向量的线性运算知识点
- 格式:doc
- 大小:1.29 MB
- 文档页数:10
向量的线性运算向量的加法和数乘向量的线性运算:向量的加法和数乘向量是数学中一个重要的概念,它在许多领域中都有广泛的应用。
在线性代数中,向量的线性运算是一项基础且重要的内容。
本文将重点介绍向量的加法和数乘两种线性运算,以及它们的性质和应用。
一、向量的加法向量的加法是指将两个向量相应位置上的元素进行相加得到一个新的向量。
设有两个向量:向量A = (a₁, a₂, ..., aₙ)和向量B = (b₁,b₂, ..., bₙ),则它们的加法可表示为:A +B = (a₁ + b₁, a₂ + b₂, ..., aₙ + bₙ)其中,a₁ + b₁表示A和B的第一个元素相加,a₂ + b₂表示A和B的第二个元素相加,以此类推。
需要注意的是,参与加法运算的两个向量必须有相同的维度,即拥有相同数量的元素。
向量的加法具有以下性质:1. 交换律:对于任意两个向量A和B,有A + B = B + A。
即向量的加法满足交换律,顺序可以交换而不影响结果。
2. 结合律:对于任意三个向量A、B和C,有(A + B) + C = A + (B +C)。
即向量的加法满足结合律,可以按照任意顺序进行多次加法运算。
3. 零向量:对于任意向量A,存在一个全零向量0,使得A + 0 = A。
即任何向量与零向量进行加法运算,结果仍为原向量本身。
向量的加法有着广泛的应用,例如在力学中,将多个力的作用效果用向量的加法表示;在几何学中,将多个向量的位移用向量的加法表示等等。
二、向量的数乘向量的数乘是指将一个实数乘以一个向量的每个元素得到一个新的向量。
设有一个向量A = (a₁, a₂, ..., aₙ),实数k,则它们的数乘可表示为:kA = (ka₁, ka₂, ..., kaₙ)即向量A的每个元素都乘以k得到新的元素。
这里的实数k称为标量,而向量A称为向量kA的标量倍。
需要注意的是,标量与向量进行数乘时,不改变向量的维度。
向量的数乘具有以下性质:1. 结合律:对于任意实数k₁和k₂以及向量A,有(k₁k₂)A =k₁(k₂A)。
向量的线性运算向量是线性代数中的重要概念,线性运算是对向量进行数学操作的方法。
本文将介绍向量的线性运算包括加法、减法、数乘,以及向量的线性组合。
一、向量的加法向量的加法是指将两个向量相加得到一个新的向量,符号为“+”。
设有向量A和向量B,记作A+B=C,其中C是向量A和向量B的和向量。
向量的加法满足以下几个性质:1. 交换律:A+B=B+A2. 结合律:(A+B)+C=A+(B+C)3. 零向量:对于任意向量A,有A+0=A,其中0是零向量,即所有分量都为0的向量。
二、向量的减法向量的减法是指将一个向量减去另一个向量得到一个新的向量,符号为“-”。
设有向量A和向量B,记作A-B=C,其中C是向量A和向量B的差向量。
向量的减法可以转化为向量的加法,即A-B=A+(-B),其中-表示取反操作。
三、向量的数乘向量的数乘是指将一个向量乘以一个实数得到一个新的向量。
设有向量A和实数k,记作kA=B,其中B是向量A的数乘结果。
向量的数乘满足以下性质:1. 分配律:k(A+B)=kA+kB2. 结合律:(kl)A=k(lA),其中k和l为实数四、向量的线性组合向量的线性组合是指将若干个向量按照一定的权重进行相加得到一个新的向量。
设有向量A1、A2、...、An和实数k1、k2、...、kn,向量的线性组合记作k1A1+k2A2+...+knAn。
向量的线性组合可以看作是向量的加法和数乘运算的组合。
向量的线性运算在向量空间中有着重要的应用。
通过向量的线性组合,我们可以表示出向量空间中的各种线性关系,诸如线性相关性、线性无关性、生成子空间等概念。
在实际问题中,向量的线性运算也有广泛的应用。
例如,物理学中常用向量的线性组合来表示力、速度、加速度等物理量;经济学中则常用向量的线性组合来表示商品的组合、市场的供求关系等。
综上所述,向量的线性运算包括加法、减法、数乘和线性组合。
通过这些运算,我们可以对向量进行各种数学操作,方便地进行向量的运算和分析,也为解决实际问题提供了有力的工具。
向量的线性运算向量是数学中一种非常常用的概念,可以用来表示物理空间内的一个方向或一个方向上的一个量。
在一个n维空间中,一个向量可以用n维的数组表示,如:[x1,x2,...,xn]。
两个向量可以使用线性运算进行组合,形成一个新的向量,这些线性运算包括加法、乘法,以及一些更复杂的运算。
首先来说向量的加法。
两个n维的向量可以按照分量逐个相加,形成一个新的n维向量。
若u=[u1,u2,...,un]和v=[v1,v2,...,vn],则u+v=[u1+v1,u2+v2,...,un+vn]。
例如,若u=[1,2,3],v=[4,5,6],则u+v=[5,7,9]。
其次是乘法。
向量的乘法可以分为内积、外积以及点乘。
内积表示两个向量的方向一致的乘积,也称为内积。
向量的内积记为uv,它是两个向量的对应分量的乘积之和,即:uv=u1v1+u2v2+...+unvn。
例如,若u=[1,2,3],v=[4,5,6],则uv=1×4+2×5+3×6=32。
外积表示两个向量的方向不一致的乘积,也称为外积。
外积记作u×v,它是一个新的n维向量,它的n个分量分别由u×v=<u1v2-u2v1,u1v3-u3v2,...,un-1vn-u2v1>所确定,例如,若u=[1,2,3],v=[4,5,6],则u×v=[2×6-3×5,-1×6+3×4,-2×5+1×4],即u×v=[-3,6,-3]。
最后是点乘。
点乘是一种乘法,表示的是两个向量的垂直投影的积。
点乘记作uv,其求解公式为uv=|u||v|cosθ。
其中|u|表示向量u的模,|v|表示向量v的模,而θ表示向量u和v的夹角。
例如,若u=[1,2,3],v=[4,5,6],则uv=|u||v|cosθ=√14×√77cos10°=45.58。
向量的线性运算与坐标表示向量是线性代数中一个基本的概念,它在各个学科领域都有广泛的应用。
本文将重点讨论向量的线性运算以及如何用坐标表示向量。
一、向量的定义与表示在二维和三维空间中,向量通常用箭头表示,箭头的起点表示向量的起点,箭头的方向和长度表示向量的方向和大小。
如图所示:[插入示意图:箭头向量的表示]向量有两种表示方法:行向量和列向量。
行向量按照元素排列在一行中,用方括号括起来;列向量按照元素排列在一列中,用方括号括起来。
例如,行向量[a, b, c]和列向量[a; b; c]表示同一个向量。
二、向量的线性运算向量的线性运算主要包括加法和数乘。
1. 向量的加法向量的加法遵循“平行四边形法则”,即将两个向量的起点放在一起,然后将它们的箭头连接起来,箭头的指向为新向量的方向,连接起点和终点,得到新向量的结果。
如图所示:[插入示意图:向量加法示意图]向量加法的坐标表示为,设向量a的坐标为[a1, a2, a3],向量b的坐标为[b1, b2, b3],则向量a和向量b的和的坐标为[a1+b1, a2+b2,a3+b3]。
2. 向量的数乘向量的数乘是将向量的每个元素与一个实数相乘,得到一个新的向量。
数乘后的向量与原向量的方向相同(当数乘的实数为正数时)或相反(当数乘的实数为负数时),而长度与原向量的长度之比为数乘的实数绝对值。
向量的数乘的坐标表示为,设向量a的坐标为[a1, a2, a3],实数k,则向量a的数乘结果的坐标为[k*a1, k*a2, k*a3]。
三、向量的坐标表示向量可以用坐标进行表示,坐标是指向量在坐标系中的位置。
在二维平面中,通常以x轴和y轴为基础建立直角坐标系;而在三维空间中,通常以x轴、y轴和z轴为基础建立直角坐标系。
在直角坐标系中,向量的坐标表示为(a1, a2, a3),其中a1、a2、a3分别表示向量在x轴、y轴和z轴上的投影长度。
例如,向量a在直角坐标系中的坐标表示为(a1, a2, a3)。
平面向量的概念及线性运算讲义一、知识梳理1.向量的有关概念名称 定义备注向量 既有大小,又有方向的量;向量的大小叫做向量的长度(或称模) 平面向量是自由向量零向量 长度为0的向量;其方向是任意的 记作0单位向量 长度等于1个单位长度的向量 非零向量a 的单位向量为±a|a |平行向量(共线向量) 方向相同或相反的非零向量 0与任一向量平行或共线 相等向量 长度相等且方向相同的向量 两向量只有相等或不等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(3)交换律:a +b =b +a ;(4)结合律:(a +b )+c =a +(b +c )减法求a 与b 的相反向量-b 的和的运算a -b =a +(-b )数乘求实数λ与向量a 的积的运算(6)|λa |=|λ||a |;(7)当λ>0时,λa 与a 的方向相同;当λ<0时,λa 与a 的方向相反;当λ=0时,λa =0(8)λ(μa )=(λμ)a ; (9)(λ+μ)a =λa +μa ; (10)λ(a +b )=λa +λb3.向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .注意:1.一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2—————→+A 2A 3—————→+A 3A 4—————→+…+A n -1A n —————————→=A 1A n —————→,特别地,一个封闭图形,首尾连接而成的向量和为零向量. 2.若P 为线段AB 的中点,O 为平面内任一点,则OP →=12(OA →+OB →).3.OA →=λOB →+μOC →(λ,μ为实数),若点A ,B ,C 共线,则λ+μ=1.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.( ) (2)|a |与|b |是否相等与a ,b 的方向无关.( ) (3)若a ∥b ,b ∥c ,则a ∥c .( )(4)若向量AB →与向量CD →是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (5)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) (6)若两个向量共线,则其方向必定相同或相反.( ) 题组二:教材改编2.已知▱ABCD 的对角线AC 和BD 相交于点O ,且OA →=a ,OB →=b ,则DC →=______,BC →=________.(用a ,b 表示)3.在平行四边形ABCD 中,若|AB →+AD →|=|AB →-AD →|,则四边形ABCD 的形状为________. 题组三:易错自纠4.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件5.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=____________.6.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2的值为________.三、典型例题题型一:平面向量的概念 1.给出下列四个命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A .②③ B .①② C .③④D .②④2.设a 0为单位向量,①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.上述命题中,假命题的个数是( ) A .0B .1C .2D .3思维升华:向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任何向量共线. 题型二:平面向量的线性运算 命题点1:向量的线性运算典例 (1)在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,则AD →等于( ) A.23b +13c B.53c -23b C.23b -13c D.13b +23c (2)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A.29AB →+89AC →B.29AB →-89AC →C.29AB →+79AC → D.29AB →-79AC → 命题点2:根据向量线性运算求参数典例 (1)在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. (2)在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是 思维升华:平面向量线性运算问题的常见类型及解题策略(1)向量加法或减法的几何意义.