4.3_钻井液循环系统
- 格式:ppt
- 大小:4.40 MB
- 文档页数:83
钻机循环系统钻机循环系统是指将钻井液循环到钻头再将其返回地面进行清洁和再循环的设备。
对旋转钻井系统来说,循环系统的功能就是通过钻柱将钻井流体向下循环到钻头,通过钻头沿钻柱和井壁或套管内壁形成环空向上循环。
循环系统主要由钻井泵、水龙带、水龙头或顶驱、钻柱、钻头、钻井液回流管线、固相控制设备、泥浆罐(池)等组成。
本篇主要介绍钻井泵、钻井液净化系统的基本组成和原理。
第一部分钻井泵钻井泵在石油矿场上应用非常广泛,常用于高压下输送高黏度、高密度和高含砂量、高腐蚀性的液体,流量相对较小。
按用途的不同,石油矿场用钻井泵往往被冠以相应的名称,例如在钻井过程中,为了携带出井底的岩屑和供给井底动力钻具的动力,用于向井底输送和循环钻井液的钻井泵称为钻井泵;为了固化井壁,用于向井底注入高压水钻井液的钻井泵,称为固井泵;为了造成油层的人工裂缝,提高原油产量和采收率,用于向井内注入含有大量固体颗粒的液体或酸碱液体的钻井泵,称为压裂泵;用于向井内油层注入高压水驱油的往复泵,称为注水泵;在采油过程中,用于在井内抽汲原油的钻井泵,称为抽油泵。
石油工业的发展对往复泵提出更高的要求,如泵压要高,功率要大,而制造和维修成本要低,体积和重量不能过大。
由于石油矿场用钻井泵的工作条件十分恶劣,提高其易损件(如泵阀、活塞一缸套副、柱塞一密封副等)的工作寿命便成为往复泵设计、制造和使用中迫切需要解决的问题。
一钻井泵的工作原理图3-1 钻井泵工作示意图1一曲柄;2一连杆;3一十字头;4一活塞;5一缸套;6—排出阀;7—排出四通;8-预压排出空气包;9—排出管;10—阀箱(液缸);11一吸入阀;12—吸入管如图3-1所示,卧式单缸单作用往复式钻井泵。
主要由液缸、活塞、吸入阀、排出阀、阀室、曲柄或曲轴、连杆、十字头、活塞杆以及齿轮、皮带轮和传动轴等零部件组成。
当动力机通过皮带、齿轮等传动件带动曲轴或曲柄按图示方向,从左边水平位置开始旋转时,活塞向右边即泵的动力端移动,液缸内形成一定的真空度,吸入池中的液体在液面压力的作用下,推开吸入阀,进入液缸,直到活塞移到右死点为止,此为液缸的吸入过程。
钻井的血液—泥浆1钻井液的概念钻井液(Dlilling Fluids)是指油气钻井过程中以其多种功能满足钻井工作需要的各种循环流体的总称。
钻井液又称做钻井泥浆(Drilling Muds),或简称为泥浆(Muds)。
2钻井液的分类钻井液由分散介质、分散相和添加剂组成。
钻井液按分散介质(连续相)可分为水基钻井液、油基钻井液、气体型钻井流体等。
钻井液主要由液相、固相和化学处理剂组成。
液相可以是水(淡水、盐水)、油(原油、柴油)或乳状液(混油乳化液和反相乳化液)。
固相包括有用固相(膨润土、加重材料)和无用固相(岩石)。
化学处理剂包括无机、有机及高分子化合物。
2.1水基钻井液水基钻井液是一种以水为分散介质,以粘土(膨润土)、加重剂及各种化学处理剂为分散相的溶胶悬浮体混合体系。
其主要组成是水、粘土、加重剂和各种化学处理剂等。
2.2油连续相钻井液油连续相钻井液(习惯称为油基泥浆),是一种以油(主要是柴油或原油)为分散介质,以加重剂、各种化学处理剂及水等为分散相的溶胶悬浮混合体系。
其主要组成是原油、柴油、加重剂、化学处理剂和水等。
2.3气体型钻井流体气体钻井液是以空气或天然气作为钻井循环流体的钻井液,泡沫钻井液是以泡沫作为钻井循环流体的钻井液。
主要组成是液体、气体及泡沫稳定剂等。
3钻井液循环系统钻井液的循环是通过循环泥浆泵来维持的,泥浆泵排出的高压钻井液经过地面高压管汇、立管、水龙带、水龙头、方钻杆、钻杆、钻铤到钻头,从钻头喷嘴喷出,以清洗井底并携带岩屑。
然后再沿钻柱与井壁(或套管)形成的环形空间向上流动,在到达地面后经排出管线流入泥浆池,再经各种固控设备进行处理后返回上水池,最后进入泥浆泵循环再用。
钻井液流经的各种管件、设备构成了一整套钻井液循环系统。
4钻井液的功能目前,钻井液被公认为至少有以下十种作用:4.1清洁井底、携带岩屑。
