钻井液的循环方式
- 格式:docx
- 大小:353.44 KB
- 文档页数:3
洗井方式洗井方式1)正循环洗井:泵从出僵持中将洗井液压入钻杆直达工作面冲洗刀具,冲洗井底,洗井液与钻屑混合后,沿着井孔上升排到地面,净化后的洗井液又回到贮浆池。
优点:由于洗井液的流速高,压力大,冲洗能力强,对刀具、井底均能有较好的冲洗效果,可减少钻屑被重复破碎的机会,而且还可以兼作动力源,使钻具旋转。
缺点:只能适用于小直径钻井。
主要原因是因为洗井液上返速度问题,钻井直径越大,上返速度越慢,往往是呈现层流状态,不能懈怠较大颗粒的钻屑。
2)反循环洗井:反循环钻井分为气举反循环、空气反循环、泵吸反循环等。
气举反循环钻井,是将压缩空气通过气水龙头或其它注气接头(气盒子),注入双层钻具内管与外管的环空,气体流到双层钻杆底部,经混气器处喷入内管,形成无图 1 反循环钻数小气泡,气泡一面沿内管迅速上升,一面膨胀,其所产生的膨胀功变为水的位能,推动液体流动;压缩空气不断进入内管,在混合器上部形成低比重的气液混合液,钻杆外和混气器下部是比重大的钻井液。
如图1所示,h 1为钻具内混合钻井液高度,密度为ρ1;h 2为钻具内未混合的钻井液高度,密度为ρ2;H为环空钻井液高度,密度为ρ,由于ρg H >ρ1g h 1+ρ2g h 2,环空钻井液进入钻具水眼内,形成反循环流动,并把井底岩屑连续不断的带到地表,排入沉砂池。
沉淀后的泥浆再注入井眼内,如此不断循环形成连续钻进过程。
钻井液循环流程见图2:沉砂池—环空—钻头—钻具内水眼—混气器(与注入空气混合)—双壁钻具内水眼—水龙带—排液管线—沉砂池。
优点及用途1、能实现地质捞砂目的图 2 反循环钻井气举反循环钻井液流在钻具内直接上返,携带岩屑能力强,岩样清晰,在漏失地层钻进时能实现捞砂等地质目的。
2、提高漏层钻井效率气举反循环钻井时,钻头处的钻井液对井底产生抽汲作用,岩屑被及时带走,减少压实效应,在漏层钻井时,可减少岩屑重复破碎、能提高机械钻速,增加钻井效率。
3、可减少或消除钻井液的漏失,保护储层由于反循环钻井时环空压耗小,作用于地层的压力小,所以在易漏地层钻进时,可减少或消除钻井液的漏失,保护储层,并节约大量钻井液材消耗。
钻井液循环系统钻井是勘探和开发石油和天然气资源的基本方法之一,也是现代工业生产的重要手段。
而钻井的成功与否离不开钻井液循环系统。
钻井液循环系统是指通过钻井液将钻废岩挖掘上来,并进行处理和再利用的系统。
下面我们来详细地了解一下钻井液循环系统。
1. 钻井液循环系统的工作原理钻井液循环系统的工作原理非常简单。
首先,钻头在地层下面钻井的同时,钻井液被泵入钻杆内,通过钻杆逐层往下推进。
随着钻头不断钻进地层,钻井液经过管柱流入井底,然后经过钻头,喷向地层。
钻井液在喷向地层的过程中,既能冷却和润滑钻头,又能将打破的岩屑和泥土带回井口,完成钻井液循环的整个过程。
而钻井液循环系统还需要完成以下的工作:一是沉降和过滤岩屑和泥土;二是将钻井液进行处理,如去除杂质和再生利用等;三是控制井下的压力和温度等;四是进行泥浆的泵送和储存,以及压力和重量的调整等。