向量加法和减法均适合三角形法则.(2)求已知向量的和.一般共起点的向量求和用平行四边形法则;求差用三角形法则;求首尾相连向量的和用三角形法则.(3)求参数问题可以通过研究向量间的关系,通过向量的运算将向量表示出来,进行比较,求参数的值. 跟踪训练 (1)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 上的一个靠近点B 的三等分点,那么EF →等于( )A.12AB →-13AD →B.14AB →+12AD →C.13AB →+12DA →D.12AB →-23AD → (2)如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.题型三:共线向量定理的应用 典例 设两个非零向量a 与b 不共线.(1)若AB →=a +b ,BC →=2a +8b ,CD →=3(a -b ),求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 共线.引申探究 若将本例(1)中“BC →=2a +8b ”改为“BC →=a +m b ”,则m 为何值时,A ,B ,D 三点共线? 思维升华:(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系.当两向量共线且有公共点时,才能得出三点共线.(2)向量a ,b 共线是指存在不全为零的实数λ1,λ2,使λ1a +λ2b =0成立,若λ1a +λ2b =0,当且仅当λ1=λ2=0时成立,则向量a ,b 不共线.跟踪训练 (1)已知向量AB →=a +3b ,BC →=5a +3b ,CD →=-3a +3b ,则( ) A .A ,B ,C 三点共线 B .A ,B ,D 三点共线 C .A ,C ,D 三点共线D .B ,C ,D 三点共线(2)已知A ,B ,C 是直线l 上不同的三个点,点O 不在直线l 上,则使等式x 2OA →+xOB →+BC →=0成立的实数x 的取值集合为( ) A .{0} B .∅ C .{-1}D .{0,-1}四、反馈练习1.以下命题:①|a |与|b |是否相等与a ,b 的方向无关;②两个具有公共终点的向量,一定是共线向量;③两个向量不能比较大小,但它们的模能比较大小;④单位向量都是共线向量.其中,正确命题的个数是( ) A .0 B .1 C .2 D .3 2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A .a 与λa 的方向相反B .a 与λ2a 的方向相同C .|-λa |≥|a |D .|-λa |≥|λ|·a3.在四边形ABCD 中,设AD →=a ,BC →=b ,那么AC →+BD →等于( ) A .a -b B .a +b C .b -aD .不能确定4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( ) A .A ,B ,C B .A ,B ,D C .B ,C ,DD .A ,C ,D5.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AB →=mAM →,AC →=nAN →,则m +n 的值为( )A .1B .2C .3D .46.设a ,b 不共线,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A ,B ,D 三点共线,则实数p 的值为( ) A .-2 B .-1 C .1 D .2答案 B7.已知两个非零向量a ,b 满足|a +b |=|a -b |,则下列结论正确的是________.(填序号) ①a ∥b ;②a ⊥b ;③|a |=|b |;④a +b =a -b .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a-b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.9.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.10.在直角梯形ABCD 中,A =90°,B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →,则μ的取值范围是________.11.已知P ,Q 为△ABC 中不同的两点,且3P A →+2PB →+PC →=0,QA →+QB →+QC →=0,则S △P AB ∶S △QAB 为________.12.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,试用a ,b 表示向量AO →.13.已知△ABC 和点M 满足MA →+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________. 14.已知点D 为△ABC 所在平面上一点,且满足AD →=15AB →-45CA →,若△ACD 的面积为1,则△ABD 的面积为________.15.设G 为△ABC 的重心,且sin A ·GA →+sin B ·GB →+sin C ·GC →=0,则角B 的大小为______.。
第一章向量代数一、向量及其线性运算1.向量及其表示(1)向量:有大小和方向的量。
(2)表示:AB ,A 为向量的起点,B 为向量的重点。
(3)向量的模:||AB 。
(4)向径(半径向量/定位向量):称为P 的向径,简记为P 。
(5)单位向量:模为1,记为|a |aa o =。
(6)零向量:模为0,任意方向,与任何向量共线。
(7)自由向量:可自由平行移动。
(8)相等(相反):大小相等,方向相同(相反)。
(9)共线(平行):平行移动到同一始点,在一条直线上;共面。
(10)共面:平行移动到同一始点,在一个平面上。
2.向量的加法和减法(1)加法:①三角/多边形法则(定义1.1):首尾相连,第一个向量起点到最后一个向量终点;②平行四边形法则(定义1.2):首首相连,平行四边形过起点的对角线;③三角/多边形不等式:|a 1+a 2+…+a n |≤|a 1|+|a 2|+…+|a n |。
(2)减法:三角形法则(定义1.3):首首相连,OA OB AB -=。
3.向量的数乘(1)定义1.4:实数λ与向量a 的乘积是一个向量,记为λa。
|λa|=|λ||a|,方向取决于λ。
4.运算律(图形法证明)①交换律:a ±b =b ±a②结合律:(a ±b )±c =a ±(b ±c );λ(μa )=(λμ)a③分配律:(λ+μ)a =λa +μa ;λ(a +b )=λa +λb5.共线及共面向量的判定(1)定理1.1:向量b 与非零向量a 共线⟺∃λ∈R ,使b=λa ;推论1.1:两个向量a ,b 共线⟺∃λ,μ∈R ,且λ,μ不同时为0,使λa +μb =0。
(2)定理1.2:若a ,b 不共线,向量c 与a ,b 共面⟺∃λ,μ∈R ,使c =λa +μb ;推论1.2:三个向量a ,b ,c 共面⟺∃λ,μ,φ∈R ,使λa +μb+φc =0。
向量的线性运算与向量积的性质向量是数学中的重要概念之一,它有着广泛的应用。
在向量的运算中,线性运算和向量积是两个重要的概念和操作。
本文将介绍向量的线性运算和向量积的性质,以及它们在实际问题中的应用。
一、向量的线性运算向量的线性运算指的是对两个或多个向量进行加法运算和数量乘法运算。
具体来说,设有两个向量a和b,它们的线性运算可以表示为:1. 向量的加法运算:a + b = c,其中c是一个新的向量。
向量的加法运算满足交换律和结合律,即a + b = b + a和(a + b) + c = a + (b + c)。
2. 数量乘法运算:k * a = d,其中k是一个标量(实数),d是一个新的向量。
数量乘法运算满足结合律和分配律,即k * (a + b) = k * a +k * b和(k1 + k2) * a = k1 * a + k2 * a。
二、向量积的性质向量积是向量运算中的另一种常见形式,也称为向量的叉乘。
对于两个三维向量a和b,它们的向量积可以表示为:a ×b = c,其中c是一个新的向量。
向量积有以下几个重要的性质:1. a × b垂直于a和b,即与它们的夹角为90°。
这个性质在计算中起到了重要的作用,尤其在求解平面和体积问题时很有用。
2. |a × b|表示a和b所张成的平行四边形的面积。
这是向量积的一个重要应用,可以通过计算向量积的模长得到平行四边形的面积。
3. a ×b = -b ×a,即向量积的结果与顺序有关,反向的结果也成立。
4. a × (b + c) = a × b + a × c,即向量积对加法运算满足分配律。
需要注意的是,向量积只适用于三维向量,对于二维向量没有定义。
三、应用举例1. 平面几何:向量积的面积性质使其在平面几何中具有重要应用。
例如,可以通过计算两个向量的向量积的模长来求得三角形的面积。
向量的线性运算在数学的广袤领域中,向量是一个极其重要的概念,而向量的线性运算则是理解和处理向量问题的基础工具。
咱们先来说说啥是向量。
想象一下,在一个平面或者空间中,有一个既有大小又有方向的量,这就是向量。
比如说,你朝着某个方向走了一段距离,你的行走轨迹就可以用向量来描述。
向量通常用箭头来表示,箭头的长度表示向量的大小,箭头的指向就是向量的方向。
那向量的线性运算都包括啥呢?主要有加法、减法和数乘这三种。
先讲讲向量的加法。
假设咱们有两个向量 A 和 B,要把它们相加,就可以把向量 B 的起点移动到向量 A 的终点上,然后从向量 A 的起点指向向量 B 的终点所得到的新向量,就是 A + B 。
这就好比你先朝一个方向走一段路,然后再朝另一个方向走一段路,最终你的位置变化就可以用这两段路程组成的向量相加来表示。
向量的减法呢,其实就是加法的一种特殊情况。
比如 A B ,就相当于 A +(B) ,也就是先把向量 B 取反,变成 B ,然后再和向量 A 相加。
再来说说数乘。
给一个向量乘以一个实数,就叫做数乘。
比如有个向量 A ,乘以一个实数 k ,得到的新向量 kA ,它的大小就是原来向量 A 的大小乘以|k| ,方向呢,如果 k 是正数,就和 A 同向,如果 k 是负数,就和 A 反向。
向量的线性运算有很多实用的性质。
比如说,加法满足交换律,也就是 A + B = B + A ;还满足结合律,(A + B) + C = A +(B +C) 。
这些性质让我们在处理向量运算的时候更加方便。
那向量的线性运算在实际生活中有啥用呢?比如说在物理学中,力就是一个向量。
当多个力同时作用在一个物体上时,我们就可以通过向量的线性运算来求出它们的合力,从而分析物体的运动状态。
在工程设计中,比如建筑结构的受力分析,也需要用到向量的线性运算。
在计算机图形学中,向量的线性运算更是无处不在。
比如说,要移动一个图形或者对其进行缩放、旋转等操作,都离不开向量的线性运算。
