直接证明 分析法
- 格式:docx
- 大小:11.30 KB
- 文档页数:2
6.2直接证明与间接证明6.2.1 直接证明:分析法与综合法[读教材·填要点]综合法和分析法[小问题·大思维]1.综合法与分析法的推理过程是合情推理还是演绎推理?提示:综合法与分析法的推理过程是演绎推理,因为综合法与分析法的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?提示:综合法是从已知条件出发,逐步推向未知,每步寻找的是必要条件;分析法是从待求结论出发,逐步靠拢已知,每步寻找的是充分条件.已知a ,b 是正数,且a +b =1,求证:1a +1b ≥4.[自主解答] 法一:∵a ,b ∈R +且a +b =1, ∴a +b ≥2ab ,当且仅当a =b 时等号成立. ∴ab ≤12.∴1a +1b =a +b ab =1ab ≥4. 法二:∵a ,b ∈R +,∴a +b ≥2ab >0,1a +1b ≥21ab>0,当且仅当a =b 时等号成立. ∴(a +b )⎝⎛⎭⎫1a +1b ≥4. 又∵a +b =1,∴1a +1b≥4.法三:∵a ,b ∈R +,且a +b =1, ∴1a +1b =a +b a +a +b b =1+b a +ab +1≥2+2a b ·b a =4.当且仅当a =b 时,取“=”号.保持例题条件不变,求证:4a +1b ≥9.证明:法一:∵a >0,b >0,且a +b =1. ∴4a +1b =4(a +b )a +a +bb =4+4b a +a b +1 ≥5+24b a ·ab =5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.法二:∵a >0,b >0,且a +b =1. ∴4a +1b =(a +b )·⎝⎛⎭⎫4a +1b =4+4b a +a b +1 ≥5+24b a ·ab =5+4=9.当且仅当4b a =a b ,即a =2b =23时等号成立.综合法证明问题的步骤(1)分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等. (2)转化条件,组织过程:将条件合理转化,书写出严密的证明过程. 特别地,根据题目特点选取合适的证法可以简化解题过程.1.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a 2=b (b +c ),求证:A =2B . 证明:∵a 2=b (b +c ),∴cos A =b 2+c 2-a 22bc =b 2+c 2-(b 2+bc )2bc =c -b 2b,cos 2B =2cos 2B -1=2⎝⎛⎭⎫a 2+c 2-b 22ac 2-1=2⎝⎛⎭⎫b +c 2a 2-1=(b +c )2-2b (b +c )2b (b +c )=c -b 2b ,∴cos A =cos 2B .又A ,B 是三角形的内角,∴A =2B .当a +b [自主解答] 要证 a 2+b 2≥22(a +b ), 只需证(a 2+b 2)2≥⎣⎡⎦⎤22(a +b )2, 即证a 2+b 2≥12(a 2+b 2+2ab ),即证a 2+b 2≥2ab .因为a 2+b 2≥2ab 对一切实数恒成立, 所以a 2+b 2≥22(a +b )成立. 综上所述,不等式得证.分析法的证明过程及书写形式(1)证明过程:确定结论与已知条件间的联系,合理选择相关定义、定理对结论进行转化,直到获得一个显而易见的命题即可.(2)书写形式:要证…,只需证…,即证…,然后得到一个明显成立的条件,所以结论 成立.2.已知a >6,求证:a -3-a -4<a -5-a -6. 证明:法一:要证a -3-a -4<a -5-a -6, 只需证a -3+a -6<a -5+a -4 ⇐(a -3+a -6)2<(a -5+a -4)2⇐2a -9+2(a -3)(a -6)<2a -9+2(a -5)(a -4) ⇐(a -3)(a -6)<(a -5)(a -4) ⇐(a -3)(a -6)<(a -5)(a -4) ⇐18<20.因为18<20显然成立,所以原不等式a -3-a -4<a -5-a -6成立. 法二:要证a -3-a -4<a -5-a -6, 只需证1a -3+a -4<1a -5+a -6,只需证a -3+a -4>a -5+a -6. ∵a >6,∴a -3>0,a -4>0,a -5>0,a -6>0. 又∵a -3>a -5,∴a -3>a -5, 同理有a -4>a -6,则a -3+a -4>a -5+a -6. ∴a -3-a -4<a -5-a -6.已知△ABC 的三个内角A ,B ,C 为等差数列,且a ,b ,c 分别为角A ,B ,C 的对边,求证:(a +b )-1+(b +c )-1=3(a +b +c )-1.[自主解答] 法一:要证(a +b )-1+(b +c )-1=3(a +b +c )-1,只需证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +c b +c =3,化简,得c a +b +a b +c=1,即c (b +c )+(a +b )a =(a +b )(b +c ). 所以只需证c 2+a 2=b 2+ac .因为△ABC 的三个内角A ,B ,C 成等差数列,所以B =60°, 所以cos B =a 2+c 2-b 22ac =12.所以a 2+c 2-b 2=ac ,所以原式成立.法二:因为△ABC 的三个内角A ,B ,C 成等差数列, 所以B =60°. 由余弦定理,有b 2=c 2+a 2-2ac cos 60°, 所以c 2+a 2=ac +b 2. 两边加ab +bc ,得c (b +c )+a (a +b )=(a +b )(b +c ),两边同时除以(a +b )(b +c ),得 c a +b +a b +c=1, 所以⎝⎛⎭⎫c a +b +1+⎝⎛⎭⎫ab +c +1=3.即1a +b +1b +c =3a +b +c. 所以(a +b )-1+(b +c )-1=3(a +b +c )-1.综合法与分析法的适用范围(1)综合法适用的范围:①定义明确的题型,如证明函数的单调性、奇偶性,求证无条件的等式或不等式问题等;②已知条件明确,且容易通过找已知条件的必要条件逼近欲得结论的题型. (2)分析法适用的范围:已知条件不明确,或已知条件简便而结论式子较复杂的问题.3.(1)设x ≥1,y ≥1,证明:x +y +1xy ≤1x +1y +xy ;(2)设1<a ≤b ≤c ,证明:log a b +log b c +log c a ≤log b a +log c b +log a c . 证明:(1)由于x ≥1,y ≥1,所以 x +y +1xy ≤1x +1y +xy ⇔xy (x +y )+1≤y +x +(xy )2. 将上式中的右式减左式,得 [y +x +(xy )2]-[xy (x +y )+1] =[(xy )2-1]-[xy (x +y )-(x +y )] =(xy +1)(xy -1)-(x +y )(xy -1)=(xy -1)(xy -x -y +1)=(xy -1)(x -1)(y -1). 又x ≥1,y ≥1,所以(xy -1)(x -1)(y -1)≥0, 从而所要证明的不等式成立.(2)设log a b =x ,log b c =y ,由对数的换底公式得 log c a =1xy ,log b a =1x ,log c b =1y ,log a c =xy . 于是,所要证明的不等式即为x +y +1xy ≤1x +1y +xy ,其中x =log a b ≥1,y =log b c ≥1. 故由(1)可知所要证明的不等式成立.