解析几何综合问题圆与椭圆双曲线抛物线等三轮复习考前保温专题练习(二)带答案新教材高中数学
- 格式:doc
- 大小:252.50 KB
- 文档页数:7
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x 的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.设椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为e =12,右焦点为F (c,0),方程ax 2-bx -c =0的两个实根分别为x 1和x 2,则点P (x 1,x 2)________.①必在圆x 2+y 2=2上 ②必在圆x 2+y 2=2外 ③必在圆x 2+y 2=2内解析:由e =12=ca ,得a =2c ,b =3c .所以x 1+x 2=b a =32,x 1x 2=-c a =-12.于是,点P (x 1,x 2)到圆心(0,0)的距离为x 21+x 22=(x 1+x 2)2-2x 1x 2=34+1=74<2, 所以点P 在圆x 2+y 2=2内.3.若直线mx +ny =4和圆O :x 2+y 2=4没有公共点,则过点(m ,n )的直线与椭圆x 25+y 24=1的交点个数为________. 解析:由题意可知,圆心O 到直线mx +ny =4的距离大于半径,即得m 2+n 2<4,所以点(m ,n )在圆O 内,而圆O 是以原点为圆心,椭圆的短半轴长为半径的圆,故点(m ,n )在椭圆内,因此过点(m ,n )的直线与椭圆必有2个交点. 评卷人得分三、解答题4.如图,椭圆22143x y +=的左焦点为F ,上顶点为A , 过点A 作直线AF 的垂线分别交椭圆、x 轴于,B C 两点. ⑴若AB BC λ=,求实数λ的值;[来源:Z|xx|] ⑵设点P 为ACF △的外接圆上的任意一点,当PAB △的面积最大时,求点P 的坐标. (江苏省苏州市汇编年1月高三调研) (本小题满分16分)xNMOyA B l :x =t5.已知椭圆)0(12222>>=+b a by a x 的离心率为23,椭圆的左、右两个顶点分别为A ,B ,AB=4,直线(22)x t t =-<<与椭圆相交于M ,N 两点,经过三点A ,M ,N 的圆与经过三点B ,M ,N 的圆分别记为圆C1与圆C2. (1)求椭圆的方程;(2)求证:无论t 如何变化,圆C1与圆C2的圆心距是定值; (3)当t 变化时,求圆C1与圆C2的面积的和S 的最小值.6.已知双曲线()222210,0x y a b a b -=>>左右两焦点为12,F F ,P 是右支上一点,2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤=∈⎢⎥⎣⎦.(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-17.如图,过椭圆的左右焦点12,F F 分别作长轴的垂线12,l l 交椭圆于1122,,,A B A B ,将12,l l 两侧的椭圆弧删除,再分别以12,F F 为圆心,线段1122,F A F A 的长度为半径作半圆,这样得到的图形称为“椭圆帽”,夹在12,l l 之间的部分称为“椭圆帽”的椭圆段,夹在12,l l 两侧的部分称为“椭圆帽”的圆弧段.(Ⅰ)若已知两个圆弧段所在的圆方程分别为22(2)1x y ±+=,求椭圆段的方程;(Ⅱ)在(Ⅰ)的条件下,已知l 为过1F 的一条直线,l 与“椭圆帽”的两个交点为,M N ,若1120FM F N +=,求直线l 的方程; (Ⅲ)在(Ⅰ)的条件下,如图,已知l 为过1F 的一条直线,l 与“椭圆帽”的两个交点为,M N ,P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,求PM PN的取值范围.分析:利用椭圆的第一定义不难求出长轴长2a ,从而求出椭圆方程;利用椭圆的第二定义,可求出M 点的坐标,易得直线方程;关注PM PN 的实质,涉及分类讨论. 解答:(Ⅰ)由题意:22222,21(22)14c a ==++=,则2222b a c =-=;则椭圆段的方程:221(22)42x y x +=-≤≤; (Ⅱ)由题意:1||1NF =,则1||2MF =,设00(,)M x y ,则0(22)2e x +=,00x ∴=,则(0,2)M ±,则直线l 的方程是:(2)y x =±+; (Ⅲ)211111111111()()P M P NP F F M P F F N P F P FF NP FF M=++=+++(1)P 为“椭圆帽”的左侧圆弧段上半部分的一点,且满足10F P MN =,则N 必在“椭圆帽”的左侧圆弧段下半部分,则11||1,||1PF F N ==, P11110PF F N PF FM ==, 所以:11111||PM PN F M F NF M =+=-,设00(,)M x y (1)0[2,2]x ∈-时,M 在“椭圆帽”的椭圆段的上方部分,则102||2[1,3]2F M x =+∈ 则11||[2,0]PM PN FM =-∈-; (2)0[2,21]x ∈+时,M 在“椭圆帽”的右侧圆弧段的上方部分, 则2200(2)1x y -+=,且1||F M =22000(2)142[3,122]x y x ++=+∈+则11||[22,2]PM PN FM =-∈--; 综上可知:PM PN 的取值范围是11||[22,0]PM PN FM =-∈-. 