2013-11-07-11-12 第6-7次课 波像差概述介绍
- 格式:pdf
- 大小:3.04 MB
- 文档页数:110
常识综述从人类视网膜感光细胞的密度推算出人眼的极限视力可达3.0甚至更高,但由于人类进化过程中对远视力的需要逐渐下降,以及角膜和晶状体等器官的光学性能退化等原因,导致出现各种像差,因此人眼的理想视力只有1.5或更差,并且这些像差不能被现有的眼镜和隐形眼镜矫正。
波阵面像差(波前像差)原本是一项天文学技术,其发展由来已久,主要用来纠正天文望远镜等的像差,以便能更清晰地观测到更远距离的天体。
像差理论做为研究非理想光学系统的基础早已广泛地应用于制造光学精密仪器,当波前像差技术应用于眼科后,才与我们的生活变得更加关系密切。
目前波前像差仪有很多种,可分为客观法和主观法两类。
客观法根据其设计原理,又可分为:可1基于而当受检Zeiss公司),2以Tscherning像差理论为基础,通过计算投射到视网膜上的光线偏移而得出结果。
图6-2图10Allegretto 3以Smirnov-Scheiner理论为基础,其方法是通过对进入中心凹的每一光线进行补偿调整使之在视网膜成像完善。
其原理与临床应用的屈光计、检影镜很相似,所有进入视网膜的光线都向中央一点会聚,通过在各轴向上对瞳孔的快速裂隙扫描而实现,眼底反光被CCD捕捉从而得到眼的波阵面像差。
基于此原理的像差仪包括Emory视觉矫正系统和OPD扫描系统(Nidek公司)等。
图6-3基于Smirnov-Scheiner原理的像差测量示意图二、主观式像差仪根据光路追踪原理设计,利用空间分辨折射仪以心理物理方法测量人眼像差。
假设眼处于衍射的极限时,聚焦在无穷远,因而无穷远的点光源通过瞳孔不同区域进入眼内,将会聚焦在视网膜上的一点。
当眼存在像差时,进入眼内的光线将不会聚焦在同一点上,点光源的像将是一个模糊像,该像点与中心发生了偏移,导致波阵面平面的光线射入眼球后由理论上的球面波变成了不规则的曲面波,通过数学换算,得到放大在瞳孔面上的眼底点扩散函数。
基于此原理的像差仪有WFA-1000人眼像差仪(苏州亮睛公司)。
视觉波前像差的研究及新进展传统的人眼视觉光学系统的成像问题,均为近轴光线的成像,即为理想的光学成像,但是在实际的人眼成像系统中往往不可能达到理想的效果,因为人眼光学系统本身存在波前像差。
随着眼视光学和相关科学技术的突飞猛进,特别是波前像差测量仪器和图形重建技术的突破,使得波前像差理论由单纯的物理光学概念成为可以影响人眼视觉质量的重要因素。
并成为激光矫视领域的研究和应用焦点,在眼科界逐渐被认识且被不断推广。
一、历史回顾波前技术在激光视力矫正手术问世之前很久就已经出现了。
早在几个世纪前,就发现人眼存在单色像差。
约400年前,Scheiner在试验中发现,存在屈光问题的眼睛在通过前方2个孔洞看远方的一个物体时会将其看成2个物象,如果3个孔洞,则会看成3个物象。
这是观察到的最初级的像差。
然而,基于几何光学原理对人眼光学系统特性的传统评价方法存在很大的局限性,直至近代物理学研究发现光具有波粒二象性。
研究光粒子性的领域属于几何学范畴,光的波动性领域则属于物理学范畴。
几何光学是光学最早发展起来的学科。
在几何光学中,仅以光线的直线传播为基础,研究其在透明介质中的传播规律,例如反射和折射定律。
但是有些光学现象,例如衍射、干涉和偏振,不能由反射和折射定律解释,却能很容易由光的横向波动性特征解释,热辐射、光电效应等亦为粒子特性。
根据光的波粒二象性理论可以完整评价和描述人眼成像偏差。
Hartman- Shack波前分析仪最早出现的原因是为了天文学的需要。
1900年,天文学家JohannesHartmann发明了一种测量光线经过反射镜和镜片的像差的方法,这样就可以找出反射镜和镜片上的任何不完美和瑕疵。
Hartmann的方法是使用一个金属圆盘,在上面钻规则间距的孔洞,然后把圆盘放在反射镜或镜片的前面,最后再记录位于反射镜或镜片的焦点的影像。
因此,当光线经过一个完美的反射镜或镜片的时候,就会产生一个规则间距光点的影像。
