (2)、∵AB ∥______, (已知)
∴∠2= ∠4,(________)
试一试,你准行!模仿上题自己编题。
三、综合练习:
1 .如图,∠D=70°,∠C= 110°, ∠1=69°,则∠B= ·
2. 如图,已知:AC∥DE,
∠1=∠2,试证明AB∥CD。
3.已知∠DAC= ∠ACB, ∠D+∠DFE=180°,求证:EF//BC
折叠问题(选做)
有一条长方形纸带,按如图所示沿AB折叠时,当∠1=30°求
纸带重叠部分中∠CAB的度数。
6.(选做)如图,BD⊥AC,EF⊥AC,D、F分别为垂足,∠1=∠2,
试说明∠ADG =∠C 。
检测:
1.图中如果AC∥BD 、AE ∥BF ,那么∠A与∠B的关系如何?你是怎样思考的?
2选做:如果一个角的两边分别平行于另一个角的两边,那这两个角的关系如何?。