地铁盾构隧道施工监测
- 格式:dps
- 大小:1.94 MB
- 文档页数:49
盾构隧道监测方案背景随着城市建设的不断扩张,盾构隧道作为一种高效、安全和经济的地下建筑工法被广泛应用于城市地铁、道路和水利等领域。
在盾构隧道的施工过程中,监测是非常重要的环节,旨在保障盾构隧道施工的质量和安全。
本文将介绍一种盾构隧道监测方案,以提供有效的数据采集和分析方法,确保盾构隧道施工的可控性和安全性。
监测方案的目标盾构隧道的监测方案旨在实现以下目标:1.实时监控施工过程:监测方案应能够实时采集并记录盾构隧道施工过程中的相关数据,包括盾构机的姿态、推进力及控制参数等。
2.检测地下环境变化:监测方案应能够检测地下环境变化,例如地下水位变化、土壤变形以及地震等,以及时预警和采取相应的措施。
3.提供可靠的数据分析:监测方案应提供可靠的数据分析方法,对监测数据进行处理和分析,及时发现问题并提出解决方案。
4.保障施工质量和安全:监测方案应通过数据分析和预警功能,提供有效的施工质量和安全保障手段。
监测方案的主要内容监测方案的主要内容包括以下几个方面:1. 盾构机数据采集系统盾构机数据采集系统是监测方案的核心部分,主要用于实时监测盾构机的各项参数。
该系统应包括传感器和数据采集设备,能够实时采集盾构机的姿态、推进力、转速、刀盘扭矩等数据,并将其传输至数据处理中心进行分析和存储。
2. 地下环境监测系统地下环境监测系统用于检测地下环境变化,包括地下水位变化、土壤变形以及地震等。
该系统应配备传感器和监测设备,能够实时采集地下环境数据,并与盾构机数据进行比对分析,发现潜在的问题并及时进行预警。
3. 数据处理和分析监测方案应具备强大的数据处理和分析能力,对监测数据进行及时、准确的处理和分析。
通过统计分析、数据建模和预测算法等方法,识别异常情况并生成报警和预警信息,为施工管理者提供决策依据。
4. 报告和数据共享监测方案应具备生成报告和数据共享的功能。
经过数据处理和分析后,生成监测报告,提供给相关部门和人员,并可通过网络平台进行数据共享,以便及时调取和共享数据,实现信息共享和协同管理。
地铁隧道盾构施工监控量测与顶管沉降变形预测地铁隧道盾构施工是现代城市建设中常见的工程技术之一。
为了确保施工过程的安全可靠以及隧道的稳定性,监控量测和顶管沉降变形预测成为地铁隧道盾构施工的重要环节。
本文将介绍地铁隧道盾构施工监控量测的方法以及顶管沉降变形的预测方法。
1. 地铁隧道盾构施工监控量测的方法地铁隧道盾构施工监控量测是通过使用各种现代监测设备和技术手段来实现的。
下面是常用的监控量测方法:1.1 激光扫描监测激光扫描监测是一种高精度的测量手段,它通过激光扫描仪来获取地铁隧道盾构施工过程中的数据。
这种方法可以实时监测盾构机的位移、管片质量等参数,并通过数据分析和处理,进一步预测施工过程中可能发生的问题。
1.2 雷达监测雷达监测是利用地下雷达设备对地铁隧道盾构施工区域进行扫描和测量,获取地下隧道结构的各种信息。
通过对雷达监测数据的分析,可以了解盾构施工过程中的地层变化、隧道结构的稳定性等情况,为施工提供准确的参考数据。
1.3 倾斜仪监测倾斜仪监测是一种常用的盾构施工监测手段,它通过安装在盾构机和顶管上的倾斜仪来实时监测隧道施工过程中的倾斜情况。
倾斜仪监测可以提供关键的施工数据,帮助工程师及时调整施工参数,确保隧道的稳定性和安全性。
2. 顶管沉降变形的预测方法顶管的沉降变形是地铁隧道盾构施工过程中常见的问题之一。
为了预测和控制顶管的沉降变形,以下是一些常用的方法:2.1 数值模拟方法数值模拟方法是通过建立地铁隧道盾构施工的有限元模型,利用计算机仿真技术来模拟和预测顶管的沉降变形。
这种方法可以考虑到各种影响因素,如地层情况、盾构机参数、隧道结构等,并通过模型的分析和优化,得出预测结果。
