有限元分析方法
- 格式:ppt
- 大小:12.16 MB
- 文档页数:31
有限元分析方法有限元分析(Finite Element Analysis, FEA)是一种数值分析方法,用于解决物理问题的近似解。
它基于将有限元区域(即解释对象)分解成许多简单的几何形状(有限元)并对其进行数值计算的原理。
本文将深入探讨有限元分析的原理、应用和优点。
有限元分析的原理基于弹性力学理论和数值计算方法。
它通过将解释对象分解为有限个简单的几何区域(有限元)和节点,通过节点之间的连接来建立模型。
这些节点周围的解释对象区域称为“单元”,并且通过使用单元的形状函数近似解释对象的形状。
每个单元都有一个与之相连的节点,通过对每个单元的受力进行计算,可以得到整个解释对象的受力分布。
然后,利用一系列运算和迭代,可以计算出解释对象的位移、应力和变形等相关参数。
有限元分析的应用范围广泛,从结构力学、热传导、电磁场分析到流体力学等各个领域。
在结构力学中,它被用于分析各种结构的静力学、动力学和疲劳等性能。
在热传导领域,它可以用于研究物体内部的温度分布和传热性能。
在电磁场分析中,它可用于计算复杂电磁场下的电场、磁场和电磁场耦合问题。
在流体力学中,有限元方法可以解决各种流体流动、热传递和质量转移问题。
有限元分析的优点之一是可以处理各种复杂边界条件和非线性材料特性。
它可以考虑到不同材料的非线性本质,例如弹塑性和接触等问题。
另外,有限元方法还可以适应任意形状和尺寸的几何模型,因此非常适用于复杂工程问题的建模与分析。
有限元分析的使用需要一定的专业知识和经验。
首先,需要将解释对象抽象成几何模型,并进行细分和离散化。
其次,需要选择适当的几何元素和材料模型,以及合适的边界条件和加载方式。
然后,需要定义求解器和数值方法,并使用计算机程序对模型进行计算。
最后,需要对结果进行后处理和验证,以确保其准确性和可靠性。
总的来说,有限元分析是一种强大的工程分析工具,在解决各种物理问题方面有广泛的应用。
它通过将复杂的问题简化为简单的有限元模型,通过数值计算的方法获得近似解。
百度文库- 让每个人平等地提升自我第1章有限元分析方法及NX Nastran的由来有限元分析方法介绍计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。
有限单元法的形成近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。
这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。
许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性:❑CAE仿真可有效缩短新产品的开发研究周期。
❑虚拟样机的引入减少了实物样机的试验次数。
❑大幅度地降低产品研发成本。
❑在精确的分析结果指导下制造出高质量的产品。
❑能够快速对设计变更作出反应。
❑能充分和CAD模型相结合并对不同类型的问题进行分析。
❑能够精确预测出产品的性能。
❑增加产品和工程的可靠性。
❑采用优化设计,降低材料的消耗或成本。
❑在产品制造或工程施工前预先发现潜在的问题。
❑模拟各种试验方案,减少试验时间和经费。
❑进行机械事故分析,查找事故原因。
当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。
其中最为著名的是由美国国1百度文库 - 让每个人平等地提升自我2家宇航局(NASA )在1965年委托美国计算科学公司和贝尔航空系统公司开发的Nastran 有限元分析系统。
有限元分析方法有限元分析是一种工程数值分析方法,它通过将复杂的结构分割成许多小的有限元素,然后利用数学方法对这些元素进行计算,最终得出整个结构的应力、变形等物理量。
有限元分析方法在工程设计、材料研究、结构优化等领域有着广泛的应用。
有限元分析方法的基本思想是将一个连续的结构分割成有限个小的单元,每个单元都是一个简单的几何形状,比如三角形、四边形等。
然后在每个单元内部建立一个数学模型,利用数学方法对这些单元进行计算,最终将它们组合起来得到整个结构的应力、变形等物理量。
有限元分析方法的核心是建立数学模型。
在建立数学模型的过程中,需要考虑结构的材料性质、边界条件、加载情况等因素。
通过合理地选择单元类型、网格划分、数学模型等参数,可以得到准确的分析结果。
有限元分析方法的优点之一是可以处理复杂的结构。
由于有限元分析方法将结构分割成小的单元,因此可以处理各种复杂的结构,比如曲面、异形、空腔等。
这使得有限元分析方法在工程设计中有着广泛的应用。
另外,有限元分析方法还可以进行结构优化。