已知a ,b ,c ∈R 且不全相等,求证:a 2+b 2+c 2>ab +bc +ca . [证明] 法一:(分析法) 要证a 2+b 2+c 2>ab +bc +ca , 只需证2(a 2+b 2+c 2)>2(ab +bc +ca ),只需证(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0, 只需证(a -b )2+(b -c )2+(c -a )2>0, 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以原不等式a 2+b 2+c 2>ab +bc +ca 成立. 法二:(综合法) 因为a ,b ,c ∈R ,所以(a -b )2≥0,(b -c )2≥0,(c -a )2≥0. 又因为a ,b ,c 不全相等, 所以(a -b )2+(b -c )2+(c -a )2>0.所以(a 2+b 2-2ab )+(b 2+c 2-2bc )+(c 2+a 2-2ca )>0. 所以2(a 2+b 2+c 2)>2(ab +bc +ca ). 所以a 2+b 2+c 2>ab +bc +ca .1.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明过程:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”,此过程应用了( )A .分析法B .综合法C .综合法、分析法综合使用D .间接证明法解析:结合推理及分析法和综合法的定义可知,B 正确. 答案:B2.在△ABC 中,若sin B sin C =cos 2A2,则下列等式一定成立的是( )A .A =BB .A =CC .B =CD .A =B =C解析:∵sin B sin C =cos 2A 2=1+cos A 2=1-cos (B +C )2,∴cos(B +C )=1-2sin B sin C ,∴cos B cos C -sin B sin C =1-2sin B sin C , ∴cos B cos C +sin B sin C =1,∴cos(B -C )=1. 又0<B <π,0<C <π, ∴-π<B -C <π,∴B =C . 答案:C3.分析法又称执果索因法,若用分析法证明“设a >b >c ,且a +b +c =0,求证: b 2-ac <3a ”索的因应是( )A .a -b >0B .a -c >0C .(a -b )(a -c )>0D .(a -b )(a -c )<0解析:b 2-ac <3a ⇔b 2-ac <3a 2⇔(a +c )2-ac <3a 2 ⇔a 2+2ac +c 2-ac -3a 2<0 ⇔-2a 2+ac +c 2<0 ⇔2a 2-ac -c 2>0⇔(a -c )(2a +c )>0⇔(a -c )(a -b )>0. 故选C. 答案:C4.命题“函数f (x )=x -x ln x 在区间(0,1)上是增函数”的证明过程“对函数f (x )=x - x ln x 求导得f ′(x )=-ln x ,当x ∈(0,1)时,f ′(x )=-ln x >0,故函数f (x )在区间(0,1)上是增函数”应用了________的证明方法.解析:由证明过程可知,该证明方法为综合法. 答案:综合法5.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab ,只需证a 2+b 2≥2ab ,也就是证______,即证________,由于________显然成立,因此原不等式成立.答案:a 2+b 2-2ab ≥0 (a -b )2≥0 (a -b )2≥06.已知x >0,y >0,且x +y =1,试分别用综合法与分析法证明⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+1y ≥9. 证明:法一:(综合法)左边=⎝⎛⎭⎫1+x +y x ⎝⎛⎭⎫1+x +y y =⎝⎛⎭⎫2+y x ⎝⎛⎭⎫2+x y=4+2⎝⎛⎭⎫y x +x y +1≥5+4=9.法二:(分析法)要证⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+1y ≥9成立, ∵x ,y ∈R +且x +y =1,∴y =1-x . 只需证明⎝⎛⎭⎫1+1x ⎝⎛⎭⎫1+11-x ≥9成立, 即证(1+x )(1-x +1)≥9x (1-x ),即证2+x -x 2≥9x -9x 2,即证4x 2-4x +1≥0, 即证(2x -1)2≥0,此式显然成立,所以原不等式成立.一、选择题1.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc ,则a >bC .若a 3>b 3且ab <0,则1a >1b D .若a 2>b 2且ab >0,则1a <1b解析:对于A :若c =0,则A 不成立,故A 错; 对于B :若c <0,则B 不成立,B 错; 对于C :若a 3>b 3且ab <0,则⎩⎪⎨⎪⎧a >0,b <0,所以1a >1b ,故C 对;对于D :若⎩⎪⎨⎪⎧a <0,b <0,则D 不成立.答案:C2.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b 的最小值为( ) A .8 B .4 C .1D .14解析:3是3a 与3b 的等比中项⇒3a ·3b =3⇒3a +b =3⇒a +b =1,因为a >0,b >0,所以ab ≤a +b 2=12⇒ab ≤14, 所以1a +1b =a +b ab =1ab ≥114=4.答案:B3.已知△ABC 中,cos A +cos B >0,则必有( ) A .0<A +B <πB .0<A +B <π2C.π2<A +B <πD.π2≤A +B <π 解析:由cos A +cos B >0,得cos A >-cos B , ∴cos A >cos(π-B ). ∵0<A <π,0<B <π,且y =cos x 在x ∈(0,π)上单调递减. ∴A <π-B .∴A +B <π,即0<A +B <π. 答案:A4.已知实数a ,b ,c 满足a +b +c =0,abc >0,则1a +1b +1c 的值( )A .一定是正数B .一定是负数C .可能是零D .正、负不能确定解析:∵a +b +c =0,∴(a +b +c )2=0. ∴a 2+b 2+c 2+2(ab +bc +ac )=0. ∴ab +bc +ac =-12(a 2+b 2+c 2)<0.又abc >0,∴1a +1b +1c =ab +bc +acabc <0. 答案:B 二、填空题5.如果a a +b b >a b +b a ,则实数a ,b 应满足的条件是________________. 解析:a a +b b >a b +b a ⇔a a -a b >b a -b b ⇔a (a -b )>b (a -b ) ⇔(a -b )(a -b )>0 ⇔(a +b )(a -b )2>0,故只需a ≠b 且a ,b 都不小于零即可. 答案:a ≥0,b ≥0且a ≠b 6.若a =ln 22,b =ln 33,c =ln 55,则a ,b ,c 的大小关系是______________. 解析:利用函数单调性.设f (x )=ln xx ,则f ′(x )=1-ln x x 2,∴0<x <e 时,f ′(x )>0,f (x )单调递增; x >e 时,f ′(x )<0,f (x )单调递减. 又a =ln 44,∴b >a >c .答案:c <a <b7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p 与q 的大小关系是________.