高一数学平移1
- 格式:pdf
- 大小:1.18 MB
- 文档页数:12
高一数学知识点总结高一数学知识点总结总结在一个时期、一个年度、一个阶段对学习和工作生活等情况加以回顾和分析的一种书面材料,它可使零星的、肤浅的、表面的感性认知上升到全面的、系统的、本质的理性认识上来,不如立即行动起来写一份总结吧。
总结怎么写才能发挥它的作用呢?以下是小编精心整理的高一数学知识点总结,仅供参考,欢迎大家阅读。
高一数学知识点总结1集合的运算运算类型交集并集补集定义域 R定义域 R值域>0值域>0在R上单调递增在R上单调递减非奇非偶函数非奇非偶函数函数图象都过定点(0,1)函数图象都过定点(0,1)注意:利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;二、对数函数(一)对数1.对数的概念:一般地,如果,那么数叫做以为底的对数,记作:(—底数,—真数,—对数式)说明:○1 注意底数的限制,且;○2 ;○3 注意对数的书写格式.两个重要对数:○1 常用对数:以10为底的对数;○2 自然对数:以无理数为底的对数的对数.指数式与对数式的互化幂值真数= N = b底数指数对数(二)对数的运算性质如果,且,,,那么:○1 +;○2 -;○3 .注意:换底公式:(,且;,且;).利用换底公式推导下面的结论:(1);(2).(3)、重要的公式①、负数与零没有对数;②、,③、对数恒等式(二)对数函数1、对数函数的概念:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).注意:○1 对数函数的定义与指数函数类似,都是形式定义,注意辨别。
如:,都不是对数函数,而只能称其为对数型函数.○2 对数函数对底数的限制:,且.2、对数函数的性质:a>10<a<1< p="">定义域x>0定义域x>0值域为R值域为R在R上递增在R上递减函数图象都过定点(1,0)函数图象都过定点(1,0)(三)幂函数1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数.2、幂函数性质归纳.(1)所有的幂函数在(0,+∞)都有定义并且图象都过点(1,1);(2)时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸;(3)时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴.第四章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
人教版高一数学必修一精选知识点总结5篇高一数学在整个高中数学中占有特别重要的地位,既是高一又是整个高中阶段的重难点,所以要保持良好的学习心态和正确的学习方法。
下面就是我给大家带来的人教版高一数学必修一学问点,盼望能关心到大家!人教版高一数学必修一学问点13.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特殊地,当直线l与x轴平行或重合时,规定α=0°.2、倾斜角α的取值范围:0°≤α180°.当直线l与x轴垂直时,α=90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是k=tanα⑴当直线l与x轴平行或重合时,α=0°,k=tan0°=0;⑴当直线l与x轴垂直时,α=90°,k不存在.由此可知,一条直线l的倾斜角α肯定存在,但是斜率k不肯定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式:3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,假如它们平行,那么它们的斜率相等;反之,假如它们的斜率相等,那么它们平行,即留意:上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即假如k1=k2,那么肯定有L1⑴L22、两条直线都有斜率,假如它们相互垂直,那么它们的斜率互为负倒数;反之,假如它们的斜率互为负倒数,那么它们相互垂直,即3.2.1直线的点斜式方程1、直线的点斜式方程:直线经过点且斜率为2、、直线的斜截式方程:已知直线的斜率为3.2.2直线的两点式方程1、直线的两点式方程:已知两点2、直线的截距式方程:已知直线3.2.3直线的一般式方程1、直线的一般式方程:关于x、y的二元一次方程(A,B不同时为0)2、各种直线方程之间的互化。
高一数学必修一所有公式归纳高一数学必修一所有公式归纳是如下:1、锐角三角函数公式:sinα=∠α的对边/斜边。
2、三倍角公式:sin3α=4sinα·sin(π/3+α)sin(π/3-α)。
3、辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t)。
4、降幂公式:sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
5、推导公式:tanα+cotα=2/sin2α。
数学必修一数学公式如下:1、2sinAcosB=sin(A+B)+sin(A-B)。
2、tan(A+B)=(tanA+tanB)/(1-tanAtanB)。
3、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a。
4、tan(A-B)=(tanA-tanB)/(1+tanAtanB)。
5、-ctgA+ctgBsin(A+B)/sinAsinB。
数学必修一公式归纳:一、指数与指数幂的运算1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*.当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand).当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0).由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2、分数指数幂。
正数的分数指数幂的意义,规定:0的正分数指数幂等于0,0的负分数指数幂没有意义指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.3、实数指数幂的运算性质。
高一数学知识点总结期末必备一、高中数学函数的有关概念注意:函数定义域:能使函数式有意义的实数____的函数称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的____的值组成的函数.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.2.高中数学函数值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(____),(____∈A)中的____为横坐标,函数值y为纵坐标的点P(____,y)的函数C,叫做函数y=f(____),(____∈A)的图象.C上每一点的坐标(____,y)均满足函数关系y=f(____),反过来,以满足y=f(____)的每一组有序实数对____、y为坐标的点(____,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素____,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。