专题一 平面向量的线性运算1.向量的线性运算首尾相接 指向终点起点重合 指向对顶点起点重合 指向被减向量2.多边形法则一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量,即A 1A 2→+A 2A 3→+A 3A 4→+…+A n -1A n =A 1A n →,特别地,一个封闭图形,首尾连接而成的向量和为零向量.3.平面向量基本定理定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,存在唯一的一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1,e 2叫作表示这一平面内所有向量的一组基底,记为{e 1,e 2}.4.“爪”子定理形式1:在△ABC 中,D 是BC 上的点,如果|BD |=m ,|DC |=n ,则AD →=m m +n AC →+n m +n AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式2:在△ABC 中,D 是BC 上的点,且BD →=λBC →,则AD →=λAC →+(1-λ)AB →,其中AD →,AB →,AC →知二可求一.特别地,若D 为线段BC 的中点,则AD →=12(AC →+AB →).形式1与形式2中AC →与AB →的系数的记忆可总结为:对面的女孩看过来(歌名,原唱任贤齐) 考点一 向量的线性运算C 形式1C形式2【方法总结】利用平面向量的线性运算把一个向量表示为两个基向量的一般方法向量AD →=f (AB →,AC →)的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量AD →用AB →,AC →的表示.(2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到AD →=f (AB →,AC →)与AD →=g (AB →,AC →)的方程组,再进行求解.【例题选讲】[例1](1)(2015·全国Ⅰ)设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC →C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →答案 A 解析 AD →=AC →+CD →=AC →+13BC →=AC →+13(AC →-AB →)=43AC →-13AB →=-13AB →+43AC →,故选A .(2) (2014·全国Ⅰ)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB →+FC →=( ) A .AD → B .12AD → C .BC →D .12BC →答案 A 解析 EB →+FC →=12(AB →+CB →)+12(AC →+BC →)=12(AB →+AC →)=AD →,故选A .(3) (2018·全国Ⅰ)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB →=( ) A .34AB →-14AC → B .14AB →-34AC → C .34AB →+14AC → D .14AB →+34AC →答案 A 解析 ∵E 是AD 的中点,∴EA →=-12AD →,∴EB →=EA →+AB →=-12AD →+AB →,又知D 是BC 的中点,∴AD →=12(AB →+AC →),因此EB →=-14(AB →+AC →)+AB →=34AB →-14AC →.(4)如图,在△ABC 中,点D 在BC 边上,且CD =2DB ,点E 在AD 边上,且AD =3AE ,则用向量AB →,AC →表示CE →为( )A .29AB →+89AC → B .29AB →-89AC → C .29AB →+79AC →D .29AB →-79AC →答案 B 解析 由平面向量的三角形法则及向量共线的性质可得CE →=AE →-AC →=13AD →-AC →=13(AB →+13BC →)-AC →=13⎣⎡⎦⎤AB →+13(AC →-AB →)-AC →=29AB →-89AC →. (5)如图所示,下列结论正确的是( )①PQ →=32a +32b ;②PT →=32a -b ;③PS →=32a -12b ;④PR →=32a +b .A .①②B .③④C .①③D .②④答案 C 解析 ①根据向量的加法法则,得PQ →=32a +32b ,故①正确;②根据向量的减法法则,得PT→=32a -32b ,故②错误;③PS →=PQ →+QS →=32a +32b -2b =32a -12b ,故③正确;④PR →=PQ →+QR →=32a +32b -b =32a +12b ,故④错误,故选C . (6)如图所示,在△ABO 中,OC →=14OA →,OD →=12OB →,AD 与BC 相交于M ,设OA →=a ,OB →=b .则用a和b 表示向量OM →=___________.答案 OM =17a +37b 解析 设OM =m a +n b ,则AM =OM -OA =m a +n b -a =(m -1)a +n b .AD =OD -OA =12OB -OA =-a +12b .又∵A 、M 、D 三点共线,∴AM 与AD 共线.∴存在实数t ,使得AM =t AD ,即(m -1)a +n b =t ⎝⎛⎭⎫-a +12b .∴(m -1)a +n b =-t a +12t b .∴⎩⎪⎨⎪⎧m -1=-t ,n =t 2,消去t得,m -1=-2n ,即m +2n =1.①.又∵CM =OM -OC =m a +n b -14a =⎝⎛⎭⎫m -14a +n b ,CB =OB -OC =b -14a =-14a +b .又∵C 、M 、B 三点共线,∴CM 与CB 共线.∴存在实数t 1,使得CM =t 1CB ,∴⎝⎛⎭⎫m -14a +n b =t 1⎝⎛⎭⎫-14a +b ,∴⎩⎪⎨⎪⎧m -14=-14t 1,n =t 1.消去t 1得,4m +n =1,②.由①②得m =17,n =37,∴OM =17a +37b . 另解 因为A ,M ,D 三点共线,所以OM →=λ1OD →+(1-λ1)OA →=12λ1b +(1-λ1)a ,①,因为C ,M ,B三点共线,所以OM →=λ2OB →+(1-λ2)OC →=λ2b +(1-λ24)a ,②,由①②可得⎩⎨⎧12λ1=λ2,1-λ1=1-λ24,解得⎩⎨⎧λ1=67,λ2=37.故OM →=17a +37b .(7)在平行四边形ABCD 中,AC 与BD 相交于点O ,点E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →=( )A .14a +12bB .23a +13bC .12a +14bD .13a +23b答案 B 解析 如图,根据题意,得AB →=12AC →+12DB →=12(a -b ),AD →=12AC →+12BD →=12(a +b ).令AF →=tAE →,则AF →=t (AB →+BE →)=t ⎝⎛⎭⎫AB →+34 BE → =t 2a +t 4b .由AF →=AD →+DF →,令DF →=sDC →,又AD →=12(a +b ),DF →=s2a -s 2b ,所以AF →=s +12a +1-s2b ,所以⎩⎨⎧t 2=s +12,t 4=1-s2,解方程组得⎩⎨⎧s =13,t =43,把s 代入即可得到AF →=23a +13b ,故选B .另解 如图,AF →=AD →+DF →,由题意知,DE ∶BE =1∶3=DF ∶AB ,故DF →=13AB →,则AF →=12a +12b +13 (12a -12b )=23a +13b .(8)在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,D E 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b答案 B 解析 如图,过点F 作BC 的平行线交DE 于G ,则G 是DE 的中点,且GF →=12EC →=14BC →,∴GF →=14AD →,易知△AHD ∽△FHG ,从而HF →=14AH →,∴AH →=45AF →,AF →=AD →+DF →=b +12a ,∴AH →=45⎝⎛⎭⎫b +12a =25a +45b ,故选B .(9)如图,在直角梯形ABCD 中,AB =2AD =2DC ,E 为BC 边上一点,BC →=3EC →,F 为AE 的中点,则BF →=( )A .23AB →-13AD → B .13AB →-23AD →C .-23AB →+13AD → D .-13AB →+23AD →答案 C 解析 BF →=BA →+AF →=BA →+12AE →=-AB →+12(AD →+12AB →+CE →)=-AB →+12(AD →+12AB →+13CB →)=-AB →+12AD →+14AB →+16(CD →+DA →+AB →)=-23AB →+13AD →.(10)如图,已知AB 是圆O 的直径,点C ,D 是半圆弧的两个三等分点,AB =a ,AC =b ,则AD 等于( )A .a -12bB .12a -bC .a +12bD .12a +b答案 D 解析 连接CD ,由点C ,D 是半圆弧的三等分点,得CD ∥AB 且CD →=12AB →=12a ,所以AD →=AC →+CD →=b +12a .【对点训练】1.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →等于( ) A .2OA →-OB → B .-OA →+2OB →C .23OA →-13OB →D .-13OA →+23OB →1.答案 A 解析 由2AC →+CB →=0得2OC →-2OA →+OB →-OC →=0,故OC →=2OA →-OB →. 2.如图,在△ABC 中,点D 是BC 边上靠近B 的三等分点,则AD →等于( )A .23AB →-13AC → B .13AB →+23AC → C .23AB →+13AC →D .13AB →-23AC →2.答案 C 解析 由平面向量的三角形法则,得AD →=AB →+BD →.又因为点D 是BC 边上靠近B 的三等分 点,所以AD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.3.在△ABC 中,AB →=c ,AC →=b ,若点D 满足BD →=2DC →,若将b 与c 作为基底,则AD →等于( ) A .23b +13c B .35c -23b C .23b -13c D .13b +23c3.答案 A 解析 ∵BD →=2DC →,∴AD →-AB →=2(AC →-AD →),∴AD →-c =2(b -AD →),∴AD →=13c +23b .4.如图所示,在△ABC 中,若BC →=3DC →,则AD →=( )A .23AB →+13AC → B .23AB →-13AC → C .13AB →+23AC →D .13AB →-23AC →4.答案 C 解析 AD →=CD →-CA →=13CB →-CA →=13(AB →-AC →)+AC →=13AB →+23AC →.故选C .5.设D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,则DA →+2EB →+3FC →=( ) A .12AD → B .32AD → C .12AC → D .32AC →5.答案 D 解析 因为D ,E ,F 分别为△ABC 三边BC ,CA ,AB 的中点,所以DA →+2EB →+3FC →=12(BA →+CA →)+2×12(AB →+CB →)+3×12×(AC →+BC →)=12BA →+AB →+CB →+32BC →+32AC →+12CA →=12AB →+12BC →+AC →=12AC →+AC →=32AC →.6.已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则EM →=( ) A .12AC →+13AB → B .12AC →+16AB → C .16AC →+12AB → D .16AC →+32AB →6.答案 C 解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →.7.在△ABC 中,P ,Q 分别是边AB ,BC 上的点,且AP =13AB ,BQ =13BC .若AB →=a ,AC →=b ,则PQ →=( )A .13a +13bB .-13a +13bC .13a -13bD .-13a -13b7.答案 A 解析 PQ →=PB →+BQ →=23AB →+13BC →=23AB →+13(AC →-AB →)=13AB →+13AC →=13a +13b ,故选A .8.已知D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC →=a ,CA →=b ,给出下列命题:①AD →=12a -b ;②BE →=a +12b ;③CF →=-12a +12b ;④AD →+BE →+CF →=0.其中正确命题的序号为________.8.答案 ②③④ 解析 BC →=a ,CA →=b ,AD →=12CB →+AC →=-12a -b ,BE →=BC →+12CA →=a +12b ,CF →=12(CB →+CA →)=12(-a +b )=-12a +12b ,所以AD →+BE →+CF →=-b -12a +a +12b +12b -12a =0.所以正确命题的序号为②③④.9.(多选)在△ABC 中,D ,E ,F 分别是边BC ,CA ,AB 的中点,AD ,BE ,CF 交于点G ,则( ) A .EF →=12CA →-12BC → B .BE →=-12BA →+12BC → C .AD →+BE →=FC → D .GA →+GB →+GC →=09.