解析:p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p . 答案:p >q 8.若对任意x >0,xx 2+3x +1≤a 恒成立,则a 的取值范围是________.解析:∵a ≥xx 2+3x +1=1x +1x +3对任意x >0恒成立, 设μ=x +1x +3(x >0).∴只需a ≥1μ恒成立即可.又∵μ=x +1x +3≥5,当且仅当x =1时“=”成立.∴0<1μ≤15.∴a ≥15.答案:⎣⎡⎭⎫15,+∞ 三、解答题9.已知数列{a n }的首项a 1=5,S n +1=2S n +n +5,(n ∈N *). (1)证明数列{a n +1}是等比数列. (2)求a n .解:(1)证明:由条件得S n =2S n -1+(n -1)+5(n ≥2)①又S n +1=2S n +n +5,②②-①得a n +1=2a n +1(n ≥2),所以a n +1+1a n +1=(2a n +1)+1a n +1=2(a n +1)a n +1=2. 又n =1时,S 2=2S 1+1+5,且a 1=5,所以a 2=11,所以a 2+1a 1+1=11+15+1=2, 所以数列{a n +1}是以2为公比的等比数列.(2)因为a 1+1=6,所以a n +1=6×2n -1=3×2n , 所以a n =3×2n -1.10.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b 2+1-2m =0. (1)求证:1a 2+4b 2≥9a 2+b 2; (2)求证:m ≥72. 证明:(1)(分析法)要证1a 2+4b 2≥9a 2+b 2成立, 只需证⎝⎛⎭⎫1a 2+4b 2(a 2+b 2)≥9,即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b 2≥4. 根据基本不等式,有b 2a 2+4a 2b 2≥2 b 2a 2·4a 2b 2=4成立, 当且仅当b 2=2a 2时等号成立.所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1, 由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0,解得m ≤-1或m ≥72. 因为a 2+b 2=m -2>0,1a 2+4b2=2m -1>0, 所以m ≥72.。
直接证明与间接证明【要点梳理】要点一:直接证明直接证明最常见的两种方法是综合法和分析法,它们是思维方向相反的两种不同的推理方法. 综合法定义:一般地,从命题的已知条件出发,利用定义、公理、定理及运算法则,经过演绎推理,一步步地接近要证明的结论,直到完成命题的证明,我们把这种思维方法叫做综合法.... 基本思路:执因索果综合法又叫“顺推证法”或“由因导果法”.它是由已知走向求证,即从数学题的已知条件出发,经过逐步的逻辑推理,最后导出待证结论或需求的问题.综合法这种由因导果的证明方法,其逻辑依据是三段论式的演绎推理方法.综合法的思维框图:用P 表示已知条件,Q 表示要证明的结论,123...i Q i n =(,,,,)为已知的定义、定理、公理等,则综合法可用框图表示为: 11223...n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒(已知) (逐步推导结论成立的必要条件) (结论)要点诠释(1)从“已知”看“可知”,逐步推出“未知”,由因导果,其逐步推理实际上是寻找它的必要条件;(2)用综合法证明不等式,证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,宜于表达推理的思维轨迹;(3)因用综合法证明命题“若A 则D ”的思考过程可表示为:故要从A 推理到D ,由A 推演出的中间结论未必唯一,如B 、B 1、B 2等,可由B 、B 1、B 2进一步推演出的中间结论则可能更多,如C 、C 1、C 2、C 3、C 4等等.所以如何找到“切入点”和有效的推理途径是有效利用综合法证明问题的“瓶颈”.综合法证明不等式时常用的不等式(1)a 2+b 2≥2ab (当且仅当a =b 时取“=”号);(2)2a b +≥a ,b ∈R*,当且仅当a =b 时取“=”号); (3)a 2≥0,|a |≥0,(a -b )2≥0;(4)2b a a b +≥(a ,b 同号);2b a a b+≤-(a ,b 异号); (5)a ,b ∈R ,2221()2a b a b +≥+, (6)不等式的性质定理1 对称性:a >b ⇔b <a .定理2 传递性:a b a c b c >⎫⇒>⎬>⎭. 定理3 加法性质:a b a c b c c R >⎫⇒+>+⎬∈⎭. 推论 a b a c b d c d >⎫⇒+>+⎬>⎭. 定理4 乘法性质:0a b ac bc c >⎫⇒>⎬>⎭. 推论1 00a b ac bc c d >>⎫⇒>⎬>>⎭. 推论2 0*n n a b a b n N >>⎫⇒>⎬∈⎭.定理5 开方性质:0*a b n N >>⎫⇒>⎬∈⎭ 分析法定义一般地,从需要证明的命题出发,分析使这个命题成立的充分条件,逐步寻找使命题成立的充分条件,直至所寻求的充分条件显然成立(已知条件、定理、定义、公理等),或由已知证明成立,从而确定所证的命题成立的一种证明方法,叫做分析法.基本思路:执果索因分析法又叫“逆推证法”或“执果索因法”.它是从要证明的结论出发,分析使之成立的条件,即寻求使每一步成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.分析法这种执果索因的证明方法,其逻辑依据是三段论式的演绎推理方法.分析法的思维框图:用123i P i =L (,,,)表示已知条件和已有的定义、公理、公式、定理等,Q 所要证明的结论,则用分析法证明可用框图表示为: 11223...Q P P P P P ⇐→⇐→⇐→→得到一个明显成立的条件(结论) (逐步寻找使结论成立的充分条件) (已知)格式:要证……,只需证……,只需证……,因为……成立,所以原不等式得证.要点诠释:(1)分析法是综合法的逆过程,即从“未知”看“需知”,执果索因,逐步靠拢“已知”,其逐步推理,实际上是寻找它的充分条件.(2)由于分析法是逆推证明,故在利用分析法证明时应注意逻辑性与规范性,即分析法有独特的表述.综合法与分析法的横向联系(1) 综合法是把整个不等式看做一个整体,通过对欲证不等式的分析、观察,选择恰当不等式作为证题的出发点,其难点在于到底从哪个不等式出发合适,这就要求我们不仅要熟悉、正确运用作为定理性质的不等式,还要注意这些不等式进行恰当变形后的利用.分析法的优点是利于思考,因为它方向明确,思路自然,易于掌握,而综合法的优点是宜于表述,条理清晰,形式简洁.我们在证明不等式时,常用分析法寻找解题思路,即从结论出发,逐步缩小范围,进而确定我们所需要的“因”,再用综合法有条理地表述证题过程.分析法一般用于综合法难以实施的时候.(2)有不等式的证明,需要把综合法和分析法联合起来使用:根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P .若由P 可以推出Q 成立,就可以证明结论成立,这种边分析边综合的证明方法,称之为分析综合法,或称“两头挤法”.分析综合法充分表明分析与综合之间互为前提、互相渗透、互相转化的辩证统一关系,分析的终点是综合的起点,综合的终点又成为进一步分析的起点.命题“若P 则Q ”的推演过程可表示为:要点二:间接证明 间接证明不是从正面确定命题的真实性,而是证明它的反面为假,或改证它的等价命题为真,间接地达到目的,反证法是间接证明的一种基本方法.