记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:(1)函数A中的每一个元素,在函数B中都有象,并且象是的;(2)函数A中不同的元素,在函数B中对应的象可以是同一个;(3)不要求函数B中的每一个元素在函数A中都有原象。
6.高中数学函数之分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
一遍过高一数学选修一2023答案注意事项:1、答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2、回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3、考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合2=--<=-,则A x x x B{|340},{4,1,3,5}A、{4,1}-B、A B={1,5}C、{3,5}D、{1,3}2、若3zz=++,则||=12i iA、0B、1C D、23、埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A 、14B 、12C 、14D 、12+ 4、设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为A 、15 B 、25 C 、12D 、455、某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(,)(1,2,,20)i i x y i =得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A 、y a bx =+B 、2y a bx =+C 、e x y a b =+D 、ln y a b x =+6、已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A 、1B 、2C 、3D 、47、设函数π()cos()6f x x ω=+在[−π,π]的图像大致如下图,则f (x )的最小正周期为A 、10π9B 、7π6C 、4π3D 、3π28、设3log 42a =,则4a -=A 、116B 、19C 、18D 、169、执行下面的程序框图,则输出的n =A 、17B 、19C 、21D 、2310、设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=A 、12B 、24C 、30D 、3211、设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为A 、72B 、3C 、52D 、212、已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A 、64πB 、48πC 、36πD 、32π二、填空题:本题共4小题,每小题5分,共20分。
高一数学必修1知识点总结高一数学必修1知识点集合的分类(1)按元素属性分类,如点集,数集。
(2)按元素的个数多少,分为有/无限集关于集合的概念:(1)确定性:作为一个集合的元素,必须是确定的,这就是说,不能确定的对象就不能构成集合,也就是说,给定一个集合,任何一个对象是不是这个集合的元素也就确定了。
(2)互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的),这就是说,集合中的任何两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素。
(3)无序性:判断一些对象时候构成集合,关键在于看这些对象是否有明确的标准。
集合可以根据它含有的元素的个数分为两类:含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。
非负整数全体构成的集合,叫做自然数集,记作N;在自然数集内排除0的集合叫做正整数集,记作N+或N-;整数全体构成的集合,叫做整数集,记作Z;有理数全体构成的集合,叫做有理数集,记作Q;(有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
)实数全体构成的集合,叫做实数集,记作R。
(包括有理数和无理数。
其中无理数就是无限不循环小数,有理数就包括整数和分数。
数学上,实数直观地定义为和数轴上的点一一对应的数。
)1.列举法:如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在花括号“{}”内表示这个集合,例如,由两个元素0,1构成的集合可表示为{0,1}.有些集合的元素较多,元素的排列又呈现一定的规律,在不致于发生误解的情况下,也可以列出几个元素作为代表,其他元素用省略号表示。
例如:不大于100的自然数的全体构成的集合,可表示为{0,1,2,3,…,100}.无限集有时也用上述的列举法表示,例如,自然数集N可表示为{1,2,3,…,n,…}.2.描述法:一种更有效地描述集合的方法,是用集合中元素的特征性质来描述。
例如:正偶数构成的集合,它的每一个元素都具有性质:“能被2整除,且大于0”而这个集合外的其他元素都不具有这种性质,因此,我们可以用上述性质把正偶数集合表示为{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括号内竖线左边的X表示这个集合的任意一个元素,元素X 从实数集合中取值,在竖线右边写出只有集合内的元素x才具有的性质。
高一数学必修1《函数的基本性质》教案教学目标:1. 理解函数以及函数的各种表达方式。
2. 掌握函数的基本性质,包括单调性、奇偶性、周期性和零点。
3. 实现函数的简单变换,例如平移、伸缩和反转等。
4. 能够应用函数的基本性质,解决实际问题。
教学重点:1. 理解函数的概念以及函数的各种表达方式。
2. 掌握函数的基本性质,实现函数的简单变换。
3. 能够应用函数的基本性质,解决实际问题。
教学难点:1. 如何理解函数的概念以及函数的各种表达方式。
2. 如何应用函数的基本性质,解决实际问题。
教学方法:一、讲授法。
二、探究法。
三、案例分析法。
教学过程:一. 引入新知识(5分钟):教师简单介绍函数的概念和历史背景,引导学生关注函数在实际生活中的应用,引出本节课的学习目标,激发学生的学习兴趣。
二. 讲解函数的概念(10分钟):1. 函数的定义:任何能够使$x$值唯一对应一个$y$值的规律都称为函数,可以表示为$y=f(x)$。
$x$为自变量,$y$为因变量,函数$f(x)$表示$y$与$x$之间的关系。
2. 函数的图像:函数可以通过绘制它们的图像进行可视化。
函数的图像是平面直角坐标系上的一条曲线。
3. 函数的表示方法:函数可以用表格、图像、公式等多种方式表示。
例如$f(x)=x^2$就是一种表示方式。
三. 掌握函数的基本性质(30分钟):1. 单调性:单调递增和单调递减;2. 奇偶性:奇函数、偶函数和常函数;3. 周期性:周期函数和非周期函数;4. 零点:零点定义以及求零点的方法。
四. 实现函数的简单变换(10分钟):1. 平移变换:表示为$f(x-a)$或$f(x)+b$,注意$a$和$b$的正负性;2. 伸缩变换:表示为$f(kx)$或$f(x)/k$,注意$k$的正负性;3. 反转变换:表示为$f(-x)$或$f(-y)$,注意反转后的坐标轴位置变化。
五. 应用函数的基本性质(10分钟):1. 求函数的最值。