苏教版八年级数学下册9.4矩形、菱形、正方形公开课优质教案(8)
- 格式:doc
- 大小:293.51 KB
- 文档页数:3
苏科版数学八年级下册9.4《矩形、菱形、正方形》说课稿1一. 教材分析《矩形、菱形、正方形》这一节内容是苏科版数学八年级下册第9章的一部分,主要介绍了矩形、菱形和正方形的性质。
这部分内容是学生学习了平行四边形的性质之后进行的进一步学习,对于学生理解和掌握平行四边形的性质,以及培养学生的空间想象能力有着重要的作用。
教材从矩形的定义和性质入手,让学生了解矩形的四个角都是直角,对边相等的特点。
接着引入菱形和正方形,通过对比让学生理解菱形和正方形的特殊性质,如菱形的对角线互相垂直,正方形的四条边相等。
最后,教材还介绍了矩形、菱形和正方形之间的相互关系,让学生能够灵活运用这些性质解决实际问题。
二. 学情分析学生在学习这一节内容之前,已经学习了平行四边形的性质,对于平行四边形的定义、性质和对角线的性质有一定的了解。
但是,学生对于矩形、菱形和正方形的性质以及它们之间的相互关系可能还比较模糊,需要通过实例和练习来进一步理解和掌握。
同时,学生在学习过程中可能存在以下问题:1. 对于矩形、菱形和正方形的性质理解不够深入,不能灵活运用;2. 对于矩形、菱形和正方形之间的相互关系理解不清晰,容易混淆;3. 在解决实际问题时,不能很好地将理论知识与实际问题相结合。
三. 说教学目标1.知识与技能目标:让学生理解矩形、菱形和正方形的性质,能够熟练运用这些性质解决实际问题。
2.过程与方法目标:通过对比、归纳的方法,让学生掌握矩形、菱形和正方形的性质,培养学生的空间想象能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,让学生体验到数学的乐趣,培养学生的团队协作能力。
四. 说教学重难点1.教学重点:矩形、菱形和正方形的性质,以及它们之间的相互关系。
2.教学难点:矩形、菱形和正方形的性质的理解和运用,以及它们之间的相互关系的理解。
五. 说教学方法与手段1.教学方法:采用对比、归纳的教学方法,让学生通过观察、思考、讨论,自主发现矩形、菱形和正方形的性质。
苏科版数学八年级下册教学设计9.4 矩形、菱形、正方形(1)一. 教材分析苏科版数学八年级下册第9.4节“矩形、菱形、正方形(1)”的内容是在学生已经掌握了平行四边形和梯形的基础上,引入矩形、菱形和正方形的性质。
这部分内容是几何学习中的重要组成部分,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
本节课的主要内容有:矩形的性质,菱形的性质,正方形的性质,以及它们之间的关系。
二. 学情分析学生在学习本节课之前,已经学习了平行四边形和梯形的性质,对于几何图形的性质有一定的了解。
但是,对于矩形、菱形和正方形的性质,他们可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索矩形、菱形和正方形的性质,从而提高他们的空间想象能力和逻辑思维能力。
三. 教学目标1.理解矩形、菱形和正方形的性质。
2.能够运用矩形、菱形和正方形的性质解决实际问题。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重难点:矩形、菱形和正方形的性质。
2.难点:如何引导学生自主探索矩形、菱形和正方形的性质。
五. 教学方法1.引导发现法:教师引导学生通过观察、操作、思考、交流等活动,自主探索矩形、菱形和正方形的性质。
2.案例分析法:教师通过具体的案例,让学生理解矩形、菱形和正方形的性质。
3.练习法:教师设计相关的练习题,让学生巩固所学的知识。
六. 教学准备1.教师准备PPT,用于展示矩形、菱形和正方形的性质。
2.教师准备相关的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过PPT展示一些生活中的矩形、菱形和正方形的图片,让学生观察并说出它们的名称。
引导学生发现这些图形之间有什么共同的特点。
2.呈现(10分钟)教师通过PPT呈现矩形、菱形和正方形的性质,引导学生观察并思考这些性质是否正确。
3.操练(15分钟)教师设计一些练习题,让学生运用矩形、菱形和正方形的性质进行解答。
