汽车动力学-轮胎动力学
- 格式:pptx
- 大小:5.81 MB
- 文档页数:34
一、汽车轮胎滚动阻力的产生机理及主要影响因素:1. 产生机理:轮胎的滚动阻力可以分解为弹性迟滞阻力、摩擦阻力和风扇效应阻力。
1) 弹性迟滞阻力充气轮胎在静态压缩作用下会产生变形并且回弹,并由于其内部的摩擦作用而引起能量损失。
当车轮在力或力矩作用下滚动时,对轮胎胎面的每一单元而言,其压缩与回弹的过程将重复不断地进行。
在轮胎等效系统模型中,假定车轮的外圆周与轮辋之间由一些径向布置的线性弹簧和阻尼单元支撑;此外,轮胎胎面也假定由一系列切向排列的弹簧和阻尼单元构成。
当这些单元进入轮胎与路面接触印迹时,其弹簧和阻尼就能充分作用,因而就生成附加的摩擦效应,将它称之为弹性迟滞阻力。
2) 摩擦阻力在轮胎等效模型中,由一系列弹簧-阻尼组成的单元连续滚动进入胎接触印迹区,在轮胎接触印迹内路面与滚动单元带之间在纵向及横向将产生相对运动,即所谓的“部分滑动” 。
3) 风扇效应阻力轮胎在旋转运动时如同风扇一样导致气流损失,其产生的阻力称为风扇效应阻力。
汽车在路面上行驶时,在以上三种阻力的综合作用下就形成了轮胎滚动阻力。
2. 主要影响因素:1) 轮胎材料胎面材料:胎面材料的选用对轮胎滚动阻力影响较大,其滞后损失占整个轮胎的50 %甚至更多。
轮胎帘线:试验表明,同一规格的轮胎使用不同的纤维帘线材料,其滚动阻力有明显差异。
2) 轮胎结构子午化:子午线轮胎的滚动阻力比斜交轮胎低。
扁平化:随着轮胎断面结构的高宽比的不断减小,轮胎的变形越来越小,滞后损失也相应减小,从而降低了滚动阻力。
浙江科技学院 Zhejiang University of Science and Technology期末考察论述 汽车动力学 Vehicle Dynamics姓名 陈杰 学号5无内胎化:轮胎滚动阻力与轮胎质量有直接关系。
轮辋直径:轮辋直径对滚动阻力有一定影响。
轮辋直径增大后,在相同的垂直载荷下,轮胎的相对变形减小,降低了轮胎滚动过程中产生的滞后损失,从而使轮胎滚动阻力降低。
第三章充气轮胎动力学§3-1 概述轮胎是车辆重要的组成部分,直接与地面接触。
其作用是支承整车的重量,与悬架共同缓冲来自路面的不平度激励,以保证车辆具有良好的乘坐舒适性和行驶平顺性;保证车轮和路面具有良好的附着性,以提高车辆驱动性、制动性和通过性,并为车辆提供充分的转向力。
一、轮胎运动坐标系二、车轮运动参数1.滑动率2.轮胎侧偏角a3.轮胎径向变形§3-2 轮胎的功能、结构及发展轮胎的基本功能包括:1)支撑整车重量;2)与悬架元件共同作用,衰减由路面不平引起的振动与冲击;3)传递纵向力,以实现驱动和制动;4)传递侧向力,以使车辆转向并保证行驶稳定性。
为实现以上功能,任何一个充气轮胎都必须具备以下基本结构:(1)胎体(2)胎圈(3)胎面常用的车用充气轮胎有两种,即斜交轮胎和子午线轮胎。
二者在结构上有明显不同,主要区别在于胎体帘线角度的不同。
所谓“帘线角”即为胎体帘布层单线与车轮中心线形成的夹角。
根据车辆动力学研究内容的不同,轮胎模型可分为:(1)轮胎纵滑模型主要用于预测车辆在驱动和制动工况时的纵向力。
(2)轮胎侧偏模型和侧倾模型主要用于预测轮胎的侧向力和回正力矩,评价转向工况下低频转角输入响应。
(3)轮胎垂向振动模型主要用于高频垂向振动的评价,并考虑轮胎的包容特性(包含刚性滤波和弹性滤波特性)。
这里仅对几种常用的轮胎模型给予介绍。