答案 CD 解析 如图,因为点D ,E ,F 分别是边BC ,CA ,AB 的中点,所以EF →=12CB →=-12BC →,故A 不正确;BE →=BC →+CE →=BC →+12CA →=BC →+12(CB →+BA →)=BC →-12BC →-12AB →=-12AB →+12BC →,故B 不正确;FC →=AC →-AF →=AD →+DC →+F A →=AD →+12BC →+F A →=AD →+FE →+F A →=AD →+FB →+BE →+F A →=AD →+BE →,故C正确;由题意知,点G 为△ABC 的重心,所以AG →+BG →+CG →=23AD →+23BE →+23CF →=23×12(AB →+AC →)+23×12(BA→+BC →)+23×12(CB →+CA →)=0,即GA →+GB →+GC →=0,故D 正确.故选CD .10.如图所示,在△ABC 中,D ,F 分别是AB ,AC 的中点,BF 与CD 交于点O ,设AB →=a ,AC →=b ,则用a ,b 表示向量AO →为____________.10.答案 AO →=13(a +b ) 解析 由D ,O ,C 三点共线,可设DO →=k 1DC →=k 1(AC →-AD →)=k 1⎝⎛⎭⎫b -12a =-12k 1a +k 1b (k 1为实数),同理,可设BO →=k 2BF →=k 2(AF →-AB →)=k 2⎝⎛⎭⎫12b -a =-k 2a +12k 2b (k 2为实数),①,又BO →=BD →+DO →=-12a +⎝⎛⎭⎫-12k 1a +k 1b =-12(1+k 1)a +k 1b ,②,所以由①②,得-k 2a +12k 2b =-12(1+k 1)a BCA EF G+k 1b ,即12(1+k 1-2k 2)a +⎝⎛⎭⎫12k 2-k 1b =0.又a ,b 不共线,所以⎩⎨⎧12(1+k 1-2k 2)=0,12k 2-k 1=0,解得⎩⎨⎧k 1=13,k 2=23.所以BO →=-23a +13b .所以AO →=AB →+BO →=a +⎝⎛⎭⎫-23a +13b =13(a +b ). 另解 因为B ,O ,F 三点共线,所以AO →=λ1AB →+(1-λ1)AF →=λ1a +12(1-λ1)b ,①,因为D ,O ,C 三点共线,所以AO →=λ2AC →+(1-λ2)AD →=λ2b +12(1-λ2)a ,②,由①②可得⎩⎨⎧12(1-λ1)=λ2,λ1=1-λ22,解得⎩⎨⎧λ1=13,λ2=13.故AO →=13(a +b ).11.如图,正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF 等于( )A .12AB -13AD B .14AB +12ADC .13AB +12DAD .12AB -23AD11.答案 D 解析 在△CEF 中,有EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D .12.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE →=( )A .12b -aB .12a -bC .-12a +bD .12b +a12.答案 C 解析 BE →=BA →+AD →+12DC →=-a +b +12a =b -12a ,故选C .13.在平行四边形ABCD 中,AB =a ,AD =b ,AN =3NC ,M 为BC 的中点,则MN =____________.(用a ,b 表示)13.答案 -14a +14b 解析 由AN →=3NC →得,AN →=34AC →=34(a +b ),AM →=a +12b ,所以MN →=AN →-AM →=34(a+b )-⎝⎛⎭⎫a +12b =-14a +14b . 14.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=_________.(用e 1,e 2表示)14.答案 -23e 1+512e 2 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.15.在平行四边形ABCD 中,E ,F 分别是BC ,CD 的中点,DE 交AF 于H ,记AB →,BC →分别为a ,b ,则AH →=( )A .25a -45bB .25a +45bC .-25a +45bD .-25a -45b15.答案 B 解析 设AH →=λAF →,DH →=μDE →.而DH →=DA →+AH →=-b +λAF →=-b +λ⎝⎛⎭⎫b +12a ,DH →=μDE →= μ⎝⎛⎭⎫a -12b .因此,μ⎝⎛⎭⎫a -12b =-b +λ⎝⎛⎭⎫b +12a .由于a ,b 不共线,因此由平面向量的基本定理,得⎩⎨⎧μ=12λ,-12μ=-1+λ.解之得λ=45,μ=25.故AH →=λAF →=λ⎝⎛⎭⎫b +12a =25a +45b .16.在梯形ABCD 中,AB →=3DC →,则BC →=( )A .-23AB →+AD → B .-23AB →+43AD →C .-13AB →+23AD → D .-23AB →-AD →16.答案 A 解析 因为在梯形ABCD 中,AB →=3DC →,所以BC →=BA →+AD →+DC →=-AB →+AD →+13AB →=-23AB →+AD →,故选A .考点二 根据向量线性运算求参数 【方法总结】利用平面向量的线性运算求参数的一般方法向量方程AD →=xAB →+yAC →中x ,y 的确定方法(1)在几何图形中通过三点共线即可考虑使用“爪”子定理完成向量的表示,进而确定x ,y . (2)若所给图形比较特殊(正方形、矩形、直角梯形、等边三角形、等腰三角形或直角三角形等),则可通过建系将向量坐标化,从而得到关于x ,y 的方程组,再进行求解.(3)若题目中某些向量的数量积已知,则对于向量方程AD →=xAB →+yAC →,可考虑两边对同一向量作数量积运算,从而得到关于于x ,y 的方程组,再进行求解.(4)对于求x +y 的值的有关问题可考虑平面向量的等和线定理法,见《平面向量特训之满分必杀篇》第一讲平面向量的等和线.【例题选讲】[例1](1)如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案 A 解析 由题意知OP →=OB →+BP →,又BP →=2P A →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13. (2)(2013·江苏)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC→(λ1,λ2为实数),则λ1+λ2的值为________.答案 12 解析 由题意,得DE →=DB →+BE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,则λ1=-16,λ2=23,即λ1+λ2=12.(3)如图,在△ABC 中,点D 在线段BC 上,且满足BD =12DC ,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N ,若AM →=mAB →,AN →=nAC →,则( )A .m +n 是定值,定值为2B .2m +n 是定值,定值为3C .1m +1n 是定值,定值为2D .2m +1n是定值,定值为3答案 D 解析 法一:如图,过点C 作CE 平行于MN 交AB 于点E .由AN →=nAC →可得AC AN =1n ,所以AE EM =AC CN =1n -1,由BD =12DC 可得BM ME =12,所以AM AB =n n +n -12=2n 3n -1,因为AM →=mAB →,所以m =2n 3n -1,整理可得2m +1n=3.故选D .法二:因为M ,D ,N 三点共线,所以AD →=λAM →+(1-λ)·AN →.又AM →=mAB →,AN →=nAC →,所以AD →=λmAB →+(1-λ)·nAC →.又BD →=12DC →,所以AD →-AB →=12AC →-12AD →,所以AD →=13AC →+23AB →.比较系数知λm =23,(1-λ)n=13,所以2m +1n=3,故选D . (4)如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .89B .49C .83D .43答案 A 解析 AP →=AB →+BP →=AB →+13BD →=AB →+13(AD →-AB →)=23AB →+13×23AC →=23AB →+29AC →.因为AP →=λAB →+μAC →,所以λ=23,μ=29,则λ+μ=23+29=89.(5)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD →=λAB →+μAC →(λ,μ∈R ),则λμ=( )A .233B .33C .3D .23答案 A 解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m ≠0).AD →=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m ,所以λμ=233.(6)如图,在△ABC 中,设AB →=a ,AC →=b ,AP 的中点为Q ,BQ 的中点为R ,CR 的中点为P ,若AP →=m a +nb ,则m +n =________.答案 67 解析 根据已知条件得,BQ →=AQ →-AB →=12AP →-AB →=12(m a +n b )-a =⎝⎛⎭⎫m 2-1a +n 2b ,CR →=BR →-BC →=12BQ →-AC →+AB →=12⎣⎡⎦⎤⎝⎛⎭⎫m 2-1a +n 2b -b +a =⎝⎛⎭⎫m 4+12a +⎝⎛⎭⎫n 4-1b ,∴QP →=m 2a +n 2b ,RQ →=⎝⎛⎭⎫m 4-12a +n 4b ,RP →=-⎝⎛⎭⎫m 8+14a +⎝⎛⎭⎫12-n 8b .∵RQ →+QP →=RP →,∴⎝⎛⎭⎫3m 4-12a +3n 4b =⎝⎛⎭⎫-m 8-14a +⎝⎛⎭⎫12-n 8b ,∴⎩⎨⎧3m 4-12=-m 8-14,3n 4=12-n 8,解得⎩⎨⎧m =27,n =47,故m +n =67.(7)如图所示,点P 在矩形ABCD 内,且满足∠DAP =30°,若|AD →|=1,|AB →|=3,AP →=mAD →+nAB →(m ,n ∈R ),则mn等于( )A .13B .3C .33D .3答案 B 解析 如图,过点P 作P E ⊥AB 于点E ,作PF ⊥AD 于点F ,则结合图形及题设得AP →=AF →+AE →=mAD →+nAB →,所以可得|AF →|=m ,|PF →|=|AE →|=3n .又∠DAP =30°,在Rt △APF 中,t a n ∠F AP =t a n 30°=|PF →||AF →|=33,则33=3n m ,化简得m n =3.故选B .优解:如图所示,假设点P 在矩形的对角线BD 上,由题意易知|DB →|=2,∠ADB =60°,又∠DAP =30°,所以∠DP A =90°.由|AD →|=1,可得|DP →|=12=14|DB →|,从而可得AP →=AD →+DP →=AD →+14DB →=AD →+14(AB →-AD →)=34AD →+14AB →.又AP →=mAD →+n AB →,所以m =34,n =14,则m n=3.故选B .(8)在平行四边形ABCD 中,点E 和F 分别是边CD 和BC 的中点.若AC →=λAE →+μAF →,其中λ,μ∈R ,则λ+μ=__________.答案 43 解析 选择AB →,AD →作为平面向量的一组基底,则AC →=AB →+AD →,AE →=12AB →+AD →,AF →=AB →+12AD →,又AC →=λAE →+μAF →=⎝⎛⎭⎫12λ+μAB →+⎝⎛⎭⎫λ+12μAD →,于是得⎩⎨⎧12λ+μ=1,λ+12μ=1,即⎩⎨⎧λ=23,μ=23,故λ+μ=43.