保持井底清洁,避免钻头重复切削,减少磨损,提高效率。
4.2冷却和润滑钻头及钻柱。
钻井液井下循环系统钻井液井下循环系统通常是钻井液通过钻杆直接到达钻头处,经钻头水眼喷出,携带井底岩屑,沿环空返回地面。
随着钻井深度的增加,为增加井壁的稳定性,避免压差卡钻,保护油气层,必须在钻井液中加入固相重部分(如重晶石),以增大钻井液密度。
但随着钻井液密度的增大,钻进速度将迅速下降,钻头磨损明显加剧。
国外研制出井下固相分离接头——井下水力旋流分离器(Downhole Hydrocyclones)。
装有井下固相分离器接头的钻井液井下循环系统流程如图所示。
图钻井液井下循环系统改进流程固相分离器接头装于钻头上部,由地面钻井泵供给具有一定能量的钻井液,经其上部通道,从切线方向进入旋流筒,进行净化处理。
分离出来的固相从其上部喷嘴进入环形空间,低固相钻井液进入钻头。
采用此装置,既能保持环空的钻井液密度,保持井壁稳定,又能降低水眼处钻井液粘度和密度,减轻水眼的磨损,提高当量水马力,充分发挥高压喷射清岩于水力破岩的作用,同时由于井底钻井液固相含量的减少,将减轻钻头牙齿的磨损,提高钻头的寿命和机械钻速。
海上井下油水分离用水力旋流器术语用于采出液井下油水分离的水力旋流系统的效益主要在于减少了采出水的开采及处理费用,有效降低了地面处理设备的液体负荷。
地面处理设备的减少对海上应用具有重要意义,地面分离设备的减少和费用的降低可延长油田寿命。
人们正在对井下分离系统进行进一步研究以提供适于海上应用的各种设备。
水力旋流器作为井下油水分离(DOWS)系统之一,让我们先认识一些概念术语。
水力旋流分离水力旋流器已广泛应用于地面油/水分离,其外形尺寸小,结构紧凑,设备成本低,操作费用低。
对水力旋流器的运行情况进行讨论将有助于了解与井下油水分离系统有关的设计问题。
承压流体混合物通过一个或多个切向入口进入水力旋流器,促使流体在装置内旋转,水力旋流器的锥形加速了流体螺旋形流动,建立了自由的旋涡,创建了很大的离心力。
离心力使轻相物质(即油,游离气)汇集到水力旋流器的中心,而重相物质(如水,固体)由于离心力的作用被甩到了外壁,在高压作用下,保持从底流口排出,迫使旋涡中心的浓缩油核逆流。
专题综述钻井液循环系统存在的问题及解决方案钟功祥 梁 政 (西南石油学院机电工程学院)王维军(河南石油勘探局机械制造厂)摘要 针对现用钻井液地面循环系统存在系统复杂、操作难度大、一些设备寿命短、故障多,以及使用时往往达不到固控要求等问题,设计出相对简化的钻井液地面循环系统流程,提出改进或研制砂泵、钻井泵、水封式旋流分离装置等方案,以期简化钻井液循环系统流程,提高钻井液循环系统的寿命和固控效果。
为了克服现用钻井液井下循环系统较严重影响机械钻速的不足,提出在钻头上方加装新型井下固相分离器的解决方案,以期较大幅度地提高机械钻速。
关键词 钻井液 地面循环系统 井下循环系统 固控系统 改进方案长期以来,国内外相关研究机构和生产单位投入了大量的人力和物力,开展钻井液循环系统的研究,已研制出相对完善的钻井液地面固控系统,能实现五级钻井液净化,五级净化若全部实施,净化效果完全能达到目前国内外钻井作业对钻井液质量的要求[1,2]。
但笔者通过多年的研究认为,目前的钻井液地面循环系统相对复杂,操作难度大,且不少设备寿命短,故障多,现场往往仅使用部分设备,导致达不到固控要求;而钻井液井下循环系统通常是钻井液由井口通过钻杆、钻头,再通过钻杆与井眼环空返回到井口,这种简单的钻井液井下循环系统较严重地影响机械钻速[3]。
笔者针对目前钻井液循环系统存在的问题,提出了相应解决方案。
钻井液地面循环系统1 钻井液地面循环系统的主要问题目前国内广泛使用的与钻井系统配套的钻井液地面循环系统属于机械固控钻井液循环系统。
它包括钻井泵、地面管汇、钻井液池、钻井液槽、振动筛、除砂器、除泥器、离心分离机、钻井液调配设备等。
在喷射钻井及井下动力钻井中系统还担负着传递动力的任务。
它是通过筛分、离心分离等原理,将钻井液中的固相按密度和颗粒大小不同而分离开,根据需要决定取舍,以达到控制固相颗粒之目的,这种方法效果较好,成本较低[2],因此该系统得到广泛使用。