反证法定义:一般地,首先假设要证明的命题结论不正确,即结论的反面成立,然后利用公理,已知的定义、定理,命题的条件逐步分析,得到和命题的条件或公理、定理、定义及明显成立的事实等矛盾的结论,以此说明假设的结论不成立,从而证明了原命题成立,这样的证明方法叫做反证法.反证法的基本思路:假设——矛盾——肯定①分清命题的条件和结论.②做出与命题结论相矛盾的假设.③由假设出发,结合已知条件,应用演绎推理方法,推出矛盾的结果.④断定产生矛盾结果的原因,在于开始所做的假定不真,于是原结论成立,从而间接地证明原命题为真.反证法的格式:用反证法证明命题“若p则q”时,它的全部过程和逻辑根据可以表示如下:要点诠释:(1)反证法是间接证明的一种基本方法.它是先假设要证的命题不成立,即结论的反面成立,在已知条件和“假设”这个新条件下,通过逻辑推理,得出与定义、公理、定理、已知条件、临时假设等相矛盾的结论,从而判定结论的反面不能成立,即证明了命题的结论一定是正确的.(2) 反证法的优点:对原结论否定的假定的提出,相当于增加了一个已知条件.反证法的一般步骤:(1)反设:假设所要证明的结论不成立,假设结论的反面成立;(2)归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、已知的公理、定义、定理、反设及明显的事实矛盾或自相矛盾;(3)结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立.要点诠释:(1)结论的反面即结论的否定,要特别注意:“都是”的反面为“不都是”,即“至少有一个不是”,不是“都不是”;“都有”的反面为“不都有”,即“至少有一个没有”,不是“都没有”;“都不是”的反面是“部分是或全部是”,即“至少有一个是”,不是“都是”;“都没有”的反面为“部分有或全部有”,即“至少有一个有”,不是“都有”(2)归谬的主要类型:①与已知条件矛盾;②与假设矛盾(自相矛盾);③与定义、定理、公理、事实矛盾.宜用反证法证明的题型:①要证的结论与条件之间的联系不明显,直接由条件推出结论的线索不够清晰;比如“存在性问题、唯一性问题”等;②如果从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形.比如带有“至少有一个”或“至多有一个”等字样的数学问题.要点诠释:反证法体现出正难则反的思维策略(补集的思想)和以退为进的思维策略,故在解决某些正面思考难度较大和探索型命题时,有独特的效果.【典型例题】【高清课堂:例题1】类型一:综合法证明例1.求证:a4+b4+c4≥abc(a+b+c).【证明】∵a4+b4≥2a2b2,b4+c4≥2b2c2,c4+a4≥2c2a2,∴(a4+b4)+(b4+c4)+(c4+a4)≥2(a2b2+b2c2+c2a2),又∵a2b2+b2c2≥2ab2c,b2c2+c2a2≥2abc2,a2b2+c2a2≥2a2bc,∴2(a2b2+b2c2+c2a2)≥2abc(a+b+c).∴2(a4+b4+c4)≥2abc(a+b+c),即a4+b4+c4≥abc(a+b+c).【总结升华】利用综合法时,从已知出发,进行运算和推理得到要证明的结论,并且在用均值定理证明不等式时,一要注意均值定理运用的条件,二要运用定理对式子作适当的变形,把式分成若干部分,对每部分运用均值定理后,再把它们相加或相减.举一反三:【变式1】已知a,b是正数,且a+b=1,求证:114a b+≥.【证明】证法一:∵a,b∈R,且a+b=1,∴2a b ab +≥,∴12ab ≤, ∴1114a b a b ab ab++==≥. 证法二:∵a ,b ∈R +,∴20a b ab +=>,11120a b ab +≥>, ∴11()4a b a b ⎛⎫++≥ ⎪⎝⎭. 又a +b =1,∴114a b+≥. 证法三:1111224a b a b b a a b a b a b a b b a+++=+=+++≥+⋅=. 当且仅当a =b 时,取“=”号.【变式2】求证:5321232log 19log 19log 19++<. 【证明】待证不等式的左端是3个数和的形式,右端是一常数的形式,而左端3个分母的真数相同,由此可联想到公式,1log log a b b a =转化成能直接利用对数的运算性质进行化简的形式. ∵ 1log log a b b a =, ∴左边∵, ∴5321232log 19log 19log 19++<. 例2.已知数列{a n }中,S n 是它的前n 项和,并且S n +1=4a n +2(n =1,2,…),a 1=1.(1)设b n =a n +1-2a n (n =1,2,…),求证:数列{b n }是等比数列.(2)设2n n na c =(n =1,2,…), 求证:数列{c n }是等差数列. 【证明】(1)∵S n +1=4a n +2,∴S n +2=4a n +1+2,两式相减,得S n +2―S n +1=4a n +1―4a n (n =1,2,3,…),即a n +2=4a n +1―4a n ,变形得a n +2―2a n +1=2(a n +1―2a n ).∵b n =a n +1-2a n (n =1,2,…),∴b n +1=2b n (n =1,2,…).由此可知,数列{b n }是公比为2的等比数列.由S 2=a 1+a 2=4a 1+2,a 1=1,得a 2=5,b 1=a 2―2a 1=3.故b n =3·2n ―1.(2)∵2n n n a c =(n =1,2,…) ∴11111122222n n n n n n n n n n n a a a a b c c ++++++--=-== 将b n =3·2n -1代入,得134n n c c +-=(n =1,2,…). 由此可知,数列{c n }是公差34d =的等差数列,它的首项11122a c ==,故3144n c n =-. 【总结升华】本题从已知条件入手,分析数列间的相互关系,合理实现了数列间的转化,从而使问题获解,综合法是直接证明中最常用的证明方法.举一反三:【变式1】已知数列{}n a 满足15a =, 25a =,116(2)n n n a a a n +-=+≥.求证:{}12n n a a ++是等比数列;【证明】 由a n +1=a n +6a n -1,a n +1+2a n =3(a n +2a n -1) (n ≥2),∵a 1=5,a 2=5∴a 2+2a 1=15,故数列{a n +1+2a n }是以15为首项,3为公比的等比数列.【变式2】在△ABC 中,若a 2=b (b +c ),求证:A =2B .【证明】∵a 2=b (b +c ),222222()cos 22b c a b c b bc A bc bc+-+-+==, 又222222222()22cos 2cos 12121222()2a c b b c b c b bc c b B B ac a b b c b ⎛⎫+-++---⎛⎫=-=-=-== ⎪ ⎪+⎝⎭⎝⎭,∴cos A =cos2B .又A 、B 是三角形的内角,故A =2B .例3.如图所示,在四棱锥P —ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点,作EF ⊥PB 交PB 于点F .求证:(1)P A ∥平面EDB ;(2)PB ⊥平面EFD .【证明】(1)连结AC 交BD 于O ,连结E O .∵底面ABCD 是正方形,∴点O 是AC 的中点,在△P AC 中,E O 是中位线,∴P A ∥E O .而E O ⊂平面EDB 且P A ⊄平面EDB ,∴P A ∥平面EDB .(2)PD ⊥底面ABCD 且DC ⊂底面ABCD ,∴PD ⊥DC .由PD =DC ,可知△PDC 是等腰直角三角形,而DE 是斜边PC 上的中线,∴DE ⊥PC .①同样由PD ⊥底面ABCD ,得PD ⊥BC .∵底面ABCD是正方形,∴DC⊥BC,∴BC⊥平面PDC.而DE⊂平面PDC,∴BC⊥DE.