2. 钻井液循环系统的组成和结构钻井液循环系统主要由工作液循环系统、固控系统、泥浆处理系统、泥浆泵浦系统、压力控制系统、热控制系统、测井系统、安全防护系统等组成。
其中,工作液循环系统是钻井液循环系统最为重要的一部分,主要由井口、固井器、钻杆、钻头、鉴定器、工作液泵、输送管道、坑、固井液池等组成。
而固控系统则负责控制岩屑和泥土的沉淀和过滤,主要由固体分离器、岩屑分级器、过滤器、坑、固控系统、切屑器等组成。
泥浆处理系统主要负责对钻井液进行再利用,泥浆泵浦系统则用于将处理好的钻井液泵送到井底,压力控制系统则用于控制井下的压力,确保钻进工作的顺利进行。
而热控制系统则主要用于控制钻进过程中产生的热量,保持井下的恒定温度,测井系统则用于获取井下的地质和状况信息。
3. 钻井液循环系统的应用钻井液循环系统广泛应用于石油和天然气开采领域。
通过采用钻井液循环系统,不仅可以提高钻井的效率,更可以保证钻井的成功。
此外,钻井液循环系统还可以帮助钻井人员预测地下水位及水位变化情况,有利于防止地下水污染。
洗井方式1)正循环洗井:泵从出僵持中将洗井液压入钻杆直达工作面冲洗刀具,冲洗井底,洗井液与钻屑混合后,沿着井孔上升排到地面,净化后的洗井液又回到贮浆池。
优点:由于洗井液的流速高,压力大,冲洗能力强,对刀具、井底均能有较好的冲洗效果,可减少钻屑被重复破碎的机会,而且还可以兼作动力源,使钻具旋转。
缺点:只能适用于小直径钻井。
主要原因是因为洗井液上返速度问题,钻井直径越大,上返速度越慢,往往是呈现层流状态,不能懈怠较大颗粒的钻屑。
2)反循环洗井:反循环钻井分为气举反循环、空气反循环、泵吸反循环等。
气举反循环钻井,是将压缩空气通过气水龙头或其它注气接头(气盒子),注入双层钻具内管与外管的环空,气体流到双层钻杆底部,经混气器处喷入内管,形成无数小气泡,气泡一面沿内管迅速上升,一面膨胀,其所产生的膨胀功变为水的位能,推动液体流动;压缩空气不断进入内管,在混合器上部形成低比重的气液混合液,钻杆外和混气器下部是比重大的钻井液。
如图1所示,h 1为钻具内混合钻井液高度,密度为ρ1;h 2为钻具内未混合的钻井液高度,密度为ρ2;H 为环空钻井液高度,密度为ρ,由于ρg H >ρ1g h 1+ρ2g h 2,环空钻井液进入钻具水眼内,形成反循环流动,并把井底岩屑连续不断的带到地表,排入沉砂池。
沉淀后的泥浆再注入井眼内,如此不断循环形成连续钻进过程。
钻井液循环流程见图2:沉砂池—环空—钻头—钻具内水眼—混气器(与注入空气混合)—双壁钻具内水眼—水龙带—排液管线—沉砂池。
优点及用途1、能实现地质捞砂目的气举反循环钻井液流在钻具内直接上返,携带岩屑能力强,岩样清晰,在漏失地层钻进时能实现捞砂等地质目的。
2、提高漏层钻井效率气举反循环钻井时,钻头处的钻井液对井底产生抽汲作用,岩屑被及时带走,减少压实效应,在漏层钻井时,可减少岩屑重复破碎、能提高机械钻速,增加钻井效率。
3、可减少或消除钻井液的漏失,保护储层由于反循环钻井时环空压耗小,作用于地层的压力小,所以在易漏地层钻进时,可减少或消除钻井液的漏失,保护储层,并节约大量钻井液材消耗。
钻井地质循环是指在钻井过程中,钻井液(泥浆)从井口注入井筒,携带岩屑回到地面,并在此过程中不断循环使用的一个过程。
