人教版-数学-八年级下册函数的图像 讲义
- 格式:docx
- 大小:187.87 KB
- 文档页数:7
函数的概念定义:固定不变量的量叫做常量例如:圆周率π、真空中的光速c 、以下这些量在通常情况下不会改变,也可以视为常量:密度ρ、摩擦系数μ、比热容c 、电阻R定义:可以改变的量叫做变量例如:时间、年龄、成绩游戏中的金币、英雄的生命值、题型一:说出下列问题哪些量是常量,哪些量是变量1、打字的收费标准是每千字5元,打的字数,打字的总费用2、一个装满50吨水的水箱,每小时流出0.8吨水,流水时间,水箱里剩余的水3、甲地、乙地相距100千米,一辆汽车从甲地到达乙地,路程s 与时间t 满足t s 7575-=4、工人要加工500个零件,工作效率,工作时间5、购买单价为1.5元的笔,花的总金额y与购买的数量x满足y=1.5x6、2x=x-yxy--=7、322+8、圆周长公式C=2πr 9、圆面积公式S=πr210、S=ah÷2,其中a=2 11、G=mg12、对于圆的周长公式C=2πr,说法错误的是()A.2是常量B.C和r是变量C.π是变量D.2r是变量13. 对于y=x2+2x-3,说法错误的是()A.常数有1、2和-3B.式子中的2是其中一个常数C.y和x是变量D.当x=-1,则y=-5定义:两个变量x、y如果满足对于任意一个x,都有任意一个y与之对应,那么就说y是x的函数。
(其中x叫做自变量,y叫做因变量。
)14、说出下列语句中,哪些量是自变量,哪些量是因变量(1)因为我付出了很大的努力,所以我的成绩超越了我的同桌(2)随着时间的流逝,爸爸的年龄越来愈大了(3)骆驼吸收的热量越多,它的体温就越高(4)电话费这么贵,是因为我打电话的时间太长了函数关系常用的3种表示方法是:列表法、解析法、图像法题型二:列表法1、勤劳的果农卖橘子,橘子的平均价格(元)随月份的变化的有关数据如表所示。
当橘子平均价格为每千克3.3元和每千克3.2元时,月份分别是()A.1月和6月B.1月和5月C.2月和6月D.2月和5月2、某地区受到台风袭击哦~大部分地区发生强降雨,河流也遭到袭击了哦。
人教版初二下册数学第19章《一次函数》讲义第19讲一次函数的图象及性质(1)(有答案)〔1〕形如y=kx +b (k,b 是常数,k≠0),那么y 叫做x 的一次函数.由于当b=0时,y=kx ,那么y 叫做x 的正比例函数,所以〝正比例函数是特殊的一次函数〞。
〔2〕正比例函数与一次函数图象之间的关系一次函数y=kx +b 的图象是一条直线,它可以看作是由直线y=kx 平移|b|个单位长度而失掉〔当b>0时,向上平移;当b<0时,向下平移,〕普通地,形如y=kx (k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数普通方式 y=kx 〔k 不为零〕① k 不为零; ② x 指数为1; ③ b 取零当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,•直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小.(1) 解析式:y=kx 〔k 是常数,k≠0〕(2) 必过点:〔0,0〕、〔1,k 〕(3) 走向:k>0时,图像经过一、三象限; k<0时,•图像经过二、四象限(4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小(5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴普通地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.注:一次函数普通方式 y=kx+b (k 不为零)① k 不为零; ②x 指数为1; ③ b 取恣意实数一次函数y=kx+b 的图象是经过〔0,b 〕和〔-kb ,0〕两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度失掉.