说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,将其他的数学知识和数学思想方法与圆锥曲线综合,从一个更新颖的角度来考察圆锥曲线.8.已知:“过圆222:C x y r +=上一点00(,)M x y 的切线方程是200x x y y r +=.”(Ⅰ)类比上述结论,猜想过椭圆2222:1(0)x y C a b a b'+=>>上一点00(,)M x y 的切线方程(不要求证明);(Ⅱ)过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B两点,求过,A B 两点的直线方程;(Ⅲ)若过椭圆2222:1(0)x y C a b a b'+=>>外一点00(,)M x y 作两直线与椭圆切于,A B 两点,且AB 恰好通过椭圆的左焦点,证明:点M 在一条定直线上.分析:利用圆方程与椭圆方程结构的一致性,不难得出(Ⅰ)的结论,而(Ⅱ)的解决则体现了方法的类比. 解答:(Ⅰ)椭圆2222:1(0)x y C a b a b '+=>>上一点00(,)M x y 的切线方程是00221x x y y a b+=;(Ⅱ)设1122(,),(,)A x y B x y .由(Ⅰ)可知:过点11(,)A x y 的椭圆的切线1l 的方程是:11221x x y ya b+=; 过点22(,)B x y 的椭圆的切线2l 的方程是:22221x x y ya b+=; 因为12,l l 都过点00(,)M x y ,则10102210102211x x y y a b x x y y a b⎧+=⎪⎪⎨⎪+=⎪⎩,则过,A B 两点的直线方程是:00221x x y ya b+= (Ⅲ)由(Ⅱ)知过,A B 两点的直线方程是:00221x x y ya b+=,由题意:(,0)F c -在直线AB 上,则02()1x c a-=,则20a x c =- ∴点00(,)M x y 在椭圆的左准线上.说明:根据08考试说明,利用方程组的方法讨论直线与圆锥曲线的位置关系不再是圆锥曲线的考试重点.那么,利用类比或其他的数学思想方法,从一个更新颖的角度来关注圆锥曲线的命题方向.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.DD【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a bya x 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________ 3.已知实数0p >,直线3420x y p -+=与抛物线22x p y=和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则AB CD的值为 ▲ .高考资源网w 。
w-w*k&s%5¥u 评卷人得分三、解答题4.已知,A B 分别是直线33y x =和33y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
若,,RM MQ RN NQ λμ==证明:λμ+为定值。
5.已知椭圆()222210x y a b a b+=>>和圆O :222x y b +=,过椭圆上一点P 引圆O 的两条切线,切点分别为,A B .(1)①若圆O 过椭圆的两个焦点,求椭圆的离心率e ; ②若椭圆上存在点P ,使得90APB ∠=,求椭圆离心率e 的取值范围;(2)设直线AB 与x 轴、y 轴分别交于点M ,N ,求证:2222a b ONOM+为定值.6.设分别21,F F 是椭圆C :()012222>>=+b a by a x 的左右焦点;(1)若椭圆C 上的点)23,1(A 到两焦点的距离之和为4,求椭圆C 的方程; (2)在(1)的条件下求21F AF ∆内切圆的方程;(3)设MN 是过椭圆C 中心的弦,P 是椭圆上的动点,求证:直线PM ,PN 的斜率之积为定值. 3.7.设椭圆2222:1(0)x y C a b a b+=>>的上顶点为A ,椭圆C 上两点,P Q 在x 轴上的射影分别为左焦点1F 和右焦点2F ,直线PQ 的斜率为32,过点A 且与1AF 垂直的直线与x 轴交于点B ,1AF B ∆的外接圆为圆M . (1)求椭圆的离心率; (2)直线213404x y a ++=与圆M 相交于,E F 两点,且21 2ME MF a ⋅=-,求椭圆方程;(3)设点(0,3)N 在椭圆C 内部,若椭圆C 上的点到点N 的最远距离不大于62,求椭圆C 的短轴长的取值范围.