质,第四个角也一定是直角.在判定四边形是矩形的条件中,给出“有3个角是直角”的条件,是因为数学结论的表述中一般不给出多余条件.(3)将两个判定条件比较,前者的条件中,除了“有3个角是直角”的条件外,只要求是“四边形”,而后者的条件却包括“平行四边形”和“两条对角线相等”两个方面. (4)矩形的判定与性质的区别.三.教学矩形判定条件的应用1. 处理课本P77例2【设计说明:(1)通过本例的解决,促进学生掌握矩形的判定条件,提高综合解题能力以及有条理地思考与有条理地表达能力.(2)教学注意点: ①要求学生认真读题,分析题目所给的信息,提高审题能力. ②引导学生探索解题途径,培养学生有条理地思考能力.③规范解答过程,培养学生有条理地表达能力.④培养学生的发散思维能力:能否利用“对角线相等的平行四边形是矩形”来判定?】2. 处理补例 在 ABCD 中,以AC 为斜边作Rt △ACE ,又∠BED=900,求证:四边形ABCD 是矩形.【设计说明:(1)通过本例的解决,提高学生思维的灵活性.(2)教学注意点:① 应让学生充分静思后交流解题思路,并说出是怎样发现的?② 通过本题中判定矩形的方法领悟:解题时,应仔细分析题目的条件并进行适当的转化,进而选择适宜的方法,避免强行使用某一种方法而误入歧途.】A BCDE问题1:拿出十根小木条(其中有四根一样长),让学生从中选取四根,能否搭成一个菱形?为什么?问题2:拿出事先准备好的平行四边形(对角线是木条,四边是橡皮筋),转动木条成直角,观察得到的四边形的形状是菱形吗?为什么?问题3:你认为,的四边形是菱形?(四边相等)的平行四边形是菱形?(对角线互相垂直)(注意:一个的基础条件是四边形,一个的基础条件是平行四边形)【设计意图:通过实际操作,获得判定四边形是菱形的初步感知,在此基础上加以推理,形成菱形的判定条件】四边形、平行四边形、菱形之间的关系如图:【设计意图:让学生更直观地理解三者之间的关系】三、例题讲解P80页例4分析:对角线AC与EF已经垂直,因此只需说明四边形AFCE是平行四边形既可,故只需说明OE=OF【设计意图:通过引导学生对已知条件的分析,强化对所学知识的掌握,培养有条理分析问题的能力和灵活应用知识的能力】补充例题如图,在⊿ABC中,CD是∠BCA的平分线,DE∥BC交AC于E,DF∥AC交BC于F,求证:四边形CFDE是菱形证:四边形AFGE是菱形。
苏科版数学八年级下册教学设计9.4 矩形、菱形、正方形(2)一. 教材分析本节课内容为苏科版数学八年级下册9.4矩形、菱形、正方形(2),是在学生已经掌握了矩形、菱形、正方形的性质和判定方法的基础上进行进一步的学习。
本节课的主要内容有:矩形、菱形、正方形的性质和判定,以及它们之间的关系。
通过本节课的学习,使学生进一步理解矩形、菱形、正方形的性质,提高学生的空间想象能力和逻辑思维能力。
二. 学情分析学生在之前的学习中已经掌握了矩形、菱形、正方形的基本性质和判定方法,但对于一些特殊的性质和判定方法可能还不够熟练。
此外,学生可能对矩形、菱形、正方形之间的关系有一定的了解,但可能还不够深入。
因此,在教学过程中,需要引导学生复习前面的知识,帮助学生进一步理解和掌握矩形、菱形、正方形的性质和判定方法,以及它们之间的关系。
三. 教学目标1.理解矩形、菱形、正方形的性质和判定方法。
2.掌握矩形、菱形、正方形之间的关系。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.矩形、菱形、正方形的性质和判定方法。
2.矩形、菱形、正方形之间的关系。
五. 教学方法采用问题驱动法和案例教学法,引导学生通过观察、思考、归纳、总结的方式来学习矩形、菱形、正方形的性质和判定方法,以及它们之间的关系。
同时,结合多媒体教学,利用图片、动画等形式,帮助学生直观地理解矩形、菱形、正方形的性质和判定方法。
六. 教学准备1.多媒体教学设备。
2.矩形、菱形、正方形的图片和动画。
3.矩形、菱形、正方形的性质和判定方法的案例。
七. 教学过程1.导入(5分钟)通过展示矩形、菱形、正方形的图片和动画,引导学生回顾矩形、菱形、正方形的性质和判定方法。
2.呈现(10分钟)呈现矩形、菱形、正方形之间的关系,引导学生观察、思考、归纳、总结。
3.操练(10分钟)学生分组讨论,根据矩形、菱形、正方形的性质和判定方法,判断一些给定的图形是矩形、菱形还是正方形。
A D BC F E 9.4 矩形、菱形、正方形(2)一、学习目标:1、理解矩形的概念,掌握矩形的性质;2、经历探索矩形的概念与性质的过程,在直观操作活动和简单的说理过程中发展学生的合情推理能力,主观探索习惯,逐步掌握说理的基本方法;并在探索过程中理解特殊与一般的关系。