2.2 统计方法统计方法是通过对历史施工数据进行分析和统计,来预测顶管的沉降变形。
通过收集和整理大量的施工数据,包括地层情况、盾构机参数、施工工艺等,建立合适的数学模型,可以得到相对准确的预测结果。
2.3 监测方法监测方法是通过实时监测顶管的沉降和变形情况,及时发现问题并采取相应的措施。
地铁隧道盾构施工的沉降监测摘要:盾构法施工具有安全、高效、易操作等显著优势,目前在地铁隧道施工中得到了广泛的应用,但此施工方法在断面尺寸多变的区段适应力不足,易造成地层损失,甚至引发地表塌陷、管线断裂等严重问题。
文中以盾构法施工为切入点,对盾构在隧道运行过程中引起地层沉降的原因进行解剖,针对该问题提出控制优化措施,为处理地面沉降问题提供参考。
关键词:盾构法施工;地层沉降;控制措施引言近几年,我国经济的质量和总量都保持快速增长,带动了城市化的快速发展,城市常住人口持续增多,最终导致交通拥挤问题日益加重。
地铁以其运行时间长、安全性高、速度快、运输量大等特点,成为缓解人口密度较高的城市地面交通压力的关键方法。
尤其在最近几年,国内地铁建设进入快速发展期,对于大中规模城市而言,地铁成为了关键交通方式。
据相关部门统计,截至2020 年,国内地铁建成及投运的城市有45个,运营长度有6303km,同比增长21.66%。
从城规交通系统制式结构上看,地铁以79% 的比重位居首位。
可见,地铁建设因其独特优势,促进市民出行自由的同时,也在社会的进步、环境保护方面和突显城市的综合实力上都具有一定意义,因此地铁在各大城市中取得了广泛的应用和推广,成为城市发展中不可或缺的交通方式。
对于城市地下工程的修建而言,通常有盾构法、矿山法、新奥法和明挖法,不同施工方法的适用条件和优劣势也会有所不同。
盾构法施工由于其自动化程度高,人工作业成本较低,掘进速度也较其他几种方法快,不受季节和天气的影响,施工过程噪音低,对地面建筑物影响程度小等优点,从而成为地铁隧道建设中使用频率最高的一种施工方法。
如今盾构法隧道施工技术更为完备、成熟,正朝着工程的大型断面、特殊断面、超大深度、超长距离方向快速发展,也向着操作智能化、自动化,掘进过程高效化的方向发展。
因城市地铁主要是为了方便人们出行,因此地铁建设多数位于交通要道和人员密集区域,周围环境复杂,容易影响到地下管线和地表建筑物。
XX地铁XX号线XXX站~XXX站区间盾构法隧道施工监测方案编写:审核:日期:监测单位:目录一、工程沿线环境概况‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3二、监测依据‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4三、监测目的‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5四、监测项目‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5五、监测点的布设与埋置‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥5六、监测控制网布设及各项监测项目的监测方法‥‥‥‥‥‥‥15七、监测频率及监测报警值‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥17八、仪器设备‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥18九、监测质量保证措施‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥19盾构法隧道施工监测方案一、工程沿线环境概况1、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK16+067.9~右DK17+1.7m(左DK17+67.2m),右线全长933.8m,左线全长1002.268m。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站南端头始发,以直线推进开始,过渡至直缓,再到缓圆、圆缓、缓直、直缓、缓圆、圆缓、缓直到XXX站。