②由①和②推得DE⊥平面PBC.而PB⊂平面PBC,∴DE⊥PB.又EF⊥PB且DE∩EF=E,∴PB⊥平面EFD.【总结升华】利用综合法证明立体几何中线线、线面和面面关系的关键在于熟练地运用判定定理和性质定理.举一反三:【变式1】如图,设在四面体PABC中,90ABC∠=o,PA PB PC==,D是AC的中点.求证:PD垂直于ABC∆所在的平面.【证明】连PD、BD因为BD是Rt ABC∆斜边上的中线,所以DA DC DB==又因为PA PB PC==,而PD是PAD∆、PBD∆、PCD∆的公共边,所以PAD∆≅PBD PCD∆≅∆于是PDA PDB PDC∠=∠=∠,而90PDA PDC∠=∠=o,因此90PDB∠=o∴PD AC⊥,PD BD⊥由此可知PD垂直于ABC∆所在的平面.【变式2】如图所示,在四棱锥S—ABCD中,底面ABCD是正方形,SA平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点.求证:(1)EF⊥CD;(2)平面SCD⊥平面SCE.【证明】(1)∵SA⊥平面ABCD,F为SC的中点,∴AF为Rt△SAC斜边SC上的中线.∴12AF SC=.又∵四边形ABCD是正方形,∴CB⊥AB.而由SA ⊥平面ABCD ,得CB ⊥SA ,∴CB ⊥平面SAB .又∵SB ⊂平面SAB ,∴CB ⊥SB .∴BF 为Rt △SBC 的斜边SC 上的中线,∴12BF SC =. ∴AF =BF ,∴△AFB 为等腰三角形.又E 为AB 的中点,∴EF ⊥AB .又CD ∥AB ,∴EF ⊥CD .(2)由已知易得Rt △SAE ≌Rt △CBE ,SE =EC ,即△SEC 是等腰三角形,∴EF ⊥SC .又∵EF ⊥CD 且SC ∩CD =C ,∴EF ⊥平面SCD .又EF ⊂平面SCE ,∴平面SCD ⊥平面SCE .类型二:分析法证明例4. 设0a >、0b >,且a b ≠,用分析法证明:3322a b a b ab ++>.【证明】要证3322a b a b ab +>+成立,只需证33220a b a b ab +--> 成立,即证22()()0a a b b b a -+->成立,即证22()()0a b a b -->成立,也就是要证2()()0a b a b +->成立,因为0a >、0b >,且a b ≠,所以2()()0a b a b +->显然成立,由此原不等式得证.【总结升华】1.在证明过程中,若使用综合法出现困难时,应及时调整思路,分析一下要证明结论成立需要怎样的充分条件是明智之举.从结论出发,结合已知条件,逐步反推,寻找使当前命题成立的充分条件的方法.2. 用分析法证明问题时,一定要恰当地用好“要证”“只需证”“即证”“也即证”等词语.举一反三:【变式1】设a ,b ,c ,d ∈R ,求证:ac bc +≤【证明】当ac +bc ≤0时,不等式显然成立.当ac +b d >0时,要证明ac bd +只需证明(ac +b d)2≤(a 2+b 2)(c 2+d 2),即证明a 2c 2+2abc d+b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2,只需证明2abc d≤a 2d 2+b 2c 2,只需证明(a d -bc )2≥0. 而上式成立,∴2222ac bd a b c d +≤+⋅+成立. 【变式2】求证:123(3)a a a a a --<---≥【证明】分析法: 要证123(3)a a a a a --<---≥成立, 只需证明321(3)a a a a a +-<-+-≥, 两边平方得232(3)232(2)(1)a a a a a a -+-<-+--(3)a ≥, 所以只需证明(3)(2)(1)a a a a -<--(3)a ≥, 两边平方得22332a a a a -<-+,即02<,∵02<恒成立,∴原不等式得证.【变式3】用分析法证明:若a >0,则212122-+≥-+a a a a . 【证明】要证212122-+≥-+a a a a , 只需证212122++≥++aa a a . ∵a >0,∴两边均大于零,因此只需证2222)21()21(++≥++a a a a 只需证)1(222211441222222a a a a a a a a +++++≥++++, 只需证)1(22122a a a a +≥+,只需证)21(2112222++≥+a a a a , 即证2122≥+a a ,它显然成立.∴原不等式成立.例5. 若a ,b ,c 是不全相等的正数,求证:lg2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【证明】要证lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c , 只需证lg 2b a +·2c b +·2a c +>lg (a ·b ·c ), 只需证2b a +·2c b +·2a c +>abc . 但是,2b a +0>≥ab ,2c b +0>≥bc ,2a c +0>≥ac .且上述三式中的等号不全成立,所以,2b a +·2c b +·2a c +>abc . 因此lg 2b a ++ lg 2c b ++ lg 2a c +>lg a +lg b +lg c . 【总结升华】这个证明中的前半部分用的是分析法,后半部分用的是综合法.在实际证题过程中,分析法与综合法是统一运用的,把分析法和综合法孤立起来运用是脱离实际的.没有分析就没有综合;没有综合也没有分析.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚刚相反,是综合法导主导地位,而分析法伴随着它.举一反三:【变式1】设a 、b 是两个正实数,且a ≠b ,求证:3a +3b >22ab b a +【证明】证明一:(分析法)要证3a +3b >22ab b a +成立,只需证(a +b )( 2a -ab +2b )>ab (a +b )成立,即需证2a -ab +2b >ab 成立.(∵a +b >0)只需证2a -2ab +2b >0成立,即需证()2b a ->0成立. 而由已知条件可知,a ≠b ,有a -b ≠0,所以()2b a ->0显然成立,由此命题得证. 证明二:(综合法)∵a ≠b ,∴a -b ≠0,∴()2b a ->0,即2a -2ab +2b >0,亦即2a -ab +2b >ab . 由题设条件知,a +b >0,∴(a +b )( 2a -ab +2b )>(a +b )ab即3a +3b >22ab b a +,由此命题得证.【变式2】ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c +=++++ 【证明】要证原式成立,只要证3a b c a b c a b b c +++++=++, 即只要证1c a a b b c+=++ 即只要证2221bc c a ab ab b ac bc+++=+++; 而2A C B +=,所以060B =,由余弦定理得222b a c ac =+-所以222222222221bc c a ab bc c a ab bc c a ab ab b ac bc ab a c ac ac bc ab a c bc+++++++++===+++++-+++++. 类型三:反证法证明例6.【证明】=只需证22≠,即证10≠5≠,即证2125≠,而该式显然成立,≠不成等差数列.=2125≠∵,5≠,10≠∴,即3720+≠,即2≠,∴ ≠∴【总结升华】结论中含有“不是”“不可能”“不存在”等词语的命题,此类问题的反面比较具体,适宜应用反证法. 举一反三:【变式1】求证:函数()f x =不是周期函数.