这个过程对于钻井作业至关重要,因为它不仅帮助清除钻头切削下来的岩屑,维持钻孔的清洁,还能给钻头提供必要的冷却和润滑,同时还能传递压力,用来控制井口压力和防止井涌等安全问题。
以下是钻井地质循环的简要描述:
1. 注入:钻井液从井口通过钻井泵注入钻井管柱,通过钻头进入井筒。
2. 携带岩屑:钻头切削地层时,岩屑会被钻井液携带至井筒中。
3. 上升至地面:携带岩屑的钻井液上升至地面,经过井口。
4. 处理岩屑:在地面,岩屑从钻井液中分离出来,这个过程可能包括振动筛、离心机等设备。
5. 回收和净化:分离出的干净钻井液被回收,去除杂质后重新注入井筒。
6. 循环使用:净化后的钻井液再次被泵送至井筒,继续携带岩屑。
在这个过程中,钻井液的性能至关重要,它需要具备足够的密度来平衡地层压力,防止井涌;足够的粘度来携带岩屑;以及良好的滤失性能,防止井壁塌陷。
钻井地质循环的有效管理对于钻井作业的效率和安全性都至关重要。
反循环钻机工效-概述说明以及解释1.引言1.1 概述反循环钻机作为一种新型钻探设备,以其独特的工作原理和高效的性能在石油勘探、地质调查以及工程施工等领域得到广泛应用。
传统的钻探设备在钻井过程中需要进行钻杆的循环泵送,而反循环钻机则采用了一种全新的工作方式,实现了钻井液的反循环,从而提升了钻探的效率和安全性。
反循环钻机通过将钻井液从井底向井口泵送,再通过管道输送至地面,然后进行分离处理后再次注入到井底,实现了钻井液的闭环循环。
这种工作方式的关键在于反循环泵,通过其强大的泵送能力,可以将井底的岩屑和钻井液高效地向地面输送,从而实现了不间断地钻井作业。
反循环钻机相比传统钻探设备具有许多优势。
首先,它可以有效地减少钻井作业中的钻井液损失,避免了岩屑的堵塞和井口泥浆喷发等问题。
其次,由于反循环钻机实现了井底的闭环循环,可以有效地控制井底压力,降低工程事故的发生概率。
此外,反循环钻机还可以提高钻井的速度和效率,缩短整个钻井周期,节约了时间和成本。
在工程应用中,反循环钻机具有广阔的前景。
它可以被广泛应用于石油勘探和开发领域,提高钻井作业的效率和安全性,为油田的开发和生产做出贡献。
同时,反循环钻机也可以应用于地质调查和水井钻探等领域,满足不同用户的需求。
综上所述,反循环钻机以其独特的工作原理和高效的性能在钻探领域引起了广泛的关注。
其工效优势和广阔的应用前景使得它成为现代钻探技术发展的重要方向之一。
随着技术的不断进步和应用经验的积累,相信反循环钻机在未来的发展中将会发挥更大的作用。
文章结构部分的内容如下:1.2 文章结构本文共分为三个主要部分:引言、正文和结论。
在引言部分中,将概述本文的主题以及文章的结构。
首先,我们将介绍反循环钻机的定义和原理,以便读者对该设备有一个清晰的理解。
随后,我们将深入探讨反循环钻机的工作原理和特点,以便读者能够更全面地了解其工作原理和其在实际应用中的优势。
在正文部分,我们将详细介绍反循环钻机的定义和原理。
石油钻机原理
石油钻机是一种用于钻探石油或天然气井的设备,它的工作原理主要包括以下几个步骤:
1. 钻井液循环系统:石油钻机通过管道将钻井液从地面泵送到井口,然后通过钻杆输送到井底。