(1)幂指数统一轮胎模型幂指数统一轮胎模型的特点是:。
1)采用了无量纲表达式,其优点在于由纯工况下的一次台架试验得到的试验数据可应用于各种不同的路面。
当路面条件改变时,只要改变路面的附着特性参数,代人无量纲表达式即可得该路面下的轮胎特性。
2)无论是纯工况还是联合工况,其表达式是统一的。
3)可表达各种垂向载荷下的轮胎特性。
4)保证了可用较少的模型参数实现全域范围内的计算精度,参数拟合方便,计算量小。
在联合工况下,其优势更加明显。
5)能拟合原点刚度。
(2)“魔术公式”轮胎模型“魔术公式”轮胎模型的特点是:1)用一套公式可以表达出轮胎的各向力学特性,统一性强,编程方便,需拟合参数较少,且各个参数都有明确的物理意义,容易确定其初值。
车辆动力学仿真中的轮胎数学模型研究现状3471039 洛阳工学院 周学建 周志立 张文春 摘要 对车辆动力学仿真中的轮胎数学模型现状进行了分析,简要说明了轮胎动力学建模的新方法并进行了展望。
Abstract The current state of the mathematical m odel of tire dynamics is analysis.The new methods of m odelling are ex2 plained and forecasted. 关键词:车辆 轮胎 动力学 数学模型 车辆的充气轮胎具有支承车辆质量、在车辆驶过不平地面时进行缓冲、为驱动和制动提供足够附着力、提供足够的转向操纵与方向稳定性的作用。
除空气的作用力和重力外,几乎其他影响地面车辆运动的力和力矩皆由轮胎与地面接触而产生。
因此,轮胎动力学特性的研究,对研究车辆性能来说是非常必要的[1]。
车辆运动依赖于轮胎所受的力,如纵向制动力和驱动力、侧向力和侧倾力、回正力矩和侧翻力矩等。
所有这些力都是滑转率、侧偏角、外倾角、垂直载荷、道路摩擦系数和车辆运动速度的函数,如何有效地表达这种函数关系,即建立精确的轮胎动力学数学模型,一直是轮胎动力学研究人员所关心的问题。
轮胎的动力学特性对车辆的动力学特性起着至关重要的作用,特别是对车辆的操纵稳定性、制动安全性、行驶平顺性具有重要的影响。
现代车辆动力学的发展不仅需要建立能反映物理实际的精确轮胎模型,而且需要建立的轮胎数学模型能满足车辆不同方面研究,如多自由度仿真、先进车辆控制系统的需要[2]。
1 轮胎动力学建模方法及研究现状轮胎动力学建模方法有理论方法、经验和半经验方法,建立的模型有理论模型、经验和半经验模型。
1.1 理论模型由于轮胎的结构十分复杂,在侧偏和纵滑时其受力和变形难于确定,另外,轮胎和路面之间的摩擦耦合特性也具有不稳定的多变性。
在目前阶段,很难根据轮胎的物理特性和真实的边界条件来精确地计算轮胎的偏滑特性。
在车辆操纵动力学模型中轮胎模型的研究一、轮胎力学特性和建模的研究历史与现状轮胎动态特性的研究可以追溯到上个世纪三十年代,Bradly和Allen(1931)为了研究汽车的动态特性,开始涉及到轮胎的动态特性。
接着又有很多科学家致力于轮胎动态特性的研究,德国的Fromm(1941)对轮胎结构进行了简化,推导出了描述轮胎侧偏特性的简单理论模型,第一次对轮胎的侧偏特性进行了理论研究。
Fiala(1954)在弹性“梁”模型的基础上,建立了侧向力,回正力矩与侧偏角和外倾角的关系。
在以后的几十年中,Fiala的理论模型得到了进一步的研究和改进。
