第 3 章 充气轮胎动力学讲解
- 格式:ppt
- 大小:1.26 MB
- 文档页数:34
轮胎动力学的研究与应用轮胎是汽车的重要组成部分,其性能直接影响到整个车辆的驾驶稳定性、制动距离、油耗等方面。
而轮胎动力学作为轮胎工程学科中重要的一个分支,研究轮胎的力学特性,以提高轮胎性能和安全性。
本文将从轮胎动力学的基本概念、轮胎动力学模型、轮胎动力学的应用等方面展开论述。
一、轮胎动力学的基本概念轮胎动力学指的是轮胎与地面之间的相互作用力学问题。
一般来说,轮胎与地面的接触面积很小,只有车轮接触地面的一小部分,因此这个问题也被看作是一个点接触问题。
轮胎动力学的研究主要涉及轮胎力学、轮胎动力、轮胎与地面之间的相互作用力等方面。
轮胎力学是研究轮胎变形、刚度和耗能等性能的学科。
轮胎动力是指轮胎的运动学和动力学特性。
而轮胎与地面之间的相互作用力包括接触力、摩擦力、支撑力等。
二、轮胎动力学模型轮胎动力学模型是轮胎动力学研究中重要的工具。
它是对轮胎与地面之间的相互作用力进行模拟分析的数学模型。
其中最基本的轮胎动力学模型是布洛赫模型,它认为轮胎承受的负载力可以分解为切向力和法向力两个方向的力。
接下来,我们简单介绍一些常用的轮胎动力学模型。
1. 符号模型符号模型是一种用符号和代数表达式描述轮胎动态行为的模型。
它不考虑轮胎和地面之间的接触条件,只考虑负载和受力之间的平衡关系。
因为它不涉及精细的接触性质,所以计算速度比较快,适用于轮胎的基本特性研究。
2. 模态模型模态模型是一种基于振动模态分析的轮胎动力学模型。
它主要考虑了轮胎的弹性变形和刚性形变,还考虑了轮胎和地面之间的接触强度和形状。
模态模型适用于轮胎垂向动力学特性的研究。
3. 有限元模型有限元模型是一种用于计算物体形变和应力分布的数学模型。
它可以很好地模拟轮胎与地面之间的接触力,能够更精细地分析轮胎变形、刚度和耗能性能等方面。
有限元模型适用于轮胎在车速较高时的动力学分析。
三、轮胎动力学的应用轮胎动力学的应用非常广泛,不仅可以在汽车工程领域中得到应用,还可以在航空、船舶等领域中得到应用。
第三章充气轮胎动力学§3-1 概述轮胎是车辆重要的组成部分,直接与地面接触。
其作用是支承整车的重量,与悬架共同缓冲来自路面的不平度激励,以保证车辆具有良好的乘坐舒适性和行驶平顺性;保证车轮和路面具有良好的附着性,以提高车辆驱动性、制动性和通过性,并为车辆提供充分的转向力。
一、轮胎运动坐标系二、车轮运动参数1.滑动率2.轮胎侧偏角a3.轮胎径向变形§3-2 轮胎的功能、结构及发展轮胎的基本功能包括:1)支撑整车重量;2)与悬架元件共同作用,衰减由路面不平引起的振动与冲击;3)传递纵向力,以实现驱动和制动;4)传递侧向力,以使车辆转向并保证行驶稳定性。
为实现以上功能,任何一个充气轮胎都必须具备以下基本结构:(1)胎体(2)胎圈(3)胎面常用的车用充气轮胎有两种,即斜交轮胎和子午线轮胎。
二者在结构上有明显不同,主要区别在于胎体帘线角度的不同。
所谓“帘线角”即为胎体帘布层单线与车轮中心线形成的夹角。
根据车辆动力学研究内容的不同,轮胎模型可分为:(1)轮胎纵滑模型主要用于预测车辆在驱动和制动工况时的纵向力。
(2)轮胎侧偏模型和侧倾模型主要用于预测轮胎的侧向力和回正力矩,评价转向工况下低频转角输入响应。
(3)轮胎垂向振动模型主要用于高频垂向振动的评价,并考虑轮胎的包容特性(包含刚性滤波和弹性滤波特性)。
这里仅对几种常用的轮胎模型给予介绍。
(1)幂指数统一轮胎模型幂指数统一轮胎模型的特点是:。
1)采用了无量纲表达式,其优点在于由纯工况下的一次台架试验得到的试验数据可应用于各种不同的路面。
当路面条件改变时,只要改变路面的附着特性参数,代人无量纲表达式即可得该路面下的轮胎特性。
2)无论是纯工况还是联合工况,其表达式是统一的。
3)可表达各种垂向载荷下的轮胎特性。
4)保证了可用较少的模型参数实现全域范围内的计算精度,参数拟合方便,计算量小。
在联合工况下,其优势更加明显。
5)能拟合原点刚度。
(2)“魔术公式”轮胎模型“魔术公式”轮胎模型的特点是:1)用一套公式可以表达出轮胎的各向力学特性,统一性强,编程方便,需拟合参数较少,且各个参数都有明确的物理意义,容易确定其初值。
充气轮胎很早以前,轮胎是用木头、铁等材料制成,第一个空心轮子是1845年英国人罗伯特〃汤姆逊发明的。
他提出用压缩空气充入弹性囊,以缓和运动时的振动与冲击。
尽管当时的轮胎是用皮革和涂胶帆布制成,然而这种轮胎已经显示出滚动阻力小的优点。
根据这一原理,1888年约翰〃邓录普制成了橡胶空心轮胎,随后托马斯又制造了带有气门开关的橡胶空心轮胎。
可惜的是因为内层没有帆布,而不能保持一定的断面形状和断面宽。
1895年随着汽车的出现,充气轮胎得到广泛的发展。
首批汽车轮胎样品是1895年在法国出现的,这是由平纹帆布制成的单管式轮胎,虽有胎面胶而无花纹。
直到190 8年至1912年间,轮胎才有了显著的变化,即胎面胶上有了提高使用性能的花纹,从而开拓了轮胎胎面花纹的历史,并增加了轮胎的断面宽度,允许采用较低的内压,以保证获得较好的缓冲性能。
1892年英国的伯利密尔发明了帘布,1910年用于生产。
这一成就改进了轮胎质量,扩大了轮胎品种的同时,还使外胎具备了模制的可能性。
随着对轮胎质量要求的提高,帘布质量也得到改进,棉帘布由人造丝代替,50年代末人造丝又被强力性能更好、耐热性能更高的尼龙、聚酯帘线所代替,而且钢丝帘线随着子午线轮胎的发展,具有很强的竞争力。
1904年马特创造了炭黑补强橡胶,大规模用于补强胎面胶是在轮胎采用帘布之后。
因为在这之前,帆布比胎面在轮胎使用中损坏得还要快。
炭黑在胶料中的用量增长很快,30年代每100份生胶中使用的炭黑也不过20份左右,这时主要在胎面上采用炭黑,胎体不用,现在已达5 0份以上。
胎面中掺用炭黑以前,轮胎大约只行驶6000k m就磨光了;掺用炭黑后,轮胎的行驶里程很快就得到显著的提高。
现在一组货车轮胎大约可行驶10万km,在好的路面上,甚至可达20万km。
1913~1926年,因发明了帘线和炭黑轮胎技术,为轮胎工业发展奠定了基础。
轮胎外缘的标准化,制造工艺的逐渐完善,生产速度比以前提高了,轮胎的产量与日俱增。