【证明】假设()f x =则存在常数T (T≠0)使得对任意x ∈R ,都有成立.上式中含x=0,则有cos01=,2m =π(m ∈z 且m≠0). ①再令x=T ,则有1=,2n =π(n ∈Z 且n ≠0). ②②÷①得:32n m =, 这里,m ,n 为非零整数,故n m为有理数,而32无理数,二者不可能相等. 因此3()cos f x x =不是周期函数.【变式2】设{a n }是公比为q 的等比数列,S n 为它的前n 项和.(1)求证:数列{S n }不是等比数列.(2)数列{S n }是等差数列吗?为什么?【解析】(1)证明:假设{S n }是等比数列,则2213S S S =, 即222111(1)(1)a q a a q q +=⋅++.∵a 1≠0,∴(1+q )2=1+q +q 2.即q =0,与等比数列中公比q ≠0矛盾.故{S n }不是等比数列.(2)解:①当q =1时,S n =na 1,n ∈N*,数列{S n }是等差数列.②当q ≠1时,{S n }不是等差数列,下面用反证法证明:假设数列{S n }是等差数列,则S 1,S 2,S 3成等差数列,即2S 2=S 1+S 3,∴2a 1(1+q )=a 1+a 1(1+q +q 2).∵a 1≠0,∴2+2q =1+1+q +q 2,得q =q 2.∵q ≠1,∴q =0,这与等比数列中公比q ≠0矛盾.从而当q ≠1时,{S n }不是等差数列.综上①②可知,当q =1时,数列{S n }是等差数列;当q ≠1时,数列{S n }不是等差数列.【变式3】已知数列{a n }的前n 项的和S n 满足S n =2a n -3n (n ∈N *).(1)求证{a n +3}为等比数列,并求{a n }的通项公式;(2)数列{a n }是否存在三项使它们按原顺序可以构成等差数列?若存在,求出一组适合条件的项;若不存在,请说明理由.【解析】 (1) 证明:∵S n =2a n -3n (n ∈N *),∴a 1=S 1=2a 1-3,∴a 1=3.又由112323(1)n n n n S a n S a n ++=-⎧⎨=-+⎩得a n +1=S n +1-S n =2a n +1-2a n -3, ∴a n +1+3=2(a n +3),∴{a n +3}是首项为a 1+3=6,公比为2的等比数列.∴a n+3=6×2n-1,即a n=3(2n-1).(2)解:假设数列{a n}中存在三项a r,a s,a t (r<s<t),它们可以构成等差数列.由(1)知a r<a s<a t,则2a s=a r+a t,∴6(2s-1)=3(2r-1)+3(2t-1),即2s+1=2r+2t,∴2s+1-r=1+2t-r(*)∵r、s、t均为正整数且r<s<t,∴(*)左边为偶数而右边为奇数,∴假设不成立,即数列{a n}不存在三项使它们按原顺序可以构成等差数列.例7. 已知a,b,c∈(0,1),求证:(1―a)b,(1―b)c,(1-c)a中至少有一个小于或等于14.【证明】证法一:假设三式同时大于14,即1(1)4a b->,1(1)4b c->,1(1)4c a->,三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅->,又211 (1)24a aa a-+⎛⎫-≤=⎪⎝⎭,同理1(1)4b b-≤,1(1)4c c-≤,以上三式相乘,得1 (1)(1)(1)64a ab bc c-⋅-⋅-≤,这与1(1)(1)(1)64a ab bc c-⋅-⋅->矛盾,故结论得证.证法二:假设三式同时大于14.∵0<a<1,∴1-a>0.∴(1)11(1)242a ba b-+≥->=.同理(1)122b c-+≥,(1)122c a-+≥.三式相加,得33 22 >,∴原命题成立.【总结升华】从正面证明,需要分成多种情形进行分类讨论,而从反面进行证明,只要研究一种或很少的几种情形的问题多用反证法.比如这类带有“至少有一个”等字样的数学问题.举一反三:【变式】已知,,,0,1a b c R a b c abc ∈++==,求证:,,a b c 中至少有一个大于32. 【证明】假设,,a b c 都小于或等于32, 因为 1abc =,所以,,a b c 三者同为正或一正两负,又因为0a b c ++=,所以,,a b c 三者中有两负一正,不妨设0,0,0a b c ><<,则1,b c a bc a +=-=由均值不等式得()2b c bc -+≥,即12a a ≥, 解得33273482a ≥≥=,与假设矛盾,所以 ,,abc 中至少有一个大于32. 例8.已知:直线a 以及A ∉a .求证:经过直线a 和点A 有且只有一个平面.【证明】(1)“存在性”,在直线a 上任取两点B 、C ,如图.∵A ∉a ,B ∈a ,C ∈a ,∴A 、B 、C 三点不在同一直线上.∴过A 、B 、C 三点有且只有一个平面α∵B ∈α,C ∈α,∴a ⊂α,即过直线a 和点A 有一个平面α.(2)“唯一性”,假设过直线a 和点A 还有一个平面β.∵A ∉a ,B ∈a ,C ∈a ,∴B ∈β,C ∈β.∴过不共线的三点A 、B 、C 有两个平面α、β,这与公理矛盾.∴假设不成立,即过直线a 和点A 不可能还有另一个平面β,而只能有一个平面α.【总结升华】 这里证明“唯一性”时用了反证法.对于“唯一性”问题往往使用反证法进行证明,要注意与“同一法”的区别与联系.举一反三:【变式】求证:两条相交直线有且只有一个交点.【证明】假设结论不成立,即有两种可能:(1)若直线a 、b 无交点,那么a ∥b ,与已知矛盾;(2)若直线a 、b 不止有一个交点,则至少有两个交点A 和B ,这样同时经过点A 、B 就有两条直线,这与“经过两点有且只有一条直线”相矛盾.综上所述,两条相交直线有且只有一个交点.。
充分条件必要条件判断的三种方法充分条件和必要条件是数学推理中常用的概念。
在判断一个命题的真假时,我们常常需要确定其充分条件和必要条件。
下面将介绍三种常用的方法来判断充分条件和必要条件。
方法一:直接证明法直接证明法是最常见的证明方法之一、当我们需要判断一个命题P的充分条件和必要条件时,可以通过直接证明这两个命题的真假来进行判断。
具体来说,假设P充分条件为Q,我们需要证明当Q成立时,P也一定成立。
反之,如果需要判断P是否为Q的必要条件,我们需要证明当P成立时,Q一定成立。
方法二:逆否命题法逆否命题法是通过对命题的逆否命题进行判断,从而得出充分条件和必要条件。
逆否命题是指将一个命题的否定进行转换,然后再对转换后的命题进行否定。
具体来说,如果命题P可以表示为“如果A,则B”,那么其逆否命题为“如果非B,则非A”。
我们可以通过判断P和其逆否命题的真假来得出充分条件和必要条件。
如果P为真,那么逆否命题也一定为真;反之,如果逆否命题为假,那么P也一定为假。
方法三:充分性与必要性分析法充分性与必要性分析法是通过对命题的充分性和必要性进行分析,从而得出其充分条件和必要条件。
在分析充分条件时,我们假设P的充分条件为Q,然后分析当Q成立时,P是否一定成立。
如果P在Q成立的条件下也一定成立,那么Q即为P的充分条件。
在分析必要条件时,我们假设P的必要条件为Q,然后验证当P成立时,Q是否一定成立。
如果Q在P成立的条件下也一定成立,那么Q即为P的必要条件。
需要注意的是,充分性和必要性是相互独立的。
即仅通过充分性或必要性不能得出一个命题的真假,只有通过同时验证充分性和必要性才能判断一个命题的真假。
总结起来,判断充分条件和必要条件的三种方法包括直接证明法、逆否命题法和充分性与必要性分析法。
在实际的数学推理中,我们可以根据具体的问题选择合适的方法进行判断。
皮亚诺公理的16种经典证明方法本文将介绍皮亚诺公理的16种经典证明方法,以帮助读者更好地理解和应用这一重要的数学原理。
1. 直接证明法通过逐步推导和推理,通过数学符号和公理推导出结论,从而证明皮亚诺公理的有效性。