二、预习反馈:1、预习课本p110-112,掌握矩形的相关性质。
2、一个活动的平行四边形木框,用两根橡皮筋分别套在相对的两个顶点上。
拉动一对不相邻的顶点A 、C ,即可改变平行四边形的形状,如图所示。
(1)无论∠α如何变化,四边形ABCD 还是平行四边形吗?(2)随着∠α的变化,两条对角线长度有没有变化?(3)当∠α为直角时,平行四边形就变成 。
3、(1)________的平行四边形叫做矩形,每一个矩形最少有______条对称轴。
(2)在对称性方面,矩形与一般平行四边形相比较,相同之处是:•二者都是_____对称图形。
不同之处是:它还是____________对称图形。
4、如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,CE∥DB,交AB•的延长线于点E .AC 和CE 相等吗?为什么?三、例题精讲:例 1:已知:如图,在△ABC 中,∠ACB =90°,D 是AB 的中点,DE 、DF 分别是△BDC 、△ADC 的角平分线.求证:四边形DECF 是矩形.例2:如图,在矩形ABCD 中,AB =3, BC = 4, BE⊥AC 于E .试求出AC 、BE 的长。
例3:如图,矩形ABCD 中,对角线AC 、BD 交于O 点,CE⊥BD 于E ,OF⊥AB 于F ,BE :DE=1:3,OF=2cm ,求AC 的长。
四、巩固训练:1、矩形的定义中有两个条件:一是 ____________,二是 _________________。
2、判断:(1)有一个角是直角的四边形是矩形。
( )(2)矩形的对角线互相平分。
教学目标:1.了解矩形、菱形和正方形的特点和性质;2.能够根据所学知识解决与矩形、菱形和正方形相关的实际问题;3.能够灵活运用所学知识解决与矩形、菱形和正方形相关的综合问题。
教学重点:1.熟练掌握矩形、菱形和正方形的特点和性质;2.能够运用相关知识解决实际问题。
教学难点:能够灵活运用所学知识解决与矩形、菱形和正方形相关的综合问题。
教学准备:教学PPT、教材、黑板、彩色粉笔、实物矩形、菱形和正方形模型等。
教学过程:一、导入(5分钟)1.师生问候;2.通过图片展示,复习矩形、菱形和正方形的特点和性质。
二、新课展示(10分钟)1.导入:让学生回顾矩形、菱形和正方形的特点和性质;2.激发学生思考:给学生出示一些图形,让他们判断属于矩形、菱形还是正方形,并解释自己的判断依据;3.板书:矩形、菱形和正方形的定义和特点;4.讲解各个图形的特点和性质,包括对角线、周长、面积等的计算公式;5.教师示范使用公式计算示例题;三、让学生动手操作(30分钟)1.教师出示一些实物矩形、菱形和正方形模型,让学生根据其特点和性质进行分类;2.学生自主完成教材课后练习,让学生独立思考并解答相应问题;3.教师巡回指导,发现问题并给予指正;四、合作探究(15分钟)1.教师组织学生分组合作完成一些矩形、菱形和正方形相关的课堂任务;2.学生分享自己的解题思路和方法,加深对知识的理解;五、拓展应用(15分钟)1.教师出示一些综合应用题,让学生运用所学知识解决;2.学生独立思考并解答问题,教师做出及时评价和反馈。
六、总结归纳(5分钟)1.引导学生总结矩形、菱形和正方形的特点和性质;2.学生进行知识点小结,教师进行梳理和补充;七、作业布置(2分钟)1.要求学生预习下一课内容;2.布置课后作业,巩固所学知识和方法。
教学反思通过本节课的教学设计,学生能够从实物体验入手,通过观察、分类等操作,加深对矩形、菱形和正方形的认识和理解。
通过合作探究和拓展应用,使学生能够灵活运用所学知识解决不同类型的问题,培养学生的问题解决能力和创新思维。
9.4矩形、菱形、正方形——矩形地性质、判定一、概念:1.定义:有一个角是直角地平行四边形叫做矩形.(矩形也叫长方形)2.矩形地性质:(1)矩形是特殊地平行四边形,它具有平行四边形地一切性质(是中心对称图形,对角线地交点是它地对称中心;对边相等、对角相等、对角线互相平分.)(2)矩形地特殊性质:①矩形是轴对称图形;②矩形地四个角都是直角,对角线相等.3.矩形地判定:(1)有一个角是直角地平行四边形叫做矩形.(定义)(2)三个角是直角地四边形是矩形.(3)对角线相等地平行四边形是矩形.(归纳:证明四边形是矩形地方法有(1)三个角是直角(2)先证明是平行四边形,再证明有一个角是直角或者对角线相等)二、例题讲解例1.如图,矩形ABCD地对角线AC、BD相交于点O,AB=4 cm,∠AOB=60°求对角线AC地长.