隧道沿线均在市区主要道路干线及商业、居民区建筑物下;盾构自XXX 站始发后,沿XX路向南推进约290米后(即在左KD16+790m处)进入楼房集中区,楼房集中区域长约690m(楼房集中区内房屋简介见P7~P8之表1);隧道沿线地下设施较为复杂,主要为雨水、污水管线及自来水管等。
2、XXX站~XXX站:该区间段为单线单洞圆形隧道,设计起止里程为:右DK17+292.7~右DK17+747.455m,右线全长454.755m(左线全长475.757m)。
其中设防灾联络通道及水泵房一座。
该区间段自XXX站北端头始发,向北推进约40m后进入XX路与XX路的十字交叉路口,推进约140m后进入楼房集中区域下方,隧道沿线上方主要为交通繁忙的十字路口及众多的建筑物(建筑物集中区内房屋简介见P9~P10之表2);沿线地下设施复杂,主要为雨水、污水管线等。
地铁盾构下穿铁路桥专项监测方案地铁盾构穿越铁路桥的监测计划目标与范围随着城市交通的不断发展,地铁建设已经成为提升交通效率的重要手段了。
用盾构法来挖隧道,特别是在城市中心这样的人口密集区,简直是个常规操作。
但当地铁需要穿越铁路桥时,安全监测就成了重中之重。
我们的目标就是制定一个科学合理的监测计划,确保在盾构施工期间,铁路桥的安全不受到威胁,同时也尽量减少对周围环境和交通的影响。
当前状况与需求分析现在,城市里地铁和铁路交叉的情况越来越普遍。
对于施工单位来说,确保铁路桥的安全是首要任务。
桥的结构稳定性直接影响到列车的安全运行。
可是,盾构施工时的地面沉降和振动,可能会对桥产生影响。
因此,监测计划得考虑到很多因素,比如:1. 盾构施工的具体参数2. 铁路桥的结构特点3. 地下水位变化4. 周边建筑物的影响监测计划的实施步骤监测的关键就是选择合适的设备和方法。
具体实施步骤如下:设备选择与安装首先,选择合适的监测设备是成功的关键。
对于铁路桥,我们常用的设备有:- 位移监测仪:实时监测桥梁的位移。
- 应变计:监测桥梁结构的应变变化。
- 地面沉降监测仪:监测地面沉降,以评估施工对桥的影响。
- 振动监测仪:实时监测施工期间产生的振动。
这些监测设备最好在盾构施工前就安装好,并进行调试,以确保它们能正常工作。
数据收集与分析在监测过程中,我们需要定期收集数据,建议的监测频率如下:- 位移监测:每小时记录一次位移数据。
- 应变监测:每小时记录一次应变数据。
- 地面沉降监测:每日记录沉降数据。
- 振动监测:施工期间实时记录振动数据。
收集的数据要及时分析,以判断是否有异常情况。
一旦发现问题,施工必须立刻停止,并进行详细调查。
制定应急预案在施工过程中,难免会遇到突发情况,比如意外的地面沉降或桥梁结构异常。
因此,制定应急预案显得尤为重要。
应急预案中应该包含:- 事故发生后的处理流程- 相关责任人的联系方式- 事故现场的安全隔离措施- 事故报告流程数据分析与应用监测数据的分析是评估施工影响的重要依据。
#### 一、工程概况本工程为XX市地铁XX号线某区间隧道,全长约1.2公里,采用盾构法施工。
地下水位高,地质条件复杂,周边环境敏感。
为确保施工安全、质量和环境保护,特制定本专项施工方案。
#### 二、监测目的与意义1. 监测目的:- 确保盾构施工过程中,隧道结构及周围环境安全稳定。
- 及时发现和处理施工过程中可能出现的异常情况。