钻井液净化基本流程与循环
当井筒中返回的钻井液经溢流管进入振动筛,筛除较大的固相颗粒。
筛分后的钻井液汇集于振动筛罐的锥形沉砂仓,依次流入除气仓、除砂仓、除泥仓和离心机仓。
在除气仓,当钻井液遭气侵性能改变时,需启动除气器将除气仓内的含气钻井液进行脱气处理,处理后再排入除砂仓。
若钻井液性能良好,没有气侵,不必进行除气处理,锥形仓的钻井液直接流入除砂仓。
在除砂仓,除砂器供液泵吸取钻井液供给除砂器,经过除砂器将钻井液中大于44~74μm的固相颗粒清除,除砂后的钻井液排入除泥仓。
在除泥仓,除泥器供液泵吸取钻井液供给除泥器,经过除泥器将钻井液中大于15~44μm的固相颗粒清除,除泥后的钻井液排入离心机仓。
在离心机仓,离心机供液泵吸取钻井液供给离心机,经过离心机将钻井液中大于2~15μm的固相颗粒清除后排入吸入罐或储备罐,这样就完成了钻井液四级净化工艺。
完成净化的钻井液流入吸入罐、中间罐、泥浆罐和储备罐。
两台钻井泵通过钻井液吸入管汇可分别从吸入罐、中间罐、泥浆罐和储备罐中吸取钻井液打入井筒。
钻井循环系统使用操作要求钻井液循环系统是由钻井泵、地面管汇、立管、水龙带、钻井液净化设备、井下钻具及钻头喷嘴等组成。
其主要作用是冲洗净化井底、携带岩屑、传递动力。
一、钻井泵钻井泵是循环系统的心脏。
主要有单缸单作用立式柱塞泵,双缸双作用卧式活塞泵,三缸单作用卧式活塞泵。
它的作用是为钻井液循环提供能量,以一定的压力和流量,将具有一定密度和粘度的钻井液输进钻具和完成整个循环过程。
(一)钻井泵的结构和工作原理钻井泵主要由液力端和动力端两大部分组成。
液力端包括缸体、缸套、活塞、吸入阀、排出阀等部件;动力端主要包括传动轴、齿轮、曲柄连杆等部件。
动图2-10 钻井泵的工作原理力机通过皮带(或链条、万向轴)带动泵的主轴旋转,再通过曲柄连杆机构使活塞移动,缸内形成负压,上水池的液体在大气压力作用下,顶开吸入阀进入缸内,直到完成吸入过程。
活塞开始向反方向移动,缸内液体受到活塞的挤压而压力升高,吸入阀被关闭,排出阀被顶开,液体被活塞推出排出阀,经排出管进入高压管汇,完成排出过程。
(二)钻井泵的类型与技术规范目前,石油钻井常用的钻井泵有三缸单作用钻井泵和双缸双作用钻井泵两大类,其技术规范见下表。
表2-12 石油钻井常用的钻井泵(三)钻井泵的使用要求1. 开泵前应检查安全阀、泵压表是否符合使用要求;各连接螺丝是否上紧,润滑油是否加够;高低压管汇各种闸门是否开关正确;皮带轮(链轮、万向轴)护罩的固定是否齐全、牢靠;冷却水(油)道是否畅通;空气包所充气体及压力是否符合要求。
2. 开泵时必须与有关操作人员联系,确认无误时才能开泵。
3. 开泵时,操作人员必须注意泵压表的压力变化,循环未正常前不许离开开关。
4. 在运转过程中,要经常检查泵压表的变化,检查泵各部位有无异常响声5. 运转中,要经常检查十字头滑板油孔及拉杆盘根冷却润滑流道是否畅通,观察拉杆盘根有无刺穿现象。
6. 开泵后若要修泵时,须摘开带泵离合器,挂标示牌或有专人监护气开头以免误操作导致事故。
反井钻机工作原理
实际运作中,反井钻机主要是使用机械力和液压力来完成钻井任务。
其工作原理包括以下几个方面:
1. 钻井液循环系统:反井钻机通过一个钻井液循环系统来实现井下岩屑的清除和润滑钻杆的作用。
液循环系统包括钻井液泵、专用管道和井下钻杆。
2. 钻杆下压系统:井钻机利用下压系统将钻杆推入井下,使其达到需要的长度。
该系统主要包括钻井液泵和液压缸,其通过液压力来推动钻杆向井下钻取。
3. 钻井液回收系统:反井钻机将钻井液通过钻杆带到井底,然后再将钻井液和岩屑通过钻井液泵带到地面,进行分离和再利用。
4. 钻井罐进给系统:反井钻机通过钻井罐进给系统将岩屑和钻井液回收到钻井液循环系统,实现循环使用。
5. 钻井液搅拌系统:反井钻机通过搅拌系统将需要的钻井液和化学物质混合,以提高钻井效果和保护井壁。
通过上述工作原理,反井钻机能够完成钻井任务,将钻井液带入井底,清除岩屑,保护井壁,同时完成钻杆的下压和钻井液的回收,实现高效而安全的钻井过程。