文科数学学霸笔记21 等差数列及其前n项和
- 格式:pdf
- 大小:85.75 KB
- 文档页数:6
等差数列的通项与前n项和等差数列在数学中是常见且重要的概念。
它的特点是每一项与它的前一项之差都是一个常数,这个常数称为公差。
等差数列的通项以及前n项和是我们在解决相关问题时必须要了解和掌握的基础知识点。
本文将介绍等差数列的通项和前n项和的计算方法,同时提供一些实例来加深理解。
一、等差数列的通项公式我们先来看等差数列的通项公式,也就是表示第n项的公式。
假设等差数列的首项为a1,公差为d,任意一项的序号为n,那么第n项的通项公式可以用如下表达式表示:an = a1 + (n-1)d在这个公式中,通过给定首项和公差,我们可以计算出等差数列的任意一项。
例如,如果等差数列的首项a1为2,公差d为3,那么第n项的通项公式为:an = 2 + (n-1)3二、等差数列的前n项和公式求解等差数列的前n项和是我们在数学中常常会遇到的问题。
已知等差数列的首项为a1,公差为d,前n项和为Sn,那么前n项和的计算公式可以用如下表达式表示:Sn = (n/2)(a1 + an)在这个公式中,通过给定首项、公差和项数,我们可以计算出等差数列的前n项和。
例如,如果等差数列的首项a1为2,公差d为3,前n项和Sn为20,那么前n项和的计算公式为:20 = (n/2)(2 + (n-1)3)三、实例分析为了更好地理解等差数列的通项与前n项和的计算方法,我们来看几个实例。
实例一:已知等差数列的首项为3,公差为4,求该数列的第10项和前10项的和。
解:根据等差数列的通项公式:an = a1 + (n-1)d,我们可以求得第10项为:a10 = 3 + (10-1)4 = 3 + 9*4 = 3 + 36 = 39根据等差数列的前n项和公式:Sn = (n/2)(a1 + an),我们可以求得前10项的和为:S10 = (10/2)(3 + 39) = (5)(42) = 210所以,该等差数列的第10项为39,前10项的和为210。
等差数学的前n项和公式等差数列是数学中的一种基本数列,它的每一项与前一项之差相等。
而等差数列的前n项和公式则是用来计算等差数列前n项和的公式。
我们来看一下等差数列的定义。
等差数列是指一个数列,其中每一项与前一项之差相等。
这个相等的差值被称为等差数列的公差,通常用d表示。
因此,等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1为首项,an为第n项。
接下来,我们来看一下等差数列的前n项和公式。
等差数列的前n 项和可以表示为Sn = n/2(a1 + an),其中a1为首项,an为第n 项。
这个公式的推导可以通过数学归纳法来证明。
当n=1时,Sn = a1,显然成立。
假设当n=k时,Sn = k/2(a1 + ak)成立,那么当n=k+1时,我们可以将Sn拆分为前k项和与第k+1项的和,即Sn = k/2(a1 + ak) + (a1 + (k+1-1)d)。
将等差数列的通项公式代入,化简得Sn = (k+1)/2(a1 + ak),即当n=k+1时,Sn = (k+1)/2(a1 + ak)成立。
因此,由数学归纳法可知,等差数列的前n项和公式成立。
接下来,我们来看一下如何应用等差数列的前n项和公式。
假设我们要求等差数列1, 3, 5, 7, 9的前3项和,那么根据前n项和公式,我们可以将a1=1,an=5,n=3代入,得到S3 = 3/2(1 + 5) = 9。
因此,等差数列1, 3, 5, 7, 9的前3项和为9。
除了应用等差数列的前n项和公式来计算前n项和之外,我们还可以通过等差数列的性质来解决一些实际问题。
例如,假设我们知道等差数列的首项和公差,要求第n项的值,那么我们可以通过等差数列的通项公式来计算。
又例如,假设我们知道等差数列的前n项和和公差,要求第n+1项的值,那么我们可以通过等差数列的前n 项和公式来计算前n项和,再通过等差数列的通项公式来计算第n+1项的值。
等差数列的前n项和公式是数学中的一种基本公式,它可以用来计算等差数列的前n项和,也可以应用于解决一些实际问题。
等差数列的前n项和在数学的世界里,等差数列是一个非常重要的概念。
而等差数列的前 n 项和,更是我们研究等差数列时必不可少的一部分。
首先,让我们来明确一下什么是等差数列。
等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
比如说,1,3,5,7,9 就是一个公差为 2 的等差数列。
那么,等差数列的前 n 项和到底怎么求呢?我们先来看一个简单的例子。
假设有一个等差数列:2,5,8,11,14 。
我们想求它的前 5 项和。
一种直观的方法是把这 5 个数一个一个加起来:2 + 5 + 8 + 11 +14 = 40 。
但如果数列的项数很多,这样一个一个加就太麻烦了。
这时候,我们就需要一个通用的公式来帮助我们快速求出等差数列的前n 项和。
这个公式就是:$S_n =\frac{n(a_1 +a_n)}{2}$,其中$S_n$ 表示前 n 项和,$n$ 是项数,$a_1$ 是首项,$a_n$ 是第 n 项。
我们来解释一下这个公式是怎么来的。
假设这个等差数列的公差为$d$ ,那么第 n 项$a_n$ 就可以表示为$a_n = a_1 +(n 1)d$ 。
我们把前 n 项和$S_n$ 写出来:$S_n = a_1 + a_2 + a_3 +\cdots + a_{n 1} + a_n$ 。