〔当b>0时,向上平移;当b<0时,向下平移〕〔1〕解析式:y=kx+b (k 、b 是常数,k ≠0)〔2〕必过点:〔0,b 〕和〔-kb ,0〕 〔3〕走向: k>0,图象经过第一、三象限;k<0,图象经过第二、四象限b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限 ⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限 〔4〕增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.〔5〕倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.〔6〕图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位.考点1、一次函数〔正比例〕的定义例1、在糖水中继续放入糖x 〔g 〕、水y 〔g 〕,并使糖完全溶解,假设甜度坚持不变,那么y 与x 的函的函数关系一定是〔 〕A 、正比例函数B 、正比例函数C 、图象不经过原点的一次函数D 、二次函数例2、直角三角形两个锐角∠A 与∠B 的函数关系是〔 〕A 、正比例函数B 、一次函数C 、正比例函数D 、二次函数 例3、假定y=〔m -3〕x+1是一次函数,那么〔 〕A 、m=3B 、m=-3C 、m≠3D 、m≠-3例4、以下效果中,是正比例函数的是〔 〕A 、矩形面积固定,长和宽的关系B 、正方形面积和边长之间的关系C 、三角形的面积一定,底边和底边上的高之间的关系D 、匀速运动中,速度固定时,路程和时间的关系例5、假定函数y=-2x m+2+n -2是正比例函数,那么m 的值是_____,n 的值为_____. 例6、我们知道,海拔高度每上升1km ,温度下降6℃.某时辰测量我市空中温度为20℃.设高出空中xkm 处的温度为y ℃,那么y 与x 的函数关系式为 ,y_____x 的一次函数〔填〝是〞或〝不是〞〕.例7、y=〔k -1〕x IkI +〔k 2-4〕是一次函数.〔1〕求k 的值; 〔2〕求x=3时,y 的值; 〔3〕当y=0时,x 的值.例8、红星机械厂有煤80吨,每天需烧煤5吨,求工厂余煤量y 〔吨〕与烧煤天数x 〔天〕之间的函数表达式,指出y 是不是x 的一次函数,并求自变量x 的取值范围. 例9、举一反三:1、以下函数中,是一次函数的有〔 〕A 、xy 2 B 、X -1=0 C 、y=2〔x -1〕 D 、y=x 2+1 2、y=〔m -1〕x |m|+3m 表示一次函数,那么m 等于〔 〕A 、1B 、-1C 、0或-1D 、1或-13、假定函数y=〔k -1〕x+k 2-1是正比例函数,那么k 的值是〔 〕A 、-1B 、1C 、-1或1D 、恣意实数4、当自变量x= 时,正比例函数y=〔n+2〕x n 的函数值为3.5、函数y=3x+1,当自变量添加3时,相应的函数值添加______。
函数的图像
知识点一 函数图像的定义
对于一个函数,如果把自变量与函数的每一对对应值分别作为点的 ,那么坐标平面内由这些点组成的图形,就是这个函数的图像.
【例1】已知点A (3,b )在函数42-=x y 的图像上,求b 的值
【例2】小明骑自行车上学,一开始以某一恒定的速度行驶,但行驶至途中自行车发生了故障,只好停下来修车,车修好后,因怕耽误了上课,他比修车前加快了骑车的速度,下面四幅图中最能反映小明这段行程的是( )
【类题突破】
1.下列各点:①(0,0);②(1,-1);③(-1,-1);④(-1,1),其中在函数
2x y x =+的图像上的点( )
A 1个
B 2个
C 3个
D 4个
2.下列给出的四个点中,在函数y=3x+1的图像上的是( )
A .(1,4) B.(0,-1) C.(2,-7) D.(-1,2) 3..某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h 和放水时间t 之间的关系的是( )
4.某物体从上午7时至下午4时的温度M (℃)是时间t(h)的函数:35100m t t =-+ (其中t=0表示中午12时,
t=-1表示上午11时,t=1表示13时),则上午10时此物体的温度为℃
知识点二 函数图像的应用
【例3】小强骑自行车去郊游,如图表示他离家的距离 (千米)与所用的时间 (小时)之间关系的函数图象,小强9点离开家,15点回家. 根据这个图象,请你回答下列问题:
(1)小强到离家最远的地方需几小时?此时离家多远?