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p p第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.;23.第13题过程设,,则,(),则,由得,得,,.高考资源网w 。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) (A )12(B )1(C )2(D )4第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a bya x 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________ 3.已知121(0,0),m n m n+=>>当mn 取得最小值时,直线22y x =-+与曲线x x m+1y yn =的交点个数为评卷人得分三、解答题4..已知双曲线22221(0,0)x y a b a b-=>>的左右焦点为1F 、2F ,P 是右支上一点,212PF F F ⊥,1OH PF ⊥于H ,111,[,]92OH OF λλ=∈(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率的取值范围;(3)当离心率最大时,过1F 、2F ,P 的圆截y 轴线段长为8,求该圆的方程.5.已知椭圆22221x y a b += ()0a b >>的右焦点为1(20)F ,,离心率为e .(1)若22e =,求椭圆的方程; (2)设A ,B 为椭圆上关于原点对称的两点,1AF 的中点为M ,1BF 的中点为N ,若原点O 在以线段MN 为直径的圆上. ①证明点A 在定圆上;②设直线AB 的斜率为k ,若3k ≥,求e 的取值范围. 关键字:求椭圆方程;证明点在定圆上;求点的轨迹方程;6.已知双曲线()222210,0x y a b a b-=>>左右两焦点为12,F F ,P 是右支上一点,2121,PF F F OH PF ⊥⊥于H , 111,,92OH OF λλ⎡⎤=∈⎢⎥⎣⎦.(1)当13λ=时,求双曲线的渐近线方程; (2)求双曲线的离心率e 的取值范围;(3)当e 取最大值时,过12,,F F P 的圆的截y 轴的线段长为8,求该圆的方程. 17-17.如图,已知A 、B 、C 是长轴长为4的椭圆上的三点,点A 是长轴的右顶点,BC 过椭圆中心O ,且AC ·BC =0,||2||BC AC =, (1)求椭圆的方程;(2)若过C 关于y 轴对称的点D 作椭圆的切线DE ,则AB 与DE 有什么位置关系?证明你的结论.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系 法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0) 所以2,12=-=-p pOyxCBA第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2. ;23. 评卷人得分三、解答题4.5.(1)由22e =,c=2,得a=22,b =2. 所求椭圆方程为22184x y +=.…………………………………………………………4分 (2)设00()A x y ,,则00()B x y -,-, 故00222x y M +⎛⎫⎪⎝⎭,,0222x y N -⎛⎫- ⎪⎝⎭,.………………………………………………6分① 由题意,得0OM ON ⋅=uuu r uuu r.化简,得22004x y +=,所以点A 在以原点为圆心,2为半径的圆上. …………8分② 设00()A x y ,,则00220022220014y kx x y a b x y =⎧⎪⎪+=⎨⎪⎪+=⎩⇒22200222220014x k x ab x k x ⎧+=⎪⎨⎪+=⎩⇒222211(1)4k k a b +=+. 将2c e a a ==,222244b a c e=-=-,代入上式整理,得2242(21)21k e e e -=-+. …………………………………………………………10分因为42210e e -+>,k 2>0,所以 2210e ->,22e >.…………………………12分 所以 422221321e e k e -+=-≥.化简,得422840,210.e e e ⎧-+⎪⎨->⎪⎩≥ 解之,得21<4232e -≤,2<312e -≤. 故离心率的取值范围是2312⎛⎤- ⎥ ⎝⎦,. ………………………………………………14分 (说明:不讨论2210e ->,得031≤e <-的扣2分)6.由相似三角形知,121OF OH PF PF =,222b ab a aλ=+,∴()222222,21a b b a b λλλλ+==- ,2221b a λλ=-.(1)当13λ=时,221b a =,∴,a b y x ==±.(2)()22222211211111c b e a a λλλλ--⎡⎤⎣⎦==+=+=+--=221111λλ-=----,在11,92⎡⎤⎢⎥⎣⎦上单调递增函数. ∴12λ=时,2e 最大3,19λ=时,2e 最小54, ∴2534e ≤≤,∴532e ≤≤. (3)当3e =时,3ca=,∴3c =,∴222b a =. ∵212PF F F ⊥,∴1PF 是圆的直径,圆心是1PF 的中点, ∴在y 轴上截得的弦长就是直径,∴1PF =8.