有限单元法与有限元分析
- 格式:docx
- 大小:22.30 KB
- 文档页数:3
百度文库- 让每个人平等地提升自我第1章有限元分析方法及NX Nastran的由来有限元分析方法介绍计算机软硬件技术的迅猛发展,给工程分析、科学研究以至人类社会带来急剧的革命性变化,数值模拟即为这一技术革命在工程分析、设计和科学研究中的具体表现。
数值模拟技术通过汲取当今计算数学、力学、计算机图形学和计算机硬件发展的最新成果,根据不同行业的需求,不断扩充、更新和完善。
有限单元法的形成近三十年来,计算机计算能力的飞速提高和数值计算技术的长足进步,诞生了商业化的有限元数值分析软件,并发展成为一门专门的学科——计算机辅助工程CAE(Computer Aided Engineering)。
这些商品化的CAE软件具有越来越人性化的操作界面和易用性,使得这一工具的使用者由学校或研究所的专业人员逐步扩展到企业的产品设计人员或分析人员,CAE在各个工业领域的应用也得到不断普及并逐步向纵深发展,CAE工程仿真在工业设计中的作用变得日益重要。
许多行业中已经将CAE分析方法和计算要求设置在产品研发流程中,作为产品上市前必不可少的环节。
CAE仿真在产品开发、研制与设计及科学研究中已显示出明显的优越性:❑CAE仿真可有效缩短新产品的开发研究周期。
❑虚拟样机的引入减少了实物样机的试验次数。
❑大幅度地降低产品研发成本。
❑在精确的分析结果指导下制造出高质量的产品。
❑能够快速对设计变更作出反应。
❑能充分和CAD模型相结合并对不同类型的问题进行分析。
❑能够精确预测出产品的性能。
❑增加产品和工程的可靠性。
❑采用优化设计,降低材料的消耗或成本。
❑在产品制造或工程施工前预先发现潜在的问题。
❑模拟各种试验方案,减少试验时间和经费。
❑进行机械事故分析,查找事故原因。
当前流行的商业化CAE软件有很多种,国际上早在20世纪50年代末、60年代初就投入大量的人力和物力开发具有强大功能的有限元分析程序。
其中最为著名的是由美国国1百度文库 - 让每个人平等地提升自我2家宇航局(NASA )在1965年委托美国计算科学公司和贝尔航空系统公司开发的Nastran 有限元分析系统。
有限单元法的基本原理有限单元法(Finite Element Method,FEM)是一种常用于工程和科学领域中求解复杂问题的数值方法。
它的基本原理可以概括为将复杂的连续问题离散化为简单的有限个单元,然后利用数值方法对各个单元进行分析,最终得到整个问题的近似解。
以下将详细介绍有限单元法的基本原理。
1.连续问题的离散化:2.单元的建立:利用有限单元法,每个单元内部的位移和应力分布可以通过简单的变换关系来表示。
通常,在每个单元内部选择一种合适的形状函数来表示位移和应力的连续变化。
在线性有限元分析中,常用的形状函数为线性函数,而在非线性有限元分析中,常用的形状函数可以是二次或更高次函数。
3.边界条件的施加:在有限单元法中,为了求解问题的唯一解,必须施加适当的边界条件。
边界条件可以是约束位移、施加力或给定的位移等。
通过施加适当的边界条件,可以将问题转化为一个封闭的系统,方便求解。
4.系统的建立:利用有限单元法,可以将整个问题表示为一个线性或非线性的代数方程组。
构建这个方程组需要考虑到每个单元的位移和应力之间的关系。
通过组装每个单元的刚度矩阵和力向量,最终可以得到整个问题的刚度矩阵和力向量。
5.方程组的求解:得到整个问题的刚度矩阵和力向量后,可以使用各种数值方法求解代数方程组。
常用的方法有直接法(如高斯消元法)和迭代法(如共轭梯度法)。
求解得到的位移和应力即为整个问题的近似解。
6.解的后处理:在有限单元法中,为了解决工程问题,通常需要进一步对位移和应力进行后处理。
后处理可以包括计算其他感兴趣的物理量、绘制应力和位移图等。
通过后处理,可以更好地理解问题的本质和它们的工程意义。
总结起来,有限单元法通过将连续问题离散化为有限个单元,然后使用适当的形状函数表示位移和应力的连续变化,通过施加边界条件和构建代数方程组,最终得到问题的近似解。
有限单元法在工程和科学领域中被广泛应用,可以有效地解决各种复杂问题。
solidworks有限元分析什么是有限元分析?有限单元法:把一个连续的零件模型划分为很多个小块,因为对一个零件模型直接求解受力,很难得出解析解,必须用到数值求解法(有限单元法),把零件模型划分为多个小块,因为小块是有体积的,所以是有限个小块。
有限元分析:使用有限单元法进行分析有限元分析的常用术语1、网格:使用四面体或三角形来近似地模拟真实的几何模型。
进行有限元分析时画网格(把一个连续的实体分成有限个单元)是必须的过程。
2、单元:四面体、三角形被称之为单元3、节点:单元的角点4、刚体:在进行有限元分析的时候,我们分析的物体都是柔性体(可以变形的物体)。
当我们不关心某一个物体的形变时,就可以把这个物体设为刚体。
5、载荷:施加在点、线、面上的扭矩、力矩、压力、重力、离心力、热载荷(热胀冷缩)、强制位移(在悬臂梁上设置2mm的位移,观察悬臂梁的受力情况)等什么是应力、位移、应变?应力是单位面积上的内力大小。
Von Mises 应力是一种等效应力,该点的等效应力越大,约危险,单位一般是N/mm2(Mpa),单位在“应力”,右键“编辑定义”,“显示”里面可以更改单位。
位移是构件内一点沿某方向移动的距离。
应变是单位长度位移的多少,一点沿某方向的应变大,则该点沿该方向的变形程度大。
编辑材料时应该注意什么?编辑材料时,在材料属性一栏,红色是必须用到的材料常数,蓝色是在特定的载荷类型下才会被使用,如“温度载荷”就需要“热扩张系数”。
,黑色是不会用到的。
但根据有限元理论,弹性模量、中泊松比才是必须要用的,质量密度是要加惯性力(重力、离心力)的时候要用到,屈服强度是在计算安全系数时才能用到。
画网格时应该注意什么?画网格时,可以用(计算结果中的应力图与网格图重合到一起),红色应力大的部分要完整地覆盖两层网格,这样的话,网格就划分的很好了。
另外,在应力大的地方可以相应地增加网格精度,保证网格划分很好。
右键点击“网格”,选择“应用网格控制”,选择要提高精度的地方(线、面),第二个参数是此最高精度变到设置的网格普遍精度的速率(一般是1.2)。