(9)如图,在直角梯形ABCD 中,DC →=14AB →,BE →=2EC →,且AE →=rAB →+sAD →,则2r +3s =( )A .1B .2C .3D .4答案 C 解析 根据图形,由题意可得AE →=AB →+BE →=AB →+23BC →=AB →+23(BA →+AD →+DC →)=13AB →+23(AD →+DC →)=13AB →+23⎝⎛⎭⎫AD →+14AB →=12AB →+23AD →.因为AE →=rAB →+sAD →,所以r =12,s =23,则2r +3s =1+2=3,故选C .优解:如图,建立平面直角坐标系xAy ,依题意可设点B (4m ,0),D (3m ,3h ),E(4m ,2h ),其中m >0,h >0.由AE →=rAB →+sAD →,得(4m ,2h )=r (4m ,0)+s (3m ,3h ),∴⎩⎪⎨⎪⎧4m =4mr +3ms 2h =3hs ,解得⎩⎨⎧r =12,s =23.∴2r +3s =3.(10) (2017·江苏)如图,在同一个平面内,向量OA →,OB →,OC →的模分别为1,1,2,OA →与OC →的夹角为α,且tan α=7,OB →与OC →的夹角为45°.若OC →=mOA →+nOB →(m ,n ∈R ),则m +n =__________.答案 3 解析 以O 为坐标原点,OA 所在直线为x 轴建立平面直角坐标系,则A (1,0),由tan α=7,α∈⎝⎛⎭⎫0,π2,得sin α=752,cos α=152,设C (x C ,y C ),B (x B ,y B ),则x C =|OC →|cos α=2×152=15,y C =|OC →|sin α=2×752=75,即C ⎝⎛⎭⎫15,75.又cos(α+45°)=152×12-752×12=-35,sin(α+45°)=45,则x B=|OB →|cos(α+45°)=-35,y B =|OB →|sin(α+45°)=45,即B ⎝⎛⎭⎫-35,45,由OC →=mOA →+nOB →,可得⎩⎨⎧15=m -35n ,75=45n ,解得⎩⎨⎧m =54,n =74,所以m +n =54+74=3.【对点训练】1.在△ABC 中,已知D 是AB 边上一点,若AD →=2DB →,CD →=13CA →+λCB →,则λ=________.1.答案 23 解析 由图知CD →=CA →+AD →,①.CD →=CB →+BD →,②.且AD →+2BD →=0.①+②×2得:3CD →=CA →+2CB →,∴CD →=13CA →+23CB →,∴λ=23.2.如图所示,在△ABC 中,D 为BC 边上的一点,且BD =2DC ,若AC →=mAB →+nAD →(m ,n ∈R ),则m -n =________.2.答案 -2 解析 由于BD =2DC ,则BC →=-3CD →,其中BC →=AC →-AB →,CD →=AD →-AC →,那么BC →=- 3CD →可转化为AC →-AB →=-3(AD →-AC →),可以得到-2AC →=-3AD →+AB →,即AC →=-12AB →+32AD →,则m =-12,n =32,那么m -n =-12-32=-2. 3.已知△ABC 中,点D 在BC 边上,且CD →=2DB →,CD →=rAB →+sAC →,则r +s 的值是( ) A .23 B .43C .-3D .03.答案 D 解析 ∵DB →=AB →-AD →,∴CD →=AB →-DB →-AC →=AB →-12CD →-AC →,∴32CD →=AB →-AC →,∴CD →=23AB →-23AC →.又CD →=rAB →+sAC →,∴r =23,s =-23,∴r +s =0,故选D . 4.在锐角△ABC 中,CM →=3MB →,AM →=xAB →+yAC →(x ,y ∈R ),则x y=________.4.答案 3 解析 由题设可得AM →=CM →-CA →=34CB →+AC →=34(AB →-A C →)+AC →=34AB →+14AC →,则x =34,y=14.故xy=3.5.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =________,y =______. 5.答案 12 -16 解析 MN →=MC →+CN →=13AC →+12CB →=13AC →+12(AB →-AC →)=12AB →-16AC →=xAB →+yAC →,∴x=12,y =-16.6.如图所示,在△ABC 中,点O 是BC 的中点.过点O 的直线分别交直线AB 、AC 于不同的两点M 、N , 若AB →=mAM →,AC →=nAN →,则m +n 的值为________.6.答案 2 解析 ∵O 是BC 的中点,∴AO →=12(AB →+AC →).又∵AB →=mAM →,AC →=nAN →,∴AO →=m 2AM →+n2AN →.∵M ,O ,N 三点共线,∴m 2+n 2=1.则m +n =2.7.已知点G 是△ABC 的重心,过G 作一条直线与AB ,AC 两边分别交于M ,N 两点,且AM →=xAB →,AN →=yAC →,则xy x +y的值为( )A .12B .13C .2D .37.答案 B 解析 由已知得M ,G ,N 三点共线,∴AG →=λAM →+(1-λ)AN →=λxAB →+(1-λ)yAC →.∵ 点G 是△ABC 的重心,∴AG →=23×12(AB →+AC →)=13·(AB →+AC →),∴⎩⎨⎧λx =13,(1-λ)y =13,即⎩⎨⎧λ=13x,1-λ=13y,得13x+13y =1,即1x +1y =3,通分变形得,x +y xy =3,∴xy x +y =13. 8.如图所示,AD 是△ABC 的中线,O 是AD 的中点,若CO →=λAB →+μAC →,其中λ,μ∈R ,则λ+μ的值为 ( )A .-12B .12C .-14D .148.答案 A 解析 由题意知,CO →=12(CD →+CA →)=12×⎝⎛⎭⎫12CB →+CA →=14(AB →-AC →)+12CA →=14AB →-34AC →,则λ= 14,μ=-34,故λ+μ=-12. 9.如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.9.答案311 解析 设BP →=kBN →,k ∈R .因为AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →) =(1-k )AB →+k 4AC →,且AP →=mAB →+211AC →,所以1-k =m ,k 4=211,解得k =811,m =311.10.在△ABC 中,AN →=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB →+25AC →,则实数m 的值为( )A .-4B .-1C .1D .410.答案 B 解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB →+n (25AC →-AB →)=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎪⎨⎪⎧n =2,m =-1. 11.在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN →=λAB →+μAC →,则λ+μ的值为( )A .12B .13C .14D .111.答案 A 解析 设BM →=tBC →,则AN →=12AM →=12(AB →+BM →)=12AB →+12BM →=12AB →+t 2BC →=12AB →+t 2(AC →-AB →)=⎝⎛⎭⎫12-t 2AB →+t 2AC →,∴λ=12-t 2,μ=t 2,∴λ+μ=12,故选A . 12.在△ABC 中,AB =2,BC =3,∠ABC =60°,AD 为BC 边上的高,O 为AD 的中点,若AO →=λAB →+μBC →,则λ+μ等于( )A .1B .12C .13D .2312.答案 D 解析 ∵AD →=AB →+BD →=AB →+13BC →,∴2AO →=AB →+13BC →,即AO →=12AB →+16BC →.故λ+μ=12+16=23.13.在△ABC 中,D 为三角形所在平面内一点,且AD →=13AB →+12AC →.延长AD 交BC 于E ,若AE →=λAB →+μAC →,则λ-μ的值是________.13.答案 -15 解析 设AE →=xAD →,∵AD →=13AB →+12AC →,∴AE →=x 3AB →+x 2AC →.由于E ,B ,C 三点共线,∴x 3+x 2=1,x =65.根据平面向量基本定理,得λ=x 3,μ=x 2.因此λ-μ=x 3-x 2=-x 6=-15. 14.如图,正方形ABCD 中,E 为DC 的中点,若AE →=λAB →+μAC →,则λ+μ的值为( )A .12B .-12C .1D .-114.答案 A 解析 由题意得AE →=AD →+12AB →=BC →+AB →-12AB →=AC →-12AB →,∴λ=-12,μ=1,∴λ+μ=12,故选A .15.如图所示,正方形ABCD 中,M 是BC 的中点,若AC →=λAM →+μBD →,则λ+μ=( )A .43B .53C .158D .215.答案 B 解析 因为AC →=λAM →+μBD →=λ(AB →+BM →)+μ(BA →+AD →)=λ (AB →+12AD →)+μ(-AB →+AD →)=(λ-μ) AB →+⎝⎛⎭⎫12λ+μAD →,且AC →=AB →+AD →,所以⎩⎪⎨⎪⎧λ-μ=1,12λ+μ=1,得⎩⎨⎧λ=43,μ=13,所以λ+μ=53,故选B .16.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若DE →=λAB →+μAD →(λ,μ为实数),则λ2+μ2等于( )A .58B .14C .1D .51616.答案 A 解析 DE →=12DA →+12DO →=12DA →+14DB →=12DA →+14(DA →+AB →)=14AB →-34AD →,所以λ=14,μ=-34,故λ2+μ2=58,故选A .17.如图,直线EF 与平行四边形ABCD 的两边AB ,AD 分别交于E ,F 两点,且与对角线AC 交于点K ,其中,AE →=25AB →,AF →=12AD →,AK →=λAC →,则λ的值为______.17.答案 29 解析 ∵AE →=25AB →,AF →=12AD →,∴AB →=52AE →,AD →=2AF →.由向量加法的平行四边形法则可知,AC →=AB →+AD →,∴AK →=λAC →=λ(AB →+AD →)=λ(52AE →+2AF →)=52λAE →+2λAF →,∵E ,F ,K 三点共线,∴52λ+2λ=1,∴λ=29. 18.如图,在平行四边形ABCD 中,AC ,BD 相交于点O ,E 为线段AO 的中点.若BE →=λBA →+μBD →(λ,μ∈R ),则λ+μ等于( )A .1B .34C .23D .1218.答案 B 解析 ∵E 为线段AO 的中点,∴BE →=12BA →+12BO →=12BA →+12×12BD →=12BA →+14BD →=λBA →+μBD →,∴λ+μ=12+14=34.19.一直线l 与平行四边形ABCD 中的两边AB ,AD 分别交于点E ,F ,且交其对角线AC 于点M ,若AB →=2AE →,AD →=3AF →,AM →=λAB →-μAC →(λ,μ∈R ),则52μ-λ=( )A .-12B .1C .32D .-319.答案 A 解析 AM →=λAB →-μAC →=λAB →-μ(AB →+AD →)=(λ-μ)AB →-μAD →=2(λ-μ)AE →-3μAF →.因为E ,M ,F 三点共线,所以2(λ-μ)+(-3μ)=1,即2λ-5μ=1,∴52μ-λ=-12.20.如图,在平行四边形ABCD 中,E ,F 分别为边AB ,BC 的中点,连接CE ,DF ,交于点G .若CG →=λCD →+μCB →(λ,μ∈R ),则λμ=________.20.答案 12解析 由题意可设CG →=xCE →(0<x <1),则CG →=x (CB →+BE →)=x ⎝⎛⎭⎫CB →+12CD →=x 2CD →+xCB →.因为 CG →=λCD →+μCB →,CD →与CB →不共线,所以λ=x 2,μ=x ,所以λμ=12.21.