Frank(1965)在Fiala理论模型的基础上,把胎体看作一个受弯曲的梁,研究了胎体弯曲对轮胎特性的影响。
从六十年代开始,Pacejka将胎体的变形简化为受拉的“弦”,对轮胎的静态和动态特性进行了大量的理论和试验研究。
并在后来(1989,1991)对模型进行了进一步的改进和发展,形成了著名的“Magic Formula”模型。
Sharp(1986)提出了轮辐式轮胎模型,将轮胎看作完全由相同的径向轮辐组成,这些轮辐与轮毂连接在一起,而且具有弹性。
轮辐的周期性变化会导致迟滞损失。
建立了与实际相当吻合的轮胎模型。
九十年代初,随着汽车先进底盘控制技术,虚拟原型设计以及计算机辅助工程等先进技术的飞速发展,轮胎的动态力学特性研究受到了广泛的重视。
有很多科学家致力于动态特性的研究,也得到了飞速的发展。
我国郭孔辉教授领导的科研小组二十几年来一直致力于轮胎力学特性的理论和试验研究,自行开发了具有多种功能的轮胎力学特性试验台,并利用该试验台在试验研究和理论研究上取得了重大突破。
郭孔辉教授(1986)建立了具有任意印迹压力分布的轮船侧偏特性简化理论模型。
并在该模型基础上先后推导出了纵滑侧偏特性简化理论模刑(1986),用于汽车转向,制动与驱动动态仿真的统一模型(1986),并在大量试验和理论研究的基础上提出了一种适用于较大载荷和侧偏角变化范围的轮胎侧偏特性半经验模型(1986)。
第五章轮胎式轨道车辆动力学第一节轮胎式轨道车辆一、概 述随着城市对各种轨道交通形式的需求,依靠轮胎走行方式的轨道车辆已成功地运用在一些国家的单轨交通和胶轮地铁中,并扩展到自动化导向交通系统(AGT)中。
近年来,我国的重庆市也采用了这种典型的轮胎走形、导向的轨道交通方式。
单轨交通分为两种形式:跨坐式和悬挂式。
跨坐式单轨交通车辆以高强度混凝土或者钢制箱形梁作为轨道(轨道梁),车体安装在轮胎走行部之上,整个车辆跨坐在轨道梁上方运行,见图1。
而悬挂式单轨车辆使用下部开口的钢制轨道梁,车体悬挂在安装有橡胶轮胎的走行部下方,整个车辆吊挂在轨道下方运行。
在强风情况下,跨坐式单轨车辆比悬挂式单轨车辆更加稳定与支全,因此跨坐式单轨车辆已经发展成一种具有中等运量的城市轨道交通系统,特别在日本得到了较多的应用,本章将以跨坐式单轨方式为基础来阐述轮胎式导向轨道车辆动力学理论。
图1 跨坐式单轨车辆传统的钢轮钢轨车辆主要靠带轮缘的锥型踏面走行与导向,而轮胎式轨道交通车辆的曲线通过是依靠走行部导向轮胎的引导实现。
轮胎式轨道交通车辆都设有走行轮和导向轮,走行轮承担车体重量,担负牵引、制动等走行功能,导向车轮负责引导车辆沿着轨道行驶。
按照导向轮的安装位置,采用橡胶轮胎走行的AGT系统车辆可分为外侧导向式和内侧导向式两大类。
外侧导向式车辆的导向轮胎安装在走行部的外侧,与U形轨道相配合,如图2所示。
内侧导向式车辆的导向轮胎安装在走行部的内侧,与倒T形轨道相配合,如图3所示。
图2 外侧导向式AGT系统车辆图3 内侧导向式AGT系统车辆图5—4 AGT系统车辆的走行部橡胶充气轮胎走行部具有以下特点:①黏着系数大,橡胶与钢或混凝土的摩擦系数显著高于钢与钢之间的摩擦系数,故橡胶轮胎车辆的加速和减速性能明显优于钢轮—钢轨系统的车辆,这在市内站距较短时对于提高平均运行速度非常有利,同时也有利于运行安全性。
高的黏着系数还使橡胶轮胎车辆能适应在大坡度的线路上运用,线路坡度最大可达10%,便于丘陵、山地城市的选线,以及具有地下线路与地面高架线路连接需要的地方。