有限单元法与有限元分析
1.有限单元法
在数学中,有限元法(FEM,Finite Element Method)是一种为求解偏微分方程边值问题近似解的数值技术。
求解时对整个问题区域进行分解,每个子区域都成为简单的部分,这种简单部分就称作有限元。
它通过变分方法,使得误差函数达到最小值并产生稳定解。
类比于连接多段微小直线逼近圆的思想,有限元法包含了一切可能的方法,这些方法将许多被称为有限元的小区域上的简单方程联系起来,并用其去估计更大区域上的复杂方程。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
随着电子计算机的发展,有限单元法是迅速发展成一种现代计算方法。
它是50年代首先在连续体力学领域--飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快广泛的应用于求解热传导、电磁场、流体力学等连续性问题。
1.1.有限元法分析本质
有限元法分析计算的本质是将物体离散化。
即将某个工程结构离散为由各种单元组成的计算模型,这一步称作单元剖分。
离散后单元与单元之间利用单元的节点相互连接起来;单元节点的设置、性质、数目等应视问题的性质,描述变形形态的需要和计算精度而定(一般情况单元划分越细则描述变形情况越精确,即越接近实际变形,但计算量越大)。
所以有限元中分析的结构已不是原有的物体或结构物,而是同新材料的由众多单元以一定方式连接成的离散物体。
这样,用有限元分析计算所获得的结果只是近似的。
如果划分单元数目非常多而又合理,则所获得的结果就与实际情况相符合。
1.2.特性分析
1)选择位移模式:
在有限单元法中,选择节点位移作为基本未知量时称为位移法;选择节点力作为基本未知量时称为力法;取一部分节点力和一部分节点位移作为基本未知量时称为混合法。
位移法易于实现计算自动化,所以,在有限单元法中位移法应用范围最广。
当采用位移法时,物体或结构物离散化之后,就可把单元总的一些物理量如
位移,应变和应力等由节点位移来表示。
这时可以对单元中位移的分布采用一些能逼近原函数的近似函数予以描述。
通常,有限元法我们就将位移表示为坐标变量的简单函数。
这种函数称为位移模式或位移函数。
2)分析单元的力学性质:
根据单元的材料性质、形状、尺寸、节点数目、位置及其含义等,找出单元节点力和节点位移的关系式,这是单元分析中的关键一步。
此时需要应用弹性力学中的几何方程和物理方程来建立力和位移的方程式,从而导出单元刚度矩阵,这是有限元法的基本步骤之一。
3)计算等效节点力:
物体离散化后,假定力是通过节点从一个单元传递到另一个单元。
但是,对于实际的连续体,力是从单元的公共边传递到另一个单元中去的。
因而,这种作用在单元边界上的表面力、体积力和集中力都需要等效的移到节点上去,也就是用等效的节点力来代替所有作用在单元上的力。
2.有限元分析
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
有限元分析是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元是那些集合在一起能够表示实际连续域的离散单元。
有限元的概念早在几个世纪前就已产生并得到了应用,例如用多边形(有限个直线单元)逼近圆来求得圆的周长,但作为一种方法而被提出,则是最近的事。
有限元法最初被称为矩阵近似方法,应用于航空器的结构强度计算,并由于其方便性、实用性和有效性而引起从事力学研究的科学家的浓厚兴趣。
经过短短数十年的努力,随着计算机技术的快速发展和普及,有限元方法迅速从结构工程强度分析计算扩展到几乎所有的科学技术领域,成为一种丰富多彩、应用广泛并且实用高效的数值分析方法。
2.1.基本特点
有限元方法与其他求解边值问题近似方法的根本区别在于它的近似性仅限于相对小的子域中。
20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种
局部化情况。
不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。
2.2.步骤方法
对于不同物理性质和数学模型的问题,有限元求解法的基本步骤是相同的,只是具体公式推导和运算求解不同。
有限元求解问题的基本步骤通常为:
第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。
第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。
显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量及误差都将增大,因此求解域的离散化是有限元法的核心技术之一。
第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。
第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。
为保证问题求解的收敛性,单元推导有许多原则要遵循。
对工程应用而言,重要的是应注意每一种单元的解题性能与约束。
例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。
第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。
总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。
第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。
联立方程组的求解可用直接法、迭代法和随机法。
求解结果是单元结点处状态变量的近似值。
对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。
简言之,有限元分析可分成三个阶段,前置处理、计算求解和后置处理。
前置处理是建立有限元模型,完成单元网格划分;后置处理则是采集处理分析结果,使用户能简便提取信息,了解计算结果。