如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA →=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A .65B .85C .2D .8321.答案 B 解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD =2,所以C (2,0),A (0,2),B (1,2),E (0,1),∴CA →=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得⎩⎨⎧λ=65,μ=25,则λ+μ=85.22.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ的值为( )A .14B .15C .45D .5422.答案 C 解析 法一:连接AC (图略),由AB →=λAM →+μAN →,得AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2AC →=0,得⎝⎛⎭⎫μ2-1AB →+λ2AD →+⎣⎡⎭⎫λ2+μ2 [AD →+12AB →]=0,得⎝⎛⎭⎫14λ+34μ-1AB →+⎝⎛⎭⎫λ+μ2AD →=0.又AB →,AD →不共线,所以由平面向量基本定理得⎩⎨⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎨⎧λ=-45,μ=85.所以λ+μ=45.法二:因为AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,所以AB →=85AN →-45AM →,所以λ+μ=45.法三:根据题意作出图形如图所示,连接MN 并延长,交AB 的延长线于点T ,由已知易得AB =45AT ,所以45AT →=AB →=λAM →+μAN →,因为T ,M ,N 三点共线,所以λ+μ=45.23.已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn的值为( )A .2B .52C .3D .423.答案 C 解析 ∵OA →·OB →=0,∴OA →⊥OB →,以OA →所在直线为x 轴,OB →所在直线为y 轴建立平面直角 坐标系(图略),OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m=3n ,即mn=3,故选C .考点三 根据向量线性运算求参数的取值范围(最值) 【方法总结】向量线性运算求参数的取值范围(最值)问题的2种求解方法(1)几何法:即临界位置法,结合图形,确定临界位置的动态分析求出范围.(2)代数法:即目标函数法,将参数表示为某一个变量或两个变量的函数,建立函数关系式,再利用三角函数有界性、二次函数或基本不等式求最值或范围.【例题选讲】[例1](1)已知在△ABC 中,点D 满足2BD →+CD →=0,过点D 的直线l 与直线AB ,AC 分别交于点M ,N ,AM →=λAB →,AN →=μAC →.若λ>0,μ>0,则λ+μ的最小值为________.答案3+223 解析 连接AD .因为2BD →+CD →=0,所以BD →=13BC →,AD →=AB →+BD →=AB →+13BC →=AB →+13(AC →-AB →)=23AB →+13AC →.因为D ,M ,N 三点共线,所以存在x ∈R ,使AD →=xAM →+(1-x )AN →,则AD →=xλAB →+(1-x )μAC →,所以xλAB →+(1-x )μAC →=23AB →+13AC →,所以xλ=23,(1-x )μ=13,所以x =23λ,1-x =13μ,所以23λ+13μ=1,所以λ+μ=13(λ+μ)⎝⎛⎭⎫2λ+1μ=13⎝⎛⎭⎫3+2μλ+λμ≥3+223,当且仅当λ=2μ时等号成立,所以λ+μ的最小值为3+223.(2)如图,圆O 是边长为23的等边三角形ABC 的内切圆,其与BC 边相切于点D ,点M 为圆上任意一点,BM →=xBA →+yBD →(x ,y ∈R ),则2x +y 的最大值为( )A .2B .3C .2D .22答案 C 解析 方法一 如图,连接DA ,以D 点为原点,BC 所在直线为x 轴,DA 所在直线为y 轴,建立如图所示的平面直角坐标系.设内切圆的半径为r ,则圆心为坐标(0,r ),根据三角形面积公式,得12×l △ABC ×r =12×AB ×AC ×sin 60°(l △ABC 为△ABC 的周长),解得r =1.易得B (-3,0),C (3,0),A (0,3),D (0,0),设M (cos θ,1+sin θ),θ∈[0,2π),则BM →=(cos θ+3,1+sin θ),BA→=(3,3),BD →=(3,0),故BM →=(cos θ+3,1+sin θ)=(3x +3y ,3x ),故⎩⎨⎧cos θ=3x +3y -3,sin θ=3x -1,则⎩⎨⎧x =1+sin θ3,y =3cos θ3-sin θ3+23,所以2x +y =3cos θ3+sin θ3+43=23sin ⎝⎛⎭⎫θ+π3+43≤2.当θ=π6时等号成立.故2x +y 的最大值为2.方法二 因为BM →=xBA →+yBD →,所以|BM →|2=3(4x 2+2xy +y 2)=3[(2x +y )2-2xy ].由题意知,x ≥0,y ≥0,|BM →|的最大值为(23)2-(3)2=3,又(2x +y )24≥2xy ,即-(2x +y )24≤-2xy ,所以3×34(2x +y )2≤9,得2x +y ≤2,当且仅当2x =y =1时取等号.(3) (2017·全国Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP →=λAB →+μAD →,则λ+μ的最大值为( )A .3B .22C .5D .2答案 A 解析 建立如图所示的直角坐标系,则C 点坐标为(2,1).设BD 与圆C 切于点E ,连接CE ,则CE ⊥BD .因为CD =1,BC =2,所以BD =12+22=5,EC =BC ·CD BD =25=255,所以P 点的轨迹方程为(x -2)2+(y -1)2=45.设P (x 0,y 0),则⎩⎨⎧x 0=2+255cos θ,y 0=1+255sin θ(θ为参数),而AP →=(x 0,y 0),AB →=(0,1),AD →=(2,0).因为AP →=λAB →+μAD →=λ(0,1)+μ(2,0)=(2μ,λ),所以μ=12x 0=1+55cos θ,λ=y 0=1+255sin θ.两式相加,得λ+μ=1+255sin θ+1+55cos θ=2+sin(θ+φ)≤3⎝⎛⎭⎫其中sin φ=55,cos φ=255,当且仅当θ=π2+2k π-φ,k ∈Z 时,λ+μ取得最大值3.故选A .(4)如图,在扇形OAB 中,∠AOB =π3,C 为弧AB 上的一个动点,若OC →=xOA →+yOB →,则x +3y 的取值范围是________.答案 [1,3] 解析 设扇形的半径为1,以OB 所在直线为x 轴,O 为坐标原点建立平面直角坐标系(图略),则B (1,0),A ⎝⎛⎭⎫12,32,C (cos θ,sin θ)⎝⎛⎭⎫其中∠BOC =θ,0≤θ≤π3.则OC →=(cos θ,sin θ)=x ⎝⎛⎭⎫12,32+y (1,0),即⎩⎨⎧x2+y =cos θ,32x =sin θ,解得x =23sin θ3,y =cos θ-3sin θ3,故x +3y =23sin θ3+3cos θ-3sin θ=3cos θ-33sin θ,0≤θ≤π3.令g (θ)=3cos θ-33sin θ,易知g (θ)=3cos θ-33sin θ在⎣⎡⎦⎤0,π3上单调递减,故当θ=0时,g (θ)取得最大值为3,当θ=π3时,g (θ)取得最小值为1,故x +3y 的取值范围为[1,3].【对点训练】1.在△ABC 中,点D 在线段BC 的延长线上,且BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),若AO →=xAB →+(1-x )AC →,则x 的取值范围是( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫0,13C .⎝⎛⎭⎫-12,0D .⎝⎛⎭⎫-13,0 1.答案 D 解析 设CO →=yBC →,∵AO →=AC →+CO →=AC →+yBC →=AC →+y (AC →-AB →)=-yAB →+(1+y )AC →.∵BC →=3CD →,点O 在线段CD 上(与点C ,D 不重合),∴y ∈⎝⎛⎭⎫0,13,∵AO →=xAB →+(1-x )AC →,∴x =-y ,∴x ∈⎝⎛⎭⎫-13,0. 2.在△ABC 中,点D 满足BD →=DC →,当点E 在线段AD 上移动时,若AE →=λAB →+μAC →,则t =(λ-1)2+μ2的最小值是________.2.答案 12 解析 因为BD →=DC →,所以AD →=12AB →+12AC →.又AE →=λAB →+μAC →,点E 在线段AD 上移动,所以AE →∥AD →,则12λ=12μ,即λ=μ⎝⎛⎭⎫0≤λ≤12.所以t =(λ-1)2+λ2=2λ2-2λ+1=2⎝⎛⎭⎫λ-122+12.当λ=12时,t 的最小值是12.3.如图所示,在△ABC 中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M ,N , 若AB →=mAM →,AC →=nAN →,则mn 的最大值为__________.3.答案 解析 因为点O 是BC 的中点,所以AO →=12(AB →+AC →).又因为AB →=mAM →,AC →=nAN →,所以AO →=m 2AM →+n 2AN →.又因为M ,O ,N 三点共线,所以m 2+n2=1,即m +n =2,所以mn ≤⎝⎛⎭⎫m 2+n 22=1,当且仅当m =n =1时,等号成立,故mn 的最大值为14.在锐角三角形ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,点O 为△ABC 的外接圆的圆心,A =π3,且AO →=λAB →+μAC →,则λμ的最大值为________.4.答案 19 解析 ∵△ABC 是锐角三角形,∴O 在△ABC 的内部,∴0<λ<1,0<μ<1.由AO →=λ(OB →-OA →)+μ(OC →-OA →),得(1-λ-μ)AO →=λOB →+μOC →,两边平方后得,(1-λ-μ)2AO →2=(λOB →+μOC →)2=λ2OB →2+μ2OC →2+2λμOB →·OC →,∵A =π3,∴∠BOC =2π3,又|AO →|=|BO →|=|CO →|.∴(1-λ-μ)2=λ2+μ2-λμ,∴1+3λμ=2(λ+μ),∵0<λ<1,0<μ<1,∴1+3λμ≥4λμ,设λμ=t ,∴3t 2-4t +1≥0,解得t ≥1(舍)或t ≤13,即λμ≤13⇒λμ≤19,∴λμ的最大值是19.5.在矩形ABCD 中,AB =5,BC =3,P 为矩形内一点,且AP =52,若AP →=λAB →+μAD →(λ,μ∈R ),则 5λ+3μ的最大值为______. 5.答案102解析 建立如图所示的平面直角坐标系,设P (x ,y ),B (5,0),C (5,3),D (0,3).∵ AP =52,∴x 2+y 2=54.点P 满足的约束条件为⎩⎪⎨⎪⎧0≤x ≤5,0≤y ≤3,x 2+y 2=54,∵AP →=λAB →+μAD →(λ,μ∈R ),∴(x ,y )=λ(5,0)+μ(0,3),∴⎩⎨⎧x =5λ,y =3μ,∴x +y =5λ+3μ.∵x +y ≤2(x 2+y 2)=2×54=102,当且仅当x =y 时取等号,∴5λ+3μ的最大值为102.6.平行四边形ABCD 中,AB =3,AD =2,∠BAD =120°,P 是平行四边形ABCD 内一点,且AP =1,若 AP →=xAB →+yAD →,则3x +2y 的最大值为________.6.答案 2 解析 |AP →|2=(xAB →+yAD →)2=9x 2+4y 2+2xy ×3×2×⎝⎛⎭⎫-12=(3x +2y )2-3(3x )·(2y )≥(3x +2y )2-34 (3x +2y )2=14(3x +2y )2.又|AP →|2=1,因此14(3x +2y )2≤1,故3x +2y ≤2,当且仅当3x =2y ,即x =13,y =12时,3x +2y 取得最大值2.7.