假如影像不是规则间距的影像,那么就可以测量出反射镜或镜片的像差。
第七章像差概述7.1 介绍在第三章的课后练习中,你可以用运优化减少或者消除像差,比如球差、慧差、像散。
在第六章,可以看到通过改变光阑的位置来减少慧差和像散。
直到现在我们也只是仅仅在优化函数编辑器SPHA,COMA,ASTL看到这些像差。
即使你对这些基础像差已经有一些前期的探索,我们仍然要在更深层次设计镜头之前了解这些像差。
这些像差将会被在像平面上或者输出孔径上描述。
7.2 评价图在整个过程中,有两个评价图一直要用到。
分别是射线图(ray fan plot)和散斑点图表(spot diagram)我们将根据这些图标来描述像差,这将有助于我们理解这些图到底说明了什么。
7.2.1 射线图如图7.1a,假设有一个离轴实物,垂直于y轴,从这个实物上一些光线发射出来射向通过光轴和点光源定义的光平面。
假设光通过一个近轴的薄透镜,光阑面在该透镜上,主要光线将穿过光阑中心。
主要光线在空间均匀分布于沿y轴的孔径面上。
两束光线在孔径的边沿分别在主光线的两侧。
这中空间分布就叫射线图。
主光线进入像平面进而穿透像平面以一定的高度。
其余的光线也是在不同的位置进入像平面进而穿透像平面。
我们划斑点图,横坐标代表y轴孔径,纵坐标代表y轴的像平面。
用一个特殊的光线作为一个例子,比如光线a,画出在孔径中的位置与像平面中的位置,作为x-y点在图表中。
然而,在像平面上我们不从光轴画出射线a的位移,而是画出射线a相对于主光线的位移。
换句话说,主光线穿透的位置被定义为我们斑点图y轴的零点。
另外,我们就可以用规格化的位置代替实际光线a的孔径位置。
限定在x-轴上的图表范围为±1。
当我们根据这些协议所描述的规则画出所有的光线,就可以称为射线图,如图7.1b所示。
射线图的形状依赖于系统中像差的类型和大小。
对于一个没有像差系统,射线图将是一个和x轴重合的直线。
(有法向到切向的扇型就叫弧矢扇型图)7.2.2 散斑图表假定,添加相同两个直线栅格入瞳,如图7.2。
常识综述从人类视网膜感光细胞的密度推算出人眼的极限视力可达3.0甚至更高,但由于人类进化过程中对远视力的需要逐渐下降,以及角膜和晶状体等器官的光学性能退化等原因,导致出现各种像差,因此人眼的理想视力只有1.5或更差,并且这些像差不能被现有的眼镜和隐形眼镜矫正。
波阵面像差(波前像差)原本是一项天文学技术,其发展由来已久,主要用来纠正天文望远镜等的像差,以便能更清晰地观测到更远距离的天体。
像差理论做为研究非理想光学系统的基础早已广泛地应用于制造光学精密仪器,当波前像差技术应用于眼科后,才与我们的生活变得更加关系密切。
目前波前像差仪有很多种,可分为客观法和主观法两类。
客观法根据其设计原理,又可分为:出射型像差仪、视网膜像型像差仪和入射可调式屈光计三种类型;主观法即心理物理学检查方法。
客观法的优点是快速、可重复性及可靠性好,但需使用较亮的照明光线,大部分还需要散瞳;主观法无需散瞳,可在眼睛存在调节的状态下检查眼的像差,但需对患者进行训练,检查较慢,可重复性较客观法差。
无论是主观法还是客观法像差仪,其基本原理是一样的,即选择性地监测通过瞳孔的部分光线,将其与无像差的理想光线进行比较,通过数学函数将像差以量化形式表达出来。
下面根据其设计原理来逐一介绍。
一、客观式像差仪1基于Schack-Hartmann眼球,穿过一透镜组,聚焦在一个CCD图像。
WASCA像差分析仪(Zeiss公司),Zywave2图即,像差分析仪(Wavelight公司)和视网膜光线追踪仪(Tracy公司)等。
3瞳孔的快速裂隙扫描而实现,眼底反光被CCD捕捉从而得到眼的波阵面像差。
基于此原理的像差仪包括Emory 视觉矫正系统和OPD扫描系统(Nidek公司)等。
图6-3基于Smirnov-Scheiner原理的像差测量示意图二、主观式像差仪根据光路追踪原理设计,利用空间分辨折射仪以心理物理方法测量人眼像差。
假设眼处于衍射的极限时,聚焦在无穷远,因而无穷远的点光源通过瞳孔不同区域进入眼内,将会聚焦在视网膜上的一点。