- 为后续施工提供数据支持,优化施工方案。
2. 监测意义:- 提高施工安全性,降低事故风险。
- 确保工程质量,提高施工效率。
- 保护周边环境,减少施工对周边居民的影响。
#### 三、监测内容1. 隧道结构监测:- 隧道内部位移监测。
- 隧道内部裂缝监测。
- 隧道衬砌厚度监测。
2. 周围环境监测:- 地面沉降监测。
- 地下水监测。
- 地下管线监测。
3. 施工过程监测:- 盾构掘进参数监测。
- 土压平衡监测。
- 注浆压力监测。
#### 四、监测方法1. 监测设备:- 高精度全站仪。
- 电子水准仪。
- 激光测距仪。
- 数字水准仪。
- 土压力传感器。
- 液压传感器。
2. 监测方法:- 采用埋设传感器的方式,实时监测隧道结构及周围环境。
- 定期进行地面沉降、地下管线监测。
- 监测数据通过无线传输,实时上传至监控中心。
#### 五、监测频率1. 隧道结构监测:每日监测一次。
2. 周围环境监测:每3天监测一次。
3. 施工过程监测:每班次监测一次。
#### 六、数据处理与分析1. 数据处理:- 对监测数据进行实时处理,确保数据准确性。
- 对历史数据进行统计分析,找出规律。
2. 数据分析:- 分析隧道结构及周围环境的变化趋势。
- 评估施工过程中可能出现的问题。
#### 七、监测控制标准1. 隧道结构监测:- 隧道内部位移不超过规范要求。
- 隧道内部裂缝宽度不超过规范要求。
- 隧道衬砌厚度符合设计要求。
2. 周围环境监测:- 地面沉降不超过规范要求。
- 地下水稳定。
- 地下管线无异常。
#### 八、监测人员组织与管理1. 组织机构:- 成立监测小组,负责监测工作的组织实施。
地铁盾构下穿河流及桥梁桩基施工与监测技术地铁盾构施工是地铁工程中的重要环节,其中又以下穿河流及桥梁桩基施工难度最大。
基于此,本文从开始施工分析、确定施工方案,实施施工监测三方面入手,对地铁盾构下穿河流及桥梁桩基施工提出相关建议,以供参考。
标签:地铁盾构;下穿;桥梁桩基;监测;技术随着社会的发展,城市人口数量不断增加,城市交通运行压力不断增大,拥堵现象频繁发生。
为了有效缓解城市交通压力,有条件的城市实施了地铁工程。
在地铁工程施工过程中,盾构施工是其极其重要的一个环节。
其中,盾构在桥址处穿越桥梁或桥梁桩的施工难度较大,对整个工程而言显得非常关键。
提前做好施工方案,有效开展施工监测是确保这一关键环节顺利完成,降低整体项目風险,促进整体项目顺利推进的重要保障。
1 施工分析和研究地铁施工中,遇到下穿情况一般会有三种解决方案。
其一是拆旧建新。
分析施工条件,在可能的情况下,先拆除旧的桥体后在盾构范围内对既有桩一一破除,待盾构通过后,在原来的地址重新建设新的桥梁恢复运行。
其二是桩基替换。
对现有桩基进行分析,对影响盾构穿越的部分进行替换,再实施穿越,在这个过程中,需要对原桥梁进行观测,并确保其安全。
第三是避绕改道。
根据现有桥梁桩基的方位,设计规避线路,让盾构区间完全避开阻碍点,即将建设的隧道一般从阻碍位置的两侧通过。
三种方案在施工工艺和资金投入上各有优势,在具体工程中,需要通过对施工环境进行分析,因地制宜,对三种方式的可行性进行综合比对和分析,最终按照技术上可行,经济上合理的原则,确认最合适施工方案[1]。
在做好施工方案的初步选择之后,需要对技术难点进行分析,以便制定具体的施工方案。
首先,要考虑施工环境中岩石的质地。
若发现岩石软硬不一情况,如施工位置位于弱风化的泥质粉砂岩时,其属于软岩,其具有石英含量低,岩层厚度薄,洞顶围岩稳定性差等特点。
当钻孔附近有断层时其属于硬质岩,于是盾构施工时需要时刻注意岩石软硬变化,制定遇到不同岩石软硬程度的解决措施。