在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23,BC =2,点E 在线段CD 上,若AE →=AD →+μAB →, 则μ的取值范围是________.7.答案 ⎣⎡⎦⎤0,12 解析 由题意可求得AD =1,CD =3,所以AB →=2DC →.∵点E 在线段CD 上,∴DE →= λDC → (0≤λ≤1).∵AE →=AD →+DE →,又AE →=AD →+μAB →=AD →+2μDC →=AD →+2μλDE →,∴2μλ=1,即μ=λ2.∵0≤λ≤1,∴0≤μ≤12,即μ的取值范围是⎣⎡⎦⎤0,12. 8.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA →+nOB →,则m +n 的取值范围是________.8.答案 (-1,0) 解析 由题意得,OC →=kOD →(k <0),又|k |=|OC →||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA →+nOB →=kλOA →+k (1-λ)OB →,∴m =kλ,n =k (1-λ),∴m +n =k ,从而m +n ∈(-1,0).9.给定两个长度为1的平面向量OA →和OB →,它们的夹角为90°,如图所示,点C 在以O 为圆心的圆弧AB ︵上 运动,若OC →=xOA →+yOB →,其中x ,y ∈R ,则x +y 的最大值是( )A .1B .2C .3D .29.答案 B 解析 因为点C 在以O 为圆心的圆弧AB ︵上,所以|OC →|2=|xOA →+yOB →|2=x 2+y 2+2xyOA →·OB →= x 2+y 2,∴x 2+y 2=1,则2xy ≤x 2+y 2=1.又(x +y )2=x 2+y 2+2xy ≤2,故x +y 的最大值为2. 10.给定两个长度为1的平面向量OA 和OB ,它们的夹角为2π3.如图所示,点C 在以O 为圆心的圆弧AB 上运动.若OC =x OA +y OB ,其中x ,y ∈R ,则x +y 的最大值为________..10.答案 2 解析 以O 为坐标原点,OA →所在的直线为x 轴建立平面直角坐标系,如图所示,则A (1,0),B (-12,32),设∠AOC =α(α∈[0,2π3]),则C (cos α,sin α),由OC →=xOA →+yOB →,得1cos 2sin x y y αα⎧=-⎪⎪⎨⎪=⎪⎩,所以x =cos α+33sin α,y =233sin α,所以x +y =cos α+3sin α=2sin(α+π6),又α∈[0,2π3], 所以当α=π3时,x +y 取得最大值2.。
向量线性运算知识点总结一、向量的定义在数学中,向量通常用箭头符号表示,比如$\vec{a}$或者$\overrightarrow{AB}$。
向量是有方向和大小的量,通常用于表示空间中的位移、速度等。
在n维空间中,一个向量可以表示为一个具有n个有序实数的n维坐标组$(x_1, x_2, \cdots, x_n)$,而在实际应用中,可以用行向量或列向量来表示。
在数学中,向量可以用于表示空间几何中的位移、速度、力等,同时也可以用于表示抽象意义上的量,比如代数中的多项式、矩阵等。
在计算机科学中,向量也被广泛应用于向量空间的表示,比如在机器学习中的特征向量等。
二、向量的线性运算向量的线性运算包括两种基本运算:向量的加法和数乘运算。
1. 向量的加法设有两个n维向量$\vec{a}=(a_1,a_2,\cdots,a_n)$和$\vec{b}=(b_1,b_2,\cdots,b_n)$,则它们的和是一个n维向量,记作$\vec{a}+\vec{b}=(a_1+b_1,a_2+b_2,\cdots,a_n+b_n)$。
向量的加法满足以下性质:- 交换律:$\vec{a}+\vec{b}=\vec{b}+\vec{a}$- 结合律:$(\vec{a}+\vec{b})+\vec{c}=\vec{a}+(\vec{b}+\vec{c})$- 零向量:对于任意向量$\vec{a}$,都有$\vec{a}+\vec{0}=\vec{a}$,其中$\vec{0}$表示零向量- 相反向量:对于任意向量$\vec{a}$,都有$\vec{a}+(-\vec{a})=\vec{0}$,其中$-\vec{a}$表示向量$\vec{a}$的相反向量2. 数乘运算设有一个n维向量$\vec{a}=(a_1,a_2,\cdots,a_n)$和一个实数$k$,则它们的数乘运算结果是一个n维向量,记作$k\vec{a}=(ka_1,ka_2,\cdots,ka_n)$。
基本内容 平面向量的分解知识精要1. 向量的线性运算向量加法、减法、实数与向量相乘以及它们的混合运算叫做向量的线性运算。
2. 一般来说,如果a 、b 是两个不平行的向量,c 是平面内的一个向量,那么 c 可以用a 、b 表示,并且通常将其表达式整理成b y a xc +=的形式,其中x 、y 是实数。
3. 向量的合成与分解如果a 、b 是两个不平行的向量,b n a m c +=(m ,n 是实数),那么向量c 就是a m 与b n 的合成;也可以说向量c 分解为a m 、b n 两个向量,这时向量a m 、与b n 是向量c分别在a 、b 方向上的分向量,a m +b n 是向量c 关于a 、b 的分解式。
4. 平面上任意一个向量都可以在给定的两个不平行向量的方向上进行分解。
精解名题例1. 如图,平行四边形ABCD 是以向量AB =a 、AD =b 为边的平行四边形,AC,BD 相交于点O ,又DM =31DO ,ON =31OC 。
试用a 、b 表示AM ,AN 和MN 。
解:∵DB =AB -AD =61a -61b ∴AM =AD +DM =61a +65b ∵AC =a +b ∴AN =32AC =32a +32b ∴MN =AN -AM =21a -61b 例2. 如图,已知两个不平行的向量a 、b 如下,求作:3a +2b ,a -2b解:在平面内任取一点O ,做b OB a OA ==,,再做b OD a OC 23==,,以OC ,OD 为邻边,作平行四边形OCED ,则b a OE 23+=,作向量b a DA DA 2-=,则。
例3. 设M 、N 、P 是△ABC 的边BC 、CA 、AB 上的点,且BM=41BC ,CN=41CA ,AP=41AB ,连接MN 、NP 、PM.设AB =a ,AC =b ,分别求出向量MN 、MP 、PN 关于a 、b 的分解式。
∵BC =AC -AB =b -a , MC =43BC =43(b -a ) ∴=+=21-43 =-=-21-41 PN =AN -AP =43b -41a备选例题例1. 点M 是△CAB 的边AB 的中点。
高等数学下册知识点第八章 空间解析几何与向量代数(一) 向量线性运算定理 1:设向量 a ≠0,则向量 b 平行于 a 的充要条件是存在唯一的实数 λ,使 b =λa1、 线性运算:加减法、数乘;2、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;3、 利用坐标做向量的运算:设 a ( a x ,a y ,a z ),b (b x ,b y ,b z ) ; 则 a b(a x b x ,a y b y ,a z b z ),a ( a x , a y , a z ) ; 4、向量的模、方向角、投影: 1) 向量的模: rx 2 y 2 z 2;2) 两点间的距离公式: AB (x 2 x 1)2(y 2 y 1)2(z 2 z 1)23) 方向角:非零向量与三个坐标轴的正向的夹角 , ,222cos 2 cos 2cos 211、 数量积: a bab cos1) aaa2数量积,向量积 4) 方向余弦: cosx, cos ry , cosr5) 投影: Pr j u a acos ,其中 为向量 a 与 u 的夹角2) a2、 向量积: c a b大小: a b sin ,方向: a,b,c 符合右手规则 1) a a 0 2) a // ba b 0i j k ax ay az b x b y b z(三) 曲面及其方程1、 曲面方程的概念: S : f (x, y,z) 02、 旋转曲面:yoz 面上曲线 C : f (y,z) 0 ,22x2 z2) 022x 2 y 2, z) 03、 柱面:F (x, y) F (x, y) 0 表示母线平行于 z 轴,准线为z044 二次曲面a b a x b xa yb y a z b z ab 运算律:反交换律 b aab的柱2x29) 抛物柱面: x ay四) 空间曲线及其方程F (x, y, z) 01) 椭圆锥面:2 a2x2) 椭球面: 2ax 2旋转椭球面: a2b2b2 2y2az22z 2c 2z 2 c2x 2 y 22 z 3) 单叶双曲面:2 ab2 2 c222x yz 4) 双叶双曲面:2 ab22 c22x yz5) 椭圆抛物面:2 ab22x 6) 双曲抛物面(马鞍面) : a2a2y 2 b2x 7) 椭圆柱面:2 a2x 8) 双曲柱面:2 a2 y 2b2 2 y 2b21、 般方程:G(x, y,z) 022x x(t)xa cos t 2、 参数方程:yy(t),如螺旋线: ya sin tz z(t)zbt3、 空间曲线在坐标面上的投影 F(x,y,z) 0H (x, y) 0,消去 z ,得到曲线在面 xoy 上的投影 G(x, y,z) 0 z 0五) 平面及其方程A 1A2 B 1B 2 C 1C2Ax 0 By 0 Cz 0 D A 2 B 2 C1、 点法式方程:A(x x 0) B(y y 0) C(z z 0) 法向量: n ( A, B,C) ,过点 (x 0, y 0,z 0)2、 般式方程:Ax By Cz Dx截距式方程:az1c3、 两平面的夹角: n 1(A 1,B 1,C 1) , n 2 (A 2 ,B 2,C 2) , cosA 1A 2B 1B2 C 1C2B 22B 12C 12A 22C 221//A 1B 1C 1A2 B 2 C24、 点 P 0(x 0, y 0,z 0)到平面 Ax By Cz D 0 的距离:六)空间直线及其方程22A 1 xB 1 yC 1zD 1 0方向向量: s (m,n, p) ,过点 (x 0, y 0, z 0)x x 0 mt3、 参数式方程:y y0 ntz z 0 pts 1 (m 1,n 1, p 1) , s 2 (m 2,n 2,p 2),m 1m2 n 1n 2 p 1p25、 直线与平面的夹角:直线与它在平面上的投影的夹角,L// Am Bn Cp 0 ABC Lmnp第九章 多元函数微分法及其应用(一) 基本概念1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。
高中数学向量的线性运算有哪些知识点高中数学向量的线性运算有哪些知识点线性运算是加法和数量乘法,对于不同向量空间线性运算一般有不同的形式,它们必须满足交换律,结合律,数量加法的分配律,向量加法的分配律。
下面是店铺为大家精心推荐高中数学向量的线性运算知识点,希望能够对您有所帮助。
向量的基本概念(1)向量既有大小又有方向的量叫做向量.物理学中又叫做矢量.如力、速度、加速度、位移就是向量.向量可以用一条有向线段(带有方向的线段)来表示,用有向线段的长度表示向量的大小,用箭头所指的方向表示向量的方向.向量也可以用一个小写字母a,b,c表示,或用两个大写字母加表示(其中前面的字母为起点,后面的字母为终点)(5)平行向量方向相同或相反的非零向量,叫做平行向量.平行向量也叫做共线向量.若向量a、b平行,记作a∥b.规定:0与任一向量平行.(6)相等向量长度相等且方向相同的向量叫做相等向量.①向量相等有两个要素:一是长度相等,二是方向相同,二者缺一不可.②向量a,b相等记作a=b.③零向量都相等.④任何两个相等的非零向量,都可用同一有向线段表示,但特别要注意向量相等与有向线段的.起点无关.对于向量概念需注意(1)向量是区别于数量的一种量,既有大小,又有方向,任意两个向量不能比较大小,只可以判断它们是否相等,但向量的模可以比较大小.(2)向量共线与表示它们的有向线段共线不同.向量共线时,表示向量的有向线段可以是平行的,不一定在同一条直线上;而有向线段共线则是指线段必须在同一条直线上.(3)由向量相等的定义可知,对于一个向量,只要不改变它的大小和方向,它是可以任意平行移动的,因此用有向线段表示向量时,可以任意选取有向线段的起点,由此也可得到:任意一组平行向量都可以平移到同一条直线上.向量的运算律(1)交换律:α+β=β+α(2)结合律:(α+β)+γ=α+(β+γ)(3)数量加法的分配律:(λ+μ)α=λα+μα【高中数学向量的线性运算有哪些知识点】。