然后,我们再把这个式子倒过来写一遍:$S_n = a_n + a_{n 1}+ a_{n 2} +\cdots + a_2 + a_1$ 。
把这两个式子相加,得到:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n 1})+(a_3 + a_{n 2})+\cdots +(a_{n 1} + a_2) +(a_n + a_1)\\2S_n&=n(a_1 + a_n)\\S_n&=\frac{n(a_1 + a_n)}{2}\end{align}\有了这个公式,我们求等差数列的前 n 项和就方便多了。
等差数列前n项求和公式方法等差数列是数学中常见的一种数列。
其中,首项为a₁,公差为d,第n项为aₙ。
要求等差数列前n项求和的公式,可以通过以下几种方法来推导。
一、首项与末项求和法首项与末项求和法是最常见的一种方法。
设首项为a₁,末项为aₙ,则数列的项数为n。
1.求首项与末项首项a₁为数列的第一项,末项aₙ为数列的第n项。
可以根据等差数列的通项公式推导得到,通项公式为:aₙ=a₁+(n-1)d其中,d表示公差。
2.求和公式根据等差数列的性质,首项与末项之和等于各项的平均数乘以项数,可以得到求和公式:Sₙ=(a₁+aₙ)×n/2其中,Sₙ表示前n项的和。
二、差法差法是一种较为简便的求和公式推导方法。
1.分析数列设首项为a₁,公差为d。
2.推导公式将数列分为两组,一组从首项开始,另一组从末项开始。
则两组数列的和相等,可以得到以下等式:(a₁+aₙ)×n/2=(a₁+aₙ)×(n/2)+(a₁+aₙ)×(n/2)化简可得:(a₁+aₙ)×n/2=(a₁×n+aₙ×n)/2再次化简可得:(a₁+aₙ)×n=a₁×n+aₙ×n进一步化简可得:Sₙ=(a₁+aₙ)×(n/2)其中,Sₙ表示前n项的和。
三、差分法差分法是另一种可以用于推导等差数列前n项求和公式的方法。
1.分析数列设首项为a₁,公差为d。
2.构造数列构造一个新数列b₁、b₂、b₃、..,其中,b₁为a₁,b₂为a₁+(a₁+d),b₃为a₁+(a₁+d)+(a₁+2d),以此类推。
3.求和求这个新数列的和S₁,其中S₁=b₁+b₂+b₃+...+bₙ。
4.推导公式可以得到以下等式:S₁=b₁+b₂+b₃+...+bₙ=(n/2)×(2a₁+(n-1)d)将b₁展开,可以得到:S₁ = (n / 2) × (2a₁ + (n - 1)d) = (n / 2) × (2a₁ + (n - 1)d) = (n / 2) × (a₁ + a₁ + nd - d)再次化简可得:S₁ = (n / 2) × (a₁ + a₁ + nd - d) = (n / 2) × (a₁ + aₙ)其中,Sₙ表示前n项的和。
等差数列及其前 n 项和【考纲说明】1、理解等差数列的概念,学习等差数列的基本性质.2、探索并掌握等差数列的通项公式与前 n 项和公式.3、体会等差数列与一次函数的关系.4、本部分在高考中占 5-10 分左右.【知识梳理】一、等差数列的相关概念 1、等差数列的概念如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.通常用字母 d 表示。
2、等差中项如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项.即: A = a + b或22 A = a + b推广: 2a n = a n -1 + a n +1(n ≥ 2) ⇔ 2a n +1 = a n + a n +23、等差数列通项公式若等差数列{a n } 的首项是a 1 ,公差是d ,则a n = a 1 + (n -1)d . 推广: a n = a m+ (n - m )d ,从而d = a n - a m。
n - m4、等差数列的前n 项和公式等差数列的前n 项和的公式:① S n = n (a 1 + a n ) ;② S 2 n= na 1+ n (n -1) d .25、等差数列的通项公式与前 n 项的和的关系a = ⎧s 1, n = 1 {a } s = a + a +L + a n ⎨s - s , n ≥ 2 ( 数列 n 的前 n 项的和为 n 1 2 n ).⎩ nn -1二、等差数列的性质1、等差数列与函数的关系当公差d ≠ 0 时,(1) 等差数列的通项公式a n = a 1 + (n -1)d = dn + a 1 - d 是关于n 的一次函数,斜率为d ;(2) 前 n 和 S = na + n (n -1) d = d n 2 + (a - d)n 是关于 n 的二次函数且常数项n 1 2 2 12n m m +k m +2k m +3k a a ≤ ⎨ 为 0。
高二数学等差数列及其前n项和知识点梳理伟大的数学家华罗庚曾经说过:“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生活之迷、日月之繁,无处不用数学。
小编准备了高二数学等差数列及其前n项和知识点,希望你喜欢。