(2)何时开始第一次休息?休息时间多长
(3)小强何时距家21km?
【类题突破】
1.甲.乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离S(km)和骑行时间t(h)之间的函数关系如图1所示,给出下列说法:①他们都骑行了20km;②乙在途中停留了0.5h;③甲.乙两人同时到达目的地;④相遇后,甲的速度小于乙的速度.
根据图象信息,以上说法正确的有()
A.1个
B.2个
C.3个
D.4个
2.三军受命,我解放军各部奋力抗战在救灾一线.现有甲.乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()
A.1
B.2
C.3
D.4
3..如图是甲.乙两个施工队修建某段高速公路的工程进展图,从图中可见施工队的工作效率更高.
4.如图所示的函数图象反映的过程是:小红从家去书店,又去学校取封信后马上回家,其中x表示时间,y表示小红离她家的距离,则小红从学校回家的平均速度为千米/小时.
5.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万立方米)与干旱的时间t(天)的关系如图,则下列说法正确的是( )
A.干旱开始后,蓄水量每天减少20万立方米B.干旱开始后,蓄水量每天增加20万立方米
C.干旱开始时,蓄水量为200万立方米D.干旱第50天时,蓄水量为1200万立方米
第5题图第6题图第7题图第8题图
6.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )
7.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价是每升________元.
8.如图,OA,BA分别表示甲、乙两名学生匀速跑步运动的函数图象,图中s和t分别表示运动路程和时间.根据图象判断跑步快者比慢者每秒快____m.
9.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了一部分西瓜后,余下的每千克降价0.4元,全部售完,销售金额与所卖西瓜数量之间的关系如图,求小李一共赚了多少元钱?
知识点三 函数图像的画法
【例4】画出函数2-=x y 的图像
【类题突破】
画出函数()3012<≤+=x x y 的图像
知识点四 函数的三种表示方法
函数的三种表示方法是_________.___________..
【例5】在某次实验中,测得两个变量m 与v 之间的4组对应数据如下表,则m 与v 之间的关系最接近于下列各关系式中的( )
A.v =2m -2 B .v =m2-1C .v =3m -3 D .v =m +1
【例6】.下表是丽丽往姥姥家打长途电话的几次收费记录:
(1)如果用x表示时间,y表示电话费,上表反映了哪两个变量之间的关系?哪个是自变量?哪个是函数,请用式子表示它们的关系;
(2)随x的变化,y的变化趋势是什么?
(3)丽丽打了5分钟电话,那么电话费需付多少元?
(4)你能帮丽丽预测一下,如果打10分钟的电话,需付多少元话费?
【类题突破】
1.弹簧挂上物体会自然伸长,已知某弹簧的自然长度是10cm,挂上1kg的物体,弹簧长15cm,挂上3kg的物体,弹簧长25cm。
写出物体质量x(kg)与弹簧长度y(cm)之间的关系.
画出该解析式的图像.
当挂上5kg的物体后,弹簧长度将达到多少厘米?
2.有一天,龟、兔进行了600米赛跑,如图表示龟兔赛跑的路程s(米)与时间t(分钟)的关系(兔子睡觉前后速度保
持不变),根据图象回答以下问题:
(1)赛跑中,兔子共睡了多少时间?
(2)赛跑开始后,乌龟在第几分钟时从睡觉的兔子旁经过?
(3)兔子跑到终点时,乌龟已经到了多长时间?并求兔子赛跑的平均速度.
3.小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图.
(1)请问汽车行驶多少小时后加油,中途加油多少升?
(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;
(3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.
4.如图①,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②,则当x=9时,点R应运动到( )
A.M处 B.N处 C.P处 D.Q处
5.小亮早晨从家骑车去学校,先走下坡路,然后走上坡路,去时行程情况如图.若返回时,他的下坡和上坡速度仍保持不变,那么小亮从学校按原路返回家用的时间是____分.。