向量的线性运算知识点一、选择题1.已知a,b为非零向量,如果b=﹣5a,那么向量a与b的方向关系是()A.a∥b,并且a和b方向一致B.a∥b,并且a和b方向相反C.a和b方向互相垂直D.a和b之间夹角的正切值为5【答案】B【解析】【分析】根据平行向量的性质解决问题即可.【详解】∵已知a,b为非零向量,如果b=﹣5a,∴a∥b,a与b的方向相反,故选:B.【点睛】本题考查了平面向量,熟记向量的长度和方向是解题关键.2.□ABCD中, -+等于( )A.B.C.D.【答案】A【解析】【分析】在平行四边形中,两对对边平行且相等,以一对对边所在的线段构成向量,得到的向量要么相等,要么是相反向量,根据本题所给的两个向量来看,它们是一对相反向量,和为零向量,得到结果.【详解】∵在平行四边形ABCD中,与是一对相反向量,∴ = -∴ -+=- + =,故选A.【点睛】此题考查向量加减混合运算及其几何意义,解题关键在于得出与是一对相反向量.3.已知向量,若与共线,则( ) A.B.C.D.或【答案】D【解析】【分析】要使与,则有=,即可得知要么为0,要么,即可完成解答.【详解】 解:非零向量与共线的充要条件是当且仅当有唯一一个非零实数,使=,即;与任一向量共线.故答案为D.【点睛】 本题考查了向量的共线,即=是解答本题的关键.4.在矩形ABCD 中,如果AB 模长为3, BC 模长为1,则向量(AB +BC +AC ) 的长度为( ) A .2B .4C .31-D .31+ 【答案】B【解析】【分析】先求出AC AB BC =+,然后2AB BC AC AC ++=,利用勾股定理即可计算出向量(AB +BC +AC )的长度为【详解】 22||3,||1||(3)122|||2|224AB BC AC AC AB BCAB BC AC ACAB BC AC AC ==∴=+==+∴++=++==⨯=∴故选:B.【点睛】考查了平面向量的运算,解题关键是利用矩形的性质和三角形法则.5.如图,在△ABC 中,中线AD 、CE 交于点O ,设AB a,BC k ,那么向量AO 用向量a b ⋅表示为( )A .12a b B .2133a b C .2233a b D .1124a b 【答案】B【解析】【分析】利用三角形的重心性质得到: 23AOAD ;结合平面向量的三角形法则解答即可. 【详解】∵在△ABC 中,AD 是中线, BC b , ∴11BD BC b 22. ∴1b 2AD AB BD a又∵点O 是△ABC 的重心, ∴23AO AD , ∴221AO AD a b 333. 故选:B .【点睛】此题主要考查了平面向量与重心有关知识,根据重心知识得出23AOAD 是解题的关键.6.下列式子中错误的是( ).A .2a a a +=B .()0a a +-=C .()a b a b -+=--D .a b b a -=- 【答案】D 【解析】【分析】根据向量的定义是既有大小又有方向的量,及向量的运算法则即可分析求解.【详解】A. a 与a 大小、方向都相同,∴2a a a +=,故本选项正确;B. a 与a -大小相同,方向相反,∴()0a a +-=,故本选项正确;C.根据实数对于向量的分配律,可知()a b a b -+=--,故本选项正确;D.根据向量的交换律,可知a b b a -=-+,故本选项错误.故选D.【点睛】本题考查向量的运算,掌握运算法则及运算律是解题的关键.7.如图,在平行四边形ABCD 中,如果AB a =,AD b =,那么a b +等于( )A .BDB .AC C .DBD .CA【答案】B【解析】【分析】由四边形ABCD 是平行四边形,可得AD=BC ,AD ∥BC ,则可得BC b =,然后由三角形法则,即可求得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∵AD b =,∴BC b =,∵AB a =,∴a b +=AB +BC =AC .故选B .8.化简()()AB CD BE DE -+-的结果是( ).A .CAB .AC C .0D .AE【答案】B【解析】【分析】根据三角形法则计算即可解决问题.【详解】解:原式()()AB BE CD DE =+-+AE CE =-AE EC =+ AC =,故选:B .【点睛】本题考查平面向量、三角形法则等知识,解题的关键是灵活运用三角形法则解决问题,属于中考基础题.9.已知一点O 到平行四边形ABCD 的3个顶点A 、B 、C 的向量分别为、、,则向量等于 ( )A .++B .-+C .+-D .--【答案】B【解析】【分析】利用向量的线性运算,结合平行四边形的性质,即可求得结论.【详解】如图,,则 -+故选B .【点睛】此题考查平面向量的基本定理及其意义,解题关键在于画出图形.10.已知点C 在线段AB 上,3AC BC =,如果AC a =,那么BA 用a 表示正确的是( ) A .34a B .34a - C .43a D .43a - 【答案】D【解析】【分析】根据平面向量的线性运算法则,即可得到答案.【详解】∵点C 在线段AB 上,3AC BC =,AC a =,∴BA=43AC , ∵BA 与AC 方向相反,∴BA =43a -, 故选D.【点睛】本题主要考查平面向量的运算,掌握平面向量的运算法则,是解题的关键.11.已知a 、b 、c 都是非零向量,下列条件中,不能判断//a b 的是( ) A .a b = B .3a b = C .//a c ,//b c D .2,2a c b c ==-【答案】A【解析】【分析】根据平行向量的定义(两个向量方向相同或相反,即为平行向量)分析求解即可求得答案.【详解】解:A 、||||a b =只能说明a 与b 的模相等,不能判定a ∥b ,故本选项符合题意; B 、3a b =说明a 与b 的方向相同,能判定a ∥b ,故本选项不符合题意; C 、a ∥c ,b ∥c ,能判定a ∥b ,故本选项不符合题意; D 、2a c =,2b c =-说明a 与b 的方向相反,能判定a ∥b ,故本选项不符合题意. 故选:A .【点睛】此题考查了平面向量的知识.此题难度不大,注意掌握平行向量与向量的模的定义是解此题的关键.12.已知e 是单位向量,且2,4a e b e =-=,那么下列说法错误的是( ) A .a ∥bB .|a |=2C .|b |=﹣2|a |D .a =﹣12b 【答案】C【解析】 【分析】【详解】解:∵e 是单位向量,且2a e =-,4b e =, ∴//a b ,2a =, 4b = , 12a b =-, 故C 选项错误,故选C. 13.如图,向量OA 与OB 均为单位向量,且OA ⊥OB ,令n =OA +OB ,则||n =( )A .1B .2C .3D .2 【答案】B【解析】 根据向量的运算法则可得:n =()222OA OB +=,故选B.14.已知a ,b 和c 都是非零向量,下列结论中不能判定a ∥b 的是( )A .a //c ,b //cB .1,22a c b c ==C .2a b =D .a b = 【答案】D【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】解:A.∵a //c ,b //c ,∴a ∥b ,故本选项错误;B.∵1,22a cbc ==∴a ∥b ,故本选项错误. C.∵2a b =,∴a ∥b ,故本选项错误;D.∵a b =,∴a 与b 的模相等,但不一定平行,故本选项正确;故选:D .【点睛】本题考查了平面向量,是基础题,熟记平行向量的定义是解题的关键.15.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,设OA a =,OB b =,下列式子中正确的是( )A .DC a b =+B .DC a b =-; C .DC a b =-+D .DC a b =--.【答案】C【解析】【分析】由平行四边形性质,得DC AB =,由三角形法则,得到OA AB OB +=,代入计算即可得到答案.【详解】解:∵四边形ABCD 是平行四边形,∴DC AB =,∵OA a =,OB b =,在△OAB 中,有OA AB OB +=,∴AB OB OA b a a b =-=-=-+,∴DC a b =-+;故选择:C.【点睛】此题考查了平面向量的知识以及平行四边形的性质.注意掌握平行四边形法则与三角形法则的应用是解此题的关键.16.如果2a b =(a ,b 均为非零向量),那么下列结论错误的是( )A .a //bB .a -2b =0C .b =12aD .2a b =【答案】B【解析】试题解析:向量最后的差应该还是向量.20.a b -= 故错误.故选B.17.规定:在平面直角坐标系xOy 中,如果点P 的坐标为(,)m n ,向量OP 可以用点P 的坐标表示为:(,)OP m n =.已知11(,OA x y =),22(,)OB x y =,如果12120x x y y +=,那么OA 与OB 互相垂直.下列四组向量中,互相垂直的是( )A .(4,3)OC =-;(3,4)OD =-B .(2,3)OE =-; (3,2)OF =-C .(3,1)OG =;(OH =-D .(24)OM =;(2)ON =-【答案】D【解析】【分析】将各选项坐标代入12120x x y y +=进行验证即可.【详解】解:A. 12121202124x x y y =--=-≠+,故不符合题意;B. 121266102x x y y =--=-≠+,故不符合题意;C. 12123012x x y y =-+=-≠+,故不符合题意;D. 1212880x x y y =-+=+,故符合题意;故选D.【点睛】本题考查新定义与实数运算,正确理解新定义的运算方法是解题关键.18.规定:在平面直角坐标系中,如果点P 的坐标为(m ,n ),向量OP 可以用点P 的坐标表示为:OP =(m ,n ).已知OA =(x 1,y 1),OB =(x 2,y 2),如果x 1•x 2+y 1•y 2=0,那么OA 与OB 互相垂直,在下列四组向量中,互相垂直的是( )A .OC =(3,20190),OD =(﹣3﹣1,1)B .OE ﹣1,1),OF ,1)C .OG 12),OH )2,8)D .OM ),ON 2,2) 【答案】A【解析】【分析】根据向量互相垂直的定义作答.【详解】A 、由于3×(﹣3﹣1)+20190×1=﹣1+1=0,则OC 与OD 互相垂直,故本选项符合题意.B ﹣1+1)+1×1=2﹣1+1=2≠0,则OE 与OF 不垂直,故本选项不符合题意.C )2+12×8=4+4=8≠0,则OG 与OH 不垂直,故本选项不符合题意.D 2)×2=5﹣4+1=2≠0,则OM 与ON 不垂直,故本选项不符合题意.故选:A .【点睛】本题考查了平面向量,解题的关键是掌握向量垂直的定义.19.已知a 、b 和c 都是非零向量,在下列选项中,不能判定a ∥b 的是( ) A .=a bB .a ∥c ,b ∥cC .a +b =0D .a +b =2c ,a ﹣b =3c【答案】A【解析】【分析】根据方向相同或相反的非零向量叫做平行向量,对各选项分析判断后利用排除法求解.【详解】解:A、该等式只能表示两a、b的模相等,但不一定平行,故本选项符合题意;B、由a∥c,b∥c可以判定a∥b,故本选项不符合题意;C、由a+b=0可以判定a、b的方向相反,可以判定a∥b,故本选项不符合题意;D、由a+b=2c,a﹣b=3c,得到a=52c,b=﹣12c,则a、b的方向相反,可以判定a∥b,故本选项不符合题意;故选:A.【点睛】本题主要考查了平行向量,掌握平行向量是解题的关键.20.下列判断错误的是()A.0•=0aB.如果a+b=2c,a-b=3c,其中0c ,那么a∥b C.设e为单位向量,那么|e|=1D.如果|a|=2|b|,那么a=2b或a=-2b【答案】D【解析】【分析】根据平面向量的定义、向量的模以及平行向量的定义解答.【详解】A、0•=0a,故本选项不符合题意.B、由a+b=2c,a-b=3c得到:a=52c,b=﹣12c,故两向量方向相反,a∥b,故本选项不符合题意.C、e为单位向量,那么|e|=1,故本选项不符合题意.D、由|a|=2|b|只能得到两向量模间的数量关系,不能判断其方向,判断错误,故本选项符合题意.故选D.【点睛】考查了平面向量,需要掌握平面向量的定义,向量的模以及共线向量的定义,难度不大.。