又2212224b a PF a a a a a =+=+=,∴48,2,23,22a a c b ====. ∴2224b PF a a===,圆心()0,2C ,半径为4,()22216x y +-=. 7.(1)A (2,0),设所求椭圆的方程为:224b y x 2+=1(0<b <2), 由椭圆的对称性知,|OC |=|OB |, 由AC ·BC =0得,AC ⊥BC ,∵|BC |=2|AC |,∴|OC |=|AC |,∴△AOC 是等腰直角三角形, ∴C 的坐标为(1,1).∵C 点在椭圆上,∴22141b +=1,∴b 2=34.所求的椭圆方程为43422y x +=1. (2)是平行关系.…………10分D (-1,1),设所求切线方程为y-1=k (x+1)2213144y kx k x y =++⎧⎪⎨+=⎪⎩,消去x ,222(13)6(1)3(1)40k x k k x k +++++-= 上述方程中判别式=29610k k -+=,13k =又13AB k =,所以AB 与DE 平行.。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)请点击修改第I卷的文字说明评卷人得分一、选择题1.(汇编陕西文数)9.已知抛物线y2=2px(p>0)的准线与圆(x-3)2+y2=16相切,则p的值为()(A)12(B)1(C)2 (D)4第II卷(非选择题)请点击修改第II卷的文字说明评卷人得分二、填空题2.已知椭圆221:12xC y+=和圆222:1C x y+=,椭圆1C的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.3.已知实数0p >,直线3420x y p -+=与抛物线22x p y =和圆222()24p p x y +-=从左到右的交点依次为,A B C D 、、、则AB CD 的值为 ▲ .高考资源网w 。
w-w*k&s%5¥u 评卷人得分 三、解答题4.. 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为23,两个焦点分别为1F 和2F ,椭圆G 上一点到1F 和2F 的距离之和为12.圆k C :0214222=--++y kx y x )(R k ∈的圆心为点k A . (1)求椭圆G 的方程 ; (2)求21F F A k ∆的面积(3)问是否存在圆k C 包围椭圆G? 请说明理由.5.已知椭圆2221(01)y x b b +=<<的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B .过F 、B 、C 作⊙P ,其中圆心P 的坐标为(m ,n ).(Ⅰ)当m +n >0时,求椭圆离心率的范围;(Ⅱ)直线AB 与⊙P 能否相切?证明你的结论.6. 已知椭圆x 2+22b y =1(0<b<1)的左焦点为F ,左、右顶点分别为A 、C ,上顶点为B.过F 、B 、C 三点作圆P ,其中圆心P 的坐标为(m ,n). (1)当m+n>0时,求椭圆离心率的取值范围;(2)直线AB 与圆P 能否相切?证明你的结论.7.有如下结论:“圆222r y x =+上一点),(00y x P 处的切线方程为 200r y y y x =+”,类比也有结论:“椭圆),()0(1002222y x P b a b y a x 上一点>>=+处的切 线方程为12020=+by y a x x ”,过椭圆C :1422=+y x 的右准线l 上任意一点M 引椭圆C 的两条切线,切点为 A .B.(1)求证:直线AB 恒过一定点;(2)当点M 在的纵坐标为1时,求△ABM 的面积【参考答案】***试卷处理标记,请不要删除评卷人得分 一、选择题1.C 本题考查抛物线的相关几何性质及直线与圆的位置关系法一:抛物线y 2=2px (p >0)的准线方程为2p x -=,因为抛物线y 2=2px(p >0)的准线与圆(x -3)2+y 2=16相切,所以2,423==+p p 法二:作图可知,抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切与点(-1,0)所以2,12=-=-p p 第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分 二、填空题2.3.第13题过程设,,则,(),则,由得,得,,.高考资源网w 。
高中数学专题复习
《解析几何综合问题圆与椭圆双曲线抛物线等》
单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I 卷(选择题)
请点击修改第I 卷的文字说明 评卷人
得分 一、选择题
1.以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )
A .22x +y +2x=0
B .22x +y +x=0
C .22x +y -x=0
D .22x +y -2x=0(汇编福建理) 第II 卷(非选择题)
请点击修改第II 卷的文字说明 评卷人
得分 二、填空题
2. 如果以原点为圆心的圆经过双曲线C :)0,0(12222>>=-b a b
y a x 的顶点,并且被双曲线的右准线分成弧长之比为3:1的两段弧,则双曲线的离心率为________。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编福建理2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A .22x +y +2x=0 B .22x +y +x=0C .22x +y -x=0D .22x +y -2x=0第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.已知椭圆221:12x C y +=和圆222:1C x y +=,椭圆1C 的左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.3.椭圆21)0,0(12222=>>=+e b a by ax 的离心率,右焦点F (c,0),方程02=-+c bx ax 的两个根分别为x 1,x 2,则点P (x 1,x 2)在与圆222=+y x 的位置关系是▲ . 评卷人得分三、解答题4.已知椭圆22221x y a b += ()0a b >>的右焦点为1(20)F ,,离心率为e .(1)若22e =,求椭圆的方程; (2)设A ,B 为椭圆上关于原点对称的两点,1AF 的中点为M ,1BF 的中点为N ,若原点O 在以线段MN 为直径的圆上. ①证明点A 在定圆上;②设直线AB 的斜率为k ,若3k ≥,求e 的取值范围. 关键字:求椭圆方程;证明点在定圆上;求点的轨迹方程;5.已知,A B 分别是直线33y x =和33y x =-上的两个动点,线段AB 的长为23是AB 的中点,点P 的轨迹为.C(1)求轨迹C 的方程;(2)过点(1,0)Q 任意作直线l (与x 轴不垂直),设l 与轨迹C 交于,M N 两点,与y 轴交于R 点。
高中数学专题复习《解析几何综合问题圆与椭圆双曲线抛物线等》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题1.(汇编四川理)已知两定点()()2,0,1,0A B -,如果动点P 满足2PA PB =,则点P 的轨迹所包围的图形的面积等于(A )9π (B )8π (C )4π (D )π第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.以椭圆 22221x y a b+=(a>b>0)的右焦点为圆心的圆经过原点O ,且与该椭圆的右准线交与A ,B 两点,已知△OAB 是正三角形,则该椭圆的离心率是 ▲ .3.以抛物线y 2=4x 的焦点为圆心、2为半径的圆,与过点A (-1,3)的直线l 相切,则直线l 的方程是______________________.评卷人得分三、解答题4.如图,在平面直角坐标系xoy 中,已知1(4,0)F -,2(4,0)F ,(0,8)A ,直线(08)y t t =<<与线段1AF 、2AF 分别交于点P 、Q .(1)当3t =时,求以12,F F 为焦点,且过PQ 中点的椭圆的标准方程; (2)过点Q 作直线1QR AF P 交12F F 于点R ,记1PRF ∆的外接圆为圆C .①求证:圆心C 在定直线7480x y ++=上;②圆C 是否恒过异于点1F 的一个定点?若过,求出该点的坐标;若不过,请说明理由.5.(汇编年高考新课标1(理))已知圆M :22(1)1x y ++=,圆N :22(1)9x y -+=,动圆P 与M 外切并且与圆N 内切,圆心P 的轨迹为曲线 C.(Ⅰ)求C 的方程;(Ⅱ)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A,B 两点,当圆P 的半径最长时,求|AB|.6. 已知椭圆221:12x C y +=和圆222:1C x y +=,左顶点和下顶点分别为A ,B ,且F 是椭圆1C 的右焦点.(1) 若点P 是曲线2C 上位于第二象限的一点,且△APF 的面积为12,24+ 求证:;AP OP ⊥(2) 点M 和N 分别是椭圆1C 和圆2C 上位于y 轴右侧的动点,且直线BN 的斜率是直线BM 斜率的2倍,求证:直线MN 恒过定点.第20题P AR OF 1Q xy F 27.已知椭圆2221(01)yx bb+=<<的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).(Ⅰ)当m+n>0时,求椭圆离心率的范围;(Ⅱ)直线AB与⊙P能否相切?证明你的结论.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.B第II 卷(非选择题)请点击修改第II 卷的文字说明 评卷人得分二、填空题2.633.x =-1或5x +12y -31=0. 