例2.如图,矩形ABCD地两条对角线交于点O,且AC=2AB.求证:△AOB是等边三角形.例3.如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)若AB=1,∠ABE=45°,求BC地长.例4.如图,矩形ABCD中,对角线AC、BD相交于点O,点E、F、G、H分别在OA、OB、OC、OD上,且AE=BF=CG=DH.探索四边形EFGH地形状并说明理由. 例5.如图,四边形ABCD是平行四边形,CA垂直平分BE,试判断四边形EACD地形状,并说明理由.HG FEBA例6.已知如图, AB∥CD,GM、GN、HM、HN、分别平分∠AGH、∠BGH、∠CHG、∠DHG,试判断四边形GMHN地形状,并说明理由。
【9.4矩形、菱形、正方形(3)(4)——菱形地性质、判定】一、概念:1.定义:有一组邻边相等地平行四边形叫做菱形. 2.菱形地性质:(1)菱形是特殊地平行四边形,它具有平行四边形地一切性质(是中心对称图形,对角线地交点是它地对称中心;对边相等、对角相等、对角线互相平分.)(2)菱形地特殊性质:①菱形是轴对称图形;②菱形地四条边相等,对角线互相垂直.3.菱形地判定:(1)有一组邻边相等地平行四边形叫做菱形.(定义)(2)四边相等地四边形是菱形.(3)对角线互相垂直地平行四边形是菱形.(归纳:证明四边形是菱形地方法有(1)四边相等(2)先证明是平行四边形,再证明有一组邻边相等或者对角线互相垂直)二、例题讲解例1.如图,在菱形ABCD中,对角线AC、BD地长分别为a、b,AC、BD相交于点O。
菱形的判定
教学目标1.经历菱形的判定定理的发现过程。
2.掌握菱形的判定定理“四条边相等的四边形是菱形”。
3.掌握菱形的判定定理“对角线互相垂直的平行四边形是菱形”。
教学重点经历菱形的判定定理的发现过程
教学难点菱形判定定理的灵活运用
教学过程二次备课及设计思路1、情境创设:
○1我们知道,菱形的四条边相等。
反过来,四边相等的四边形是菱形吗?
○2我们知道,当平移一个平行四边形活动框架的一边,使这个平行四边形成
菱形时,它的两条对角线互相垂直。
反过来,对角线互相垂直的平行四边形
是菱形吗?
A B G D C
E
F O
F E D
C B A 2、总结结论: _____________四边形是菱形。
_______________________的平行四边形是菱形。
3、例1、如图,平行四边形ABCD 的两条对角线AC ,
BD 相交于点O ,OA=3,OB=4,AB=5,(1)AC ,BD 互相
垂直吗?为什么?
(2)四边形ABCD 是菱形吗?为什么?
4、例2、如图,在四边形ABCD 中,AD ∥BC ,对角线
AC 的垂直平分线与边AD 、BC 分别交于点E 、F ,
四边形AFCE 是菱形吗?为什么?
当堂检测: 1、判断题(对的打“∨”,错的打“×):
(1)有一组邻边相等的四边形是菱形;( ) (2)对角线互相垂直的四边形是菱形;
( )
(3)对角线互相垂直平分的四边形是菱形. ( )
2、下列条件中,能判定四边形是菱形的是( )
A 、对角线垂直
B 、两对角线相等
C 、两对线互相平分
D 、两对角线互相垂直平分
3.用直尺和圆规做一个菱形,并说明你作图的道理。
4.已知:如图,点E 、F 、G 、H 分别是矩形 ABCD 四条边的中点,边形EFGH 是菱形吗?为什么?
课堂小结:通过这节课你学到了什么?你还有什么疑惑?你喜欢这样的课吗?
课堂作业:
课外检测:
1、在菱形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,且E 、F 分别是BC 、CD•的中点,•那么∠EAF 等于( ).
A .75°
B .55°
C .45°
D .60°
2、如果菱形的高是5cm ,•相邻两个内角的度数之比为1:5,•那么它的边长为_____cm 。
3、菱形较短的对角线长为4,两邻角的比为1:2,则菱形的面积为_______,另一条对角线的长为_______。
5、如图,△ABC 中,∠A=90°, ∠B 的平分线交AC 于D ,AH 、DF 都垂直于BC ,H 、F 为垂足,
求证:四边形AEFD 为菱形。
A
B C D
E
F H
6、如上右图,在矩形ABCD 中,对角线AC 的垂直平分线与A D ,BC 分别交于点E ,F 。
试说明:四边形AFCE 是菱形。
板书设计
教后反思。