钻井液在井底通过钻嘴进入井眼,然后再经过井壁,最后从地层的孔隙中返回到地面,形成循环。
2. 钻头和钻杆系统:钻头是位于钻杆底部的工具,它主要负责在井底钻探地层。
钻杆则用于输送钻头的旋转运动和钻井液的输送。
钻杆一般由多节钻杆组成,通过螺纹连接起来。
3. 钻进过程:石油钻机通过旋转钻杆,使钻头钻入地层。
钻头下方有凿岩器,它通过冲击和旋转的力量来破碎地层。
钻杆由钻杆底部的驱动机构提供旋转力,钻杆的旋转将钻头带动起来。
4. 钻井液的功能:钻井液在石油钻机中起到很重要的作用。
首先,它能冲刷井眼和减少钻屑。
其次,钻井液能够平衡地层压力,避免井底喷发事故的发生。
此外,钻井液还能稳固井壁,防止井壁塌陷。
5. 钻井液循环系统中的设备:石油钻机的钻井液循环系统包括旋转顶驱、旋转鼓风机、钻井液搅拌器等设备。
旋转顶驱通过压力将钻杆推向井底,旋转鼓风机则用于增加钻井液的流动速度,钻井液搅拌器则用于搅拌钻井液,保持其性能。
总之,石油钻机通过钻井液循环系统、钻头和钻杆系统以及钻进过程来完成石油或天然气井的钻探工作。
钻井液在其中起到很重要的作用,帮助冲刷井眼、平衡地层压力、稳固井壁等,同时还需要其他设备的配合来完成钻探过程。
钻孔正反循环原理及特点钻孔正反循环是一种常用的钻井方法,它的原理是通过连续进行正循环和反循环,使钻头顺利地进行钻进和钻出作业。
该方法的特点是操作简便、效率高、安全可靠。
钻孔正反循环的原理是通过改变钻井液的循环流动方向来实现钻孔作业。
正循环是指钻井液从钻杆内部流入钻孔,然后从孔底冲刷出来;反循环则是指钻井液从孔底进入钻孔,然后从钻杆内部流出。
在正循环阶段,钻井液通过钻杆内部的空心管道从地表输送到井底,然后通过钻头喷嘴喷出,冲刷岩屑并冷却钻头,再沿着钻孔外壁流回地表。
这样一来,钻井液的循环流动能够有效地清除钻孔底部的岩屑,减少钻头的磨损,并起到稳定井壁的作用。
同时,正循环还能带走地层中的气体和水,防止井底气体和水的逆流。
在反循环阶段,钻井液则由井底进入钻孔,经过钻杆内部空心管道流回地表。
反循环的主要目的是将井底的岩屑清除干净,防止其堆积在井底造成堵塞。
此外,反循环还能保持井内的正压状态,防止地下水和有害气体的渗入,并减少钻孔事故的发生。
钻孔正反循环具有以下特点:1. 操作简便:钻孔正反循环的操作相对简单,只需改变钻井液的流动方向即可。
这使得钻井作业更加高效快捷,减少了操作人员的工作强度。
2. 效率高:钻孔正反循环能够快速地将岩屑和废渣带出井口,并保持钻孔的稳定。
这样一来,钻孔作业能够迅速进行,提高了钻井效率。
3. 安全可靠:钻孔正反循环通过控制钻井液的流动方向,有效地清除了井底的岩屑和废渣,减少了井底堵塞的风险。
同时,它还能够保持井内的正压状态,防止了地下水和有害气体的渗入,确保了钻井作业的安全可靠。
4. 适用范围广:钻孔正反循环适用于各种地质条件下的钻井作业,无论是岩石、土层还是软土地层,都能够有效地进行钻进和钻出作业。
5. 节约成本:钻孔正反循环能够有效地清除井底的岩屑和废渣,减少钻头的磨损,延长钻头的使用寿命。
这样一来,可以节约维修和更换钻具的成本,降低钻井作业的总成本。