2. 归纳法通过证明基础情况成立,并证明当某一条件成立时,下一条件也成立,从而利用数学归纳法证明皮亚诺公理的正确性。
3. 反证法通过假设皮亚诺公理不成立,然后推导出一个矛盾的结论,从而证明其正确性。
4. 枚举法通过列举所有可能的情况,并验证每种情况是否满足皮亚诺公理的要求,从而证明其有效性。
5. 概率论方法通过使用概率论的方法,分析事件发生的可能性,并验证是否符合皮亚诺公理的条件,以证明其正确性。
6. 几何构造法通过几何图形的构造和推导,验证皮亚诺公理在几何领域的应用,从而证明其有效性。
7. 数学归纳法的扩展通过对数学归纳法的扩展,将其应用到更广泛的数学领域,证明皮亚诺公理的普适性。
8. 特例分析法通过分析特定情况下的例子,验证皮亚诺公理的适用性,并推广到一般情况,证明其正确性。
9. 单因素变量法通过改变公理中的某个变量,并观察结果的变化,验证皮亚诺公理的有效性。
10. 质疑法通过提出质疑和反例,对皮亚诺公理进行批判性思考,从而深入理解其局限性和适用范围。
11. 符号计算法通过使用计算机算法和程序,对皮亚诺公理进行符号计算和验证,从而证明其正确性。
12. 数值计算法通过进行大量的数值计算和实验,验证皮亚诺公理的正确性和稳定性。
13. 统计分析法通过收集和分析大量的统计数据,验证皮亚诺公理在实际情况中的适用性,从而证明其有效性。
14. 对比分析法通过与其他相关数学理论和公理进行对比分析,验证皮亚诺公理的独特性和重要性。
15. 实例证明法通过使用具体的实例和案例,说明皮亚诺公理在实际问题中的应用和作用,从而增加读者对其理解和认可。
16. 自然语言理解法通过对皮亚诺公理进行自然语言理解和解释,以帮助读者更好地理解其含义和应用。
直接证明与间接证明、数学归纳法[考纲传真]1.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.2.了解间接证明的一种基本方法——反证法;了解反证法的思考过程和特点.3.了解数学归纳法的原理.4.能用数学归纳法证明一些简单的数学命题.【知识通关】1.直接证明(1)综合法定义:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法.(2)分析法定义:从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止的证明方法.2.间接证明——反证法一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.3.数学归纳法一般地,证明一个与正整数n有关的命题,可按下列步骤进行:(1)归纳奠基:证明当n取第一个值n0(n0∈N*)时命题成立;(2)归纳递推:假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立.只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法.[常用结论]利用归纳假设的技巧在推证n=k+1时,可以通过凑、拆、配项等方法用上归纳假设.此时既要看准目标,又要掌握n=k与n=k+1之间的关系.在推证时,分析法、综合法、反证法等方法都可以应用.1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)用数学归纳法证明问题时,第一步是验证当n =1时结论成立.( )(2)综合法是直接证明,分析法是间接证明.( )(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( )(4)用反证法证明结论“a >b ”时,应假设“a <b ”.( )[答案](1)× (2)× (3)× (4)×2.利用数学归纳法证明“1+a +a 2+…+a n +1=1-a n +21-a(a ≠1,n ∈N *)”时,在验证n =1成立时,左边应该是( )A .1B .1+aC .1+a +a 2D .1+a +a 2+a 3C3.命题“对于任意角θ,cos 4θ-sin 4θ=cos 2θ”的证明:“cos 4θ-sin 4θ=(cos 2θ-sin 2θ)(cos 2θ+sin 2θ)=cos 2θ-sin 2θ=cos 2θ”过程应用了 ( )A .分析法B .综合法C .综合法、分析法结合使用D .间接证法B4.设a ,b ,c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .都小于2C .至少有一个不大于2D .至少有一个不小于2D5.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,由n =k 的假设到证明n =k +1时,等式左边应添加的式子是( ) A .(k +1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] B分析法的应用1.若a ,b ∈(1,+∞),证明a +b <1+ab .[证明] 要证a +b <1+ab ,只需证(a +b )2<(1+ab )2,只需证a +b -1-ab <0,即证(a -1)(1-b )<0.因为a >1,b >1,所以a -1>0,1-b <0,即(a -1)(1-b )<0成立,所以原不等式成立.2.已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c. [证明] 要证1a +b +1b +c =3a +b +c , 即证a +b +c a +b +a +b +c b +c =3,也就是c a +b +a b +c=1, 只需证c (b +c )+a (a +b )=(a +b )(b +c ),需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列,故B =60°,由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立.于是原等式成立.[方法总结] (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利解决的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.综合法的应用【例1】 设数列{a n }的前n 项和为S n ,已知3a n -2S n =2.(1)证明{a n }是等比数列并求出通项公式a n ;(2)求证:S 2n +1-S n S n +2=4×3n .[证明] (1)因为3a n -2S n =2,所以3a n +1-2S n +1=2,所以3a n +1-3a n -2(S n +1-S n )=0.因为S n +1-S n =a n +1,所以a n +1a n=3,所以{a n }是等比数列. 当n =1时,3a 1-2S 1=2,又S 1=a 1,所以a 1=2.所以{a n }是以2为首项,以3为公比的等比数列,其通项公式为a n =2×3n -1.(2)由(1)可得S n =3n -1,S n +1=3n +1-1,S n +2=3n +2-1,故S 2n +1-S n S n +2=(3n +1-1)2-(3n -1)(3n +2-1)=4×3n , 即S 2n +1-S n S n +2=4×3n .[方法总结] (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性. (2)综合法的逻辑依据是三段论式的演绎推理.证明:(1)ab +bc +ac ≤13; (2)a 2b +b 2c +c 2a ≥1.