通过改变单元类型、网格划分、边界条件等参数,可以对结构进行优化,使得结构在满足强度、刚度等要求的前提下,尽可能地减小材料消耗,降低成本。
当然,有限元分析方法也有一些局限性。
比如,在处理非线性、大变形、大变位等问题时,需要考虑材料的非线性特性、接触、接触、摩擦等效应,这会增加分析的复杂度。
另外,有限元分析方法的结果也受到网格划分、单元类型等参数的影响,需要谨慎选择这些参数。
总的来说,有限元分析方法是一种强大的工程数值分析方法,它在工程设计、材料研究、结构优化等领域有着广泛的应用。
通过合理地建立数学模型、选择合适的参数,可以得到准确的分析结果,为工程设计和科学研究提供有力的支持。
有限元分析实例引言有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,能够将连续体结构分割成有限个小单元,通过在每个小单元内建立方程模型,最终求解整个结构的力学行为。
本文将以一个实例来介绍有限元分析的基本过程和步骤。
实例背景我们将以一个简单的杆件弯曲问题为例来进行有限元分析。
假设有一根长度为L、截面积为A的杆件,材料的弹性模量为E,截面的转动惯性矩为I。
我们希望通过有限元分析来计算杆件在一定加载条件下的弯曲变形。
有限元网格的划分首先,我们需要将杆件划分成有限个小单元,即有限元网格。
常用的网格划分方法有三角形划分、四边形单元划分等。
根据具体问题的要求和复杂度,选择合适的划分方法。
单元的建立划分好网格后,我们需要在每个小单元内建立方程模型。
在弯曲问题中,常见的单元模型有梁单元、壳单元等。
在本实例中,我们选择梁单元作为杆件的单元模型。
对于梁单元,我们需要定义每个节点的位移和约束条件。
根据杆件的几何尺寸和材料属性,可以利用应变能量原理和几何相似原理,得到每个节点的位移和约束条件。
材料特性和加载条件的定义在进行有限元分析之前,我们需要定义材料的特性和加载条件。
对于本实例中的杆件,我们需要定义弹性模量E、截面积A和转动惯性矩I。
加载条件可以包括集中力、均布力、弯矩等。
在本实例中,假设杆件受到均布力,即沿杆件轴向的受力分布是均匀的。
单元方程的建立和求解在定义了材料特性和加载条件之后,我们可以根据每个梁单元的位移和约束条件,建立每个单元的方程模型。
常见的方程模型有刚度矩阵方法、位移法等。
根据所选的单元模型,选择合适的方程模型进行计算。
通过对每个单元的方程模型进行组装,我们可以得到整个结构的方程模型。
将加载条件带入,可以求解出整个结构在给定加载条件下的位移、应力等参数。
结果分析根据求解得到的位移信息,我们可以绘制出结构的变形图。
通过变形图,可以直观地观察到结构在弯曲条件下的变形情况。
常用的有限元分析方法1、结构静力分析结构静力分析用来分析由于稳态外部载荷引起的系统或部件的位移、应力、应变和力。
静力分析很适合于求解惯性及阻力的时间相关作用对结构响应的影响并不显著的问题。
这种分析类型有很广泛的应用,如确定结构的应力集中程度,或预测结构中由温度引起的应力等。
静力分析包括线性静力分析和非线性静力分析。
如图1、图2所示。
非线性静力分析允许有大变形、蠕变、应力刚化、接触单元、超弹性单元等。
结构非线性可以分为:几何非线性,材料非线性和状态非线性三种类型。
几何非线性指物体在外部载荷作用下所产生的变形与其本身的几何尺寸相比不能忽略时,由物体的变形引起的非线性响应。
材料非线性指物体材料变形时,材料所表现的非线性应力应变关系。
常见的材料非线性有弹塑性、超弹性、粘弹塑性等。
许多因素可以影响材料的非线性应力-应变关系,如加载历史、环境温度、加载的时间总量等。
状态非线性是指结构表现出来的一种与状态相关的非线性行为,如二个变形体之间的接触。
随着接触状态的变化,其刚度矩阵发生显著的变化。
图1 图2汽车车架的线性结构静力分析应用云图发动机连杆小头连接部分的结构静力分析云图2、结构动力分析结构动力分析一般包括结构模态分析、谐响应分析和瞬态动力学分析。
结构模态分析用于确定结构或部件的振动特性(固有频率和振型)。
它也是其它瞬态动力学分析的起点,如谐响应分析、谱分析等。
结构模态分析中常用的模态提取方法有:子空间(Subspace)法、分块的兰索斯(BlockLanczos)法、PowerDynamics法、豪斯霍尔德(ReducedHouseholder)法、Damped法以及Unsysmmetric法等。
谐响应分析用于分析持速的周期载荷在结构系统中产生的持速的周期响应(谐响应),以及确定线性结构承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种分析方法,这种分析只计算结构的稳态受迫振动,不考虑发生在激励开始时的瞬态振动,谐响应分析是一种线性分析,但也可以分析有预应力的结构。