评卷人得分三、解答题4. 解:(Ⅰ)设椭圆的方程为22221(0)x y a b a b+=>>,当3t =时,PQ 的中点为(0,3),所以b=3 ------------------3分而2216a b -=,所以225a =,故椭圆的标准方程为221204x y +=---------5分(Ⅱ)①解法一:易得直线12:28;:28AF y x AF y x =+=-+, 所以可得88(,),(,)22t tP t Q t --,再由1QR AF P ,得(4,0)R t - ---------8分则线段1F R 的中垂线方程为2t x =-, 线段1PF 的中垂线方程为151628t y x -=-+, 由1516282t y x t x -⎧=-+⎪⎪⎨⎪=-⎪⎩,解得1PRF ∆的外接圆的圆心坐标为7(,2)28t t ----------10分经验证,该圆心在定直线7480x y ++=上 …---------11分解法二: 易得直线12:28;:28AF y x AF y x =+=-+,所以可得88(,),(,)22t tP t Q t --, 再由1QR AF P ,得(4,0)R t - ---------8分设1PRF ∆的外接圆C 的方程为220x y Dx Ey F ++++=,则2222(4)(4)0(4)4088()022t t D F y D F t t t D tE F ⎧⎪-+-+=⎪=--+=⎨⎪--⎪++++=⎩,解得744416D t E t F t =⎧⎪⎪=-⎨⎪=-⎪⎩---------10分所以圆心坐标为7(,2)28t t--,经验证,该圆心在定直线7480x y ++=上 ---------11分②由①可得圆C 的方程为227(4)41604x y tx t y t +++-+-=---------13分该方程可整理为227(216)(4)04x y y t x y ++-+-+=, 则由2241607404x y y x y ⎧++-=⎪⎨-+=⎪⎩,解得4133213x y ⎧=⎪⎪⎨⎪=⎪⎩或40x y =-⎧⎨=⎩, 所以圆C 恒过异于点1F 的一个定点,该点坐标为432(,)1313---------16分5.由已知得圆M 的圆心为M (-1,0),半径1r =1,圆N 的圆心为N (1,0),半径2r =3.设动圆P 的圆心为P (x ,y ),半径为R.(Ⅰ)∵圆P 与圆M 外切且与圆N 内切,∴|PM|+|PN|=12()()R r r R ++-=12r r +=4, 由椭圆的定义可知,曲线C 是以M,N 为左右焦点,场半轴长为2,短半轴长为3的椭圆(左顶点除外),其方程为221(2)43x y x +=≠-. (Ⅱ)对于曲线C 上任意一点P (x ,y ),由于|PM|-|PN|=22R -≤2,∴R≤2, 当且仅当圆P 的圆心为(2,0)时,R=2.∴当圆P 的半径最长时,其方程为22(2)4x y -+=, 当l 的倾斜角为090时,则l 与y 轴重合,可得|AB|=23.当l 的倾斜角不为090时,由1r ≠R 知l 不平行x 轴,设l 与x 轴的交点为Q,则||||QP QM =1R r ,可求得Q(-4,0),∴设l :(4)y k x =+,由l 于圆M 相切得2|3|11k k=+,解得24k =±. 当k =24时,将224y x =+代入221(2)43x y x +=≠-并整理得27880x x +-=,解得1,2x =4627-±,∴|AB|=2121||k x x +-=187.当k =-24时,由图形的对称性可知|AB|=187, 综上,|AB|=187或|AB|=23. 6.7.(本小题满分15分)解:(Ⅰ)设F 、B 、C 的坐标分别为(-c ,0),(0,b ),(1,0),则FC 、BC 的中垂线 分别为12c x -=,11()22b y x b -=-. ……………………………………………………2分 联立方程组,解出21,2.2cx b c y b -⎧=⎪⎪⎨-⎪=⎪⎩……………………………………………………………4分21022c b cm n b --+=+>,即20b bc b c -+->,即(1+b )(b -c )>0,∴b >c . ……………………………………………………………………………………6分 从而22b c >即有222a c >,∴212e <.……………………………………………………7分 又0e >,∴0e <<22. …………………………………………………………………8分 (Ⅱ)直线AB 与⊙P 不能相切.…………………………………………………………………9分由AB k b =,22102PB b c b b k c --=--=2(1)b c b c +-. (10)分 如果直线AB 与⊙P 相切,则b ·2(1)b c b c +-=-1. ………………………………………12分 解出c=或2,与<c<1矛盾,………………………………………………………14分 所以直线AB与⊙P不能相切. …………………………………………………………15分。