钻孔正反循环是一种简便、高效、安全可靠的钻井方法。
钻井循环系统使用操作要求钻井液循环系统是由钻井泵、地面管汇、立管、水龙带、钻井液净化设备、井下钻具及钻头喷嘴等组成。
其主要作用是冲洗净化井底、携带岩屑、传递动力。
一、钻井泵钻井泵是循环系统的心脏。
主要有单缸单作用立式柱塞泵,双缸双作用卧式活塞泵,三缸单作用卧式活塞泵。
它的作用是为钻井液循环提供能量,以一定的压力和流量,将具有一定密度和粘度的钻井液输进钻具和完成整个循环过程。
(一)钻井泵的结构和工作原理钻井泵主要由液力端和动力端两大部分组成。
液力端包括缸体、缸套、活塞、吸入阀、排出阀等部件;动力端主要包括传动轴、齿轮、曲柄连杆等部件。
动图2-10 钻井泵的工作原理力机通过皮带(或链条、万向轴)带动泵的主轴旋转,再通过曲柄连杆机构使活塞移动,缸内形成负压,上水池的液体在大气压力作用下,顶开吸入阀进入缸内,直到完成吸入过程。
活塞开始向反方向移动,缸内液体受到活塞的挤压而压力升高,吸入阀被关闭,排出阀被顶开,液体被活塞推出排出阀,经排出管进入高压管汇,完成排出过程。
(二)钻井泵的类型与技术规范目前,石油钻井常用的钻井泵有三缸单作用钻井泵和双缸双作用钻井泵两大类,其技术规范见下表。
表2-12 石油钻井常用的钻井泵(三)钻井泵的使用要求1. 开泵前应检查安全阀、泵压表是否符合使用要求;各连接螺丝是否上紧,润滑油是否加够;高低压管汇各种闸门是否开关正确;皮带轮(链轮、万向轴)护罩的固定是否齐全、牢靠;冷却水(油)道是否畅通;空气包所充气体及压力是否符合要求。
2. 开泵时必须与有关操作人员联系,确认无误时才能开泵。
3. 开泵时,操作人员必须注意泵压表的压力变化,循环未正常前不许离开开关。
4. 在运转过程中,要经常检查泵压表的变化,检查泵各部位有无异常响声5. 运转中,要经常检查十字头滑板油孔及拉杆盘根冷却润滑流道是否畅通,观察拉杆盘根有无刺穿现象。
6. 开泵后若要修泵时,须摘开带泵离合器,挂标示牌或有专人监护气开头以免误操作导致事故。
石油钻机工作原理
石油钻机是一种用于从地下地层中提取石油或天然气的设备。
其工作原理可以简要地分为以下几个步骤:
1. 钻井液循环:石油钻机通过泵将钻井液(一种由水、泥浆和化学添加剂混合而成的液体)从钻井井口注入井筒中。
钻井液在井筒中形成一股循环流动,起到冷却和润滑钻头的作用。
2. 钻头转动:钻机通过转动机构带动钻杆和钻头旋转。
钻头通常由金属钻材制成,具有旋转切削地层的功能。
3. 钻进地层:钻井液从钻杆中通过喷嘴射向钻头,将钻进的碎屑和岩石颗粒带至井面。
钻进过程中,钻井液的循环不断清除井筒中的碎屑,保持井筒的稳定性,并传递地层信息。
4. 钻井套管:当钻进到一定深度后,钻井套管将会安装入钻井井筒中。
钻机停止旋转,钻杆和钻头会被临时拆卸出来。
钻井套管由一节一节的钢管组成,通过下沉至井底来加固井筒壁。
5. 井壁固井:在钻井套管装置完成后,水泥浆会从钻井套管顶部注入井筒中。
水泥浆填充井筒与地层之间的空隙,形成固定的井壁。
石油钻机通过不断循环钻井液、旋转钻杆和钻头、钻进地层并固井来提取地下的石油和天然气。
这是一个高度复杂和精密的工程过程,需要合理的工程设计和操作技术。