[证明] (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,得a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a ,b ,c 均为正数,a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c ,所以a 2b +b 2c +c 2a ≥1.反证法的应用【例2】设a>0,b>0,且a+b=1a+1b.证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立.[证明]由a+b=1a+1b=a+bab,a>0,b>0,得ab=1.(1)由基本不等式及ab=1,有a+b≥2ab=2,即a+b≥2.(2)假设a2+a<2与b2+b<2同时成立,则由a2+a<2及a>0,得0<a<1;同理,0<b<1,从而ab<1,这与ab=1矛盾.故a2+a<2与b2+b<2不可能同时成立.[方法总结]用反证法证明问题的步骤(1)反设:假定所要证的结论不成立,而设结论的反面成立(否定结论)(2)归谬:将“反设”作为条件,由此出发经过正确的推理,导出矛盾,矛盾可以是与已知条件、定义、公理、定理及明显的事实矛盾或自相矛盾.(推导矛盾) (3)立论:因为推理正确,所以产生矛盾的原因在于“反设”的谬误.既然原命题结论的反面不成立,从而肯定了原命题成立.(命题成立)n n(1)求证:数列{S n}不是等比数列;(2)数列{S n}是等差数列吗?为什么?[解](1)证明:假设数列{S n}是等比数列,则S22=S1S3,即a21(1+q)2=a1·a1·(1+q+q2),因为a1≠0,所以(1+q)2=1+q+q2,即q=0,这与公比q≠0矛盾,所以数列{S n}不是等比数列.(2)当q=1时,S n=na1,故{S n}是等差数列;当q≠1时,{S n}不是等差数列.假设{S n}是等差数列,则2S2=S1+S3,即2a1(1+q)=a1+a1(1+q+q2),得q=0,这与公比q≠0矛盾.综上,当q=1时,数列{S n}是等差数列;当q≠1时,数列{S n}不是等差数列.数学归纳法的应用【例3】 已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n 2,n ∈N *. (1)当n =1,2,3时,试比较f (n )与g (n )的大小关系;(2)猜想f (n )与g (n )的大小关系,并给出证明.[解] (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1);当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2); 当n =3时,f (3)=251216,g (3)=312216, 所以f (3)<g (3).(2)由(1)猜想,f (n )≤g (n ),用数学归纳法证明.①当n =1,2,3时,不等式显然成立.②假设当n =k (k >3,k ∈N *)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2, 则当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3. 因为12(k +1)2-⎣⎢⎡⎦⎥⎤12k 2-1(k +1)3 =k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0, 所以f (k +1)<32-12(k +1)2=g (k +1). 由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立. [方法总结] 1.应用数学归纳法证明不等式应注意的问题(1)当遇到与正整数n 有关的不等式证明时,应用其他办法不容易证,则可考虑应用数学归纳法.(2)用数学归纳法证明不等式的关键是由n =k 成立,推证n =k +1时也成立,证明时用上归纳假设后,可采用分析法、综合法、求差(求商)比较法、放缩法、构造函数法等证明方法.2.利用数学归纳法可以探索与正整数n 有关的未知问题、存在性问题,其基本模式是“归纳—猜想—证明”,即先由合情推理发现结论,然后经逻辑推理论证结论的正确性.n n n n +1S 3=15.(1)求a 1,a 2,a 3的值;(2)求数列{a n }的通项公式.[解] (1)由S n =2na n +1-3n 2-4n ,得S 2=4a 3-20,S 3=S 2+a 3=5a 3-20.又S 3=15,∴a 3=7,S 2=4a 3-20=8.∵S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7,∴a 2=5,a 1=S 1=2a 2-7=3.综上知a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1(n ∈N *),以下用数学归纳法证明:①当n =1时,猜想显然成立;②假设当n =k (k ∈N *,且k ≥2)时,有a k =2k +1成立,则S k =3+5+7+…+(2k +1)=3+(2k +1)2·k =k (k +2). 又S k =2ka k +1-3k 2-4k ,∴k (k +2)=2ka k +1-3k 2-4k ,解得a k +1=2k +3=2(k +1)+1,即当n =k +1时,猜想成立.由①②知,数列{a n }的通项公式为a n =2n +1(n ∈N *).。
直接证明分析法
直接证明分析法直接证明之二:分析法
综合法
利用已知条件和某些数学定义、定理、
公理等,经过一系列的推理论证,最后推导
出所要证明的结论或所要解决的问题的结果。
【探究】E为ΔABC的中线AD上任意一点
?B >?C,求证:?EBC >?ECB
目标:?EBC >?ECB
因为BD =DC , ED =ED
因为BD =DC , AD =AD
【分析法】
因为BD =DC , ED =ED
因为BD =DC , AD =AD
?B >?C
【分析法】
从结论出发,寻找结论成立的充分条件
直至最后,把要证明的结论归结为判定一
个明显成立的条件。
要证:??
只要证:??
只需证:??
??显然成立
上述各步均可逆
所以结论成立
格式
【例1】求证:当一个圆与一个正方形的周长
相等时,圆面积比正方形面积大。
归纳:
一般地,从要证明的结论出发,逐步寻求
使它成立的充分条件,直至最后,把要证
明的结论归结为判定一个明显成立的条件
(已知条件、定理、定义、公理等)。
这种证明的方法叫做分析法(执果索因法)
Q P1
P1 P2
P2 P3
得到一个明显
成立的条件
…
【作业】《同步导学》P35
7、8、9
【课本】P54 习题A组3 B组2
本篇只是预览,内容不完整,要查看全部内容请点击如下:
在线阅读下载
-01、
综合法
利用已知条件和某些数学定义、定理、
公理等,经过一系列的推理论证,最后推导出所要证明的结论或所要解决的问题的结果。
【探究】E为ΔABC的中线AD上任意一点
?B >?C,求证:?EBC >?ECB
目标:?EBC >?ECB
因为BD =DC , ED =ED
因为BD =DC , AD =AD
【分析法】
因为BD =DC , ED =ED
因为BD =DC , AD =AD
?B >?C
【分析法】
从结论出发,寻找结论成立的充分条件
直至最后,把要证明的结论归结为判定一
个明显成立的条件。
要证:
只要证:
只需证:
显然成立
上述各步均可逆
所以结论成立
格式
【例1】求证:当一个圆与一个正方形的周长相等时,圆面积比正方形面积大。
归纳:
一般地,从要证明的结论出发,逐步寻求
使它成立的充分条件,直至最后,把要证
明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)。
这种证明的方法叫做分析法(执果索因法)
QP1
P1P2
P2P3
得到一个明显
成立的条件。