一、等差数列的有关概念:1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为an+1-an=d(n∈N*,d为常数).2.等差中项:数列a,A,b成等差数列的充要条件是A=(a+b)/2,其中A叫做a,b的等差中项.等差数列的有关公式1.通项公式:an=a1+(n-1)d.2.前n项和公式:Sn=na1+n(n-1)/2d+d=(a1+an)n/2.等差数列的性质1.若m,n,p,q∈N*,且m+n=p+q,{an}为等差数列,则am+an=ap+aq.2.在等差数列{an}中,ak,a2k,a3k,a4k,…仍为等差数列,公差为kd.3.若{an}为等差数列,则Sn,S2n-Sn,S3n-S2n,…仍为等差数列,公差为n2d.4.等差数列的增减性:d>0时为递增数列,且当a10时前n项和Sn有最大值.5.等差数列{an}的首项是a1,公差为d.若其前n项之和可以写成Sn=An2+Bn,则A=d/2,B=a1-d/2,当d≠0时它表示二次函数,数列{an}的前n项和Sn=An2+Bn是{an}成等差数列的充要条件.解题方法1.与前n项和有关的三类问题(1)知三求二:已知a1、d、n、an、Sn中的任意三个,即可求得其余两个,这体现了方程思想.(2)Sn=d/2*n2+(a1-d/2)n=An2+Bn?d=2A.(3)利用二次函数的图象确定Sn的最值时,最高点的纵坐标不一定是最大值,最低点的纵坐标不一定是最小值.2.设元与解题的技巧已知三个或四个数组成等差数列的一类问题,要善于设元,若奇数个数成等差数列且和为定值时,可设为…,a-2d,a-d,a,a+d,a+2d,…;若偶数个数成等差数列且和为定值时,可设为…,a-3d,a-d,a+d,a+3d,…,其余各项再依据等差数列的定义进行对称设元高二数学等差数列及其前n项和知识点就为大家介绍到这里,希望对你有所帮助。
第二节等差数列及其前n项和[备考方向要明了]考什么怎么考1.理解等差数列的概念;2.掌握等差数列的通项公式与前n项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数的关系.1.以选择题的形式考查等差数列的基本量及等差数列性质的简单应用,如2012年辽宁T6,北京T10,江西T12等.2.以解答题的形式考查等差数列的概念、等差数列的判定、通项公式、前n项和公式以及等差数列的性质等,如2012年陕西T17等.[归纳·知识整合]1.等差数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示,定义表达式为a n-a n-1=d(常数)(n∈N*,n≥2)或a n+1-a n=d(常数)(n∈N*).2.等差数列的通项公式若等差数列{a n}的首项为a1,公差为d,则其通项公式为a n=a1+(n-1)d.亦可以用数列中的第m项a m与公差d表示为a n=a m+(n-m)d.[探究] 1.已知等差数列{a n}的第m项为a m,公差为d,则其第n项a n能否用a m与d 表示?提示:能,a n=a m+(n-m)d.3.等差中项若三个数a,A,b成等差数列,则A叫做a与b的等差中项,且有A=a+b2.4.等差数列的前n项和公式S n=na1+n(n-1)2d=n(a1+a n)2.[探究] 2.等差数列前n 项和公式的推导运用了什么方法? 提示:倒序相加法.3.等差数列前n 项和公式能否看作关于n 的函数,该函数是否有最值?提示:当d ≠0时,S n 是关于n 的且常数项为0的二次函数,则(n ,S n )是二次函数图象上的一群孤立的点,由此可得:当d >0时,S n 有最小值;当d <0时,S n 有最大值.5.等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m +n =p +q ,则a m +a n =a p +a q , 特别:若m +n =2p ,则a m +a n =2a p .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (3)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.[自测·牛刀小试]1.(2012·重庆高考)在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20D .25解析:选B 数列{a n }的公差d =5-12=2,则a 1=-1,a 5=7,可得S 5=15.2.(2012·辽宁高考)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ) A .58 B .88 C .143D .176解析:选B 因为{a n }是等差数列,所以a 4+a 8=2a 6=16⇒a 6=8,则该数列的前11项和为S 11=11(a 1+a 11)2=11a 6=88.3.(教材习题改编)在等差数列{a n }中,若a 4+a 5=15,a 7=15,则a 2的值为( ) A .-3 B .0 C .1D .2解析:选B 由题意知,a 2+a 7=a 4+a 5,所以a 2=a 4+a 5-a 7=0.4.(教材习题改编)已知两个数列x ,a 1,a 2,a 3,y 与x ,b 1,b 2,y 都是等差数列,且x ≠y ,则a 2-a 1b 2-b 1的值为________. 解析:∵a 2-a 1=14(y -x ),b 2-b 1=13(y -x ),∴a 2-a 1b 2-b 1=34. 答案:345.(教材习题改编)有两个等差数列2,6,10,…,190及2,8,14,…,200,由这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列{a n }的通项公式a n =________.解析:两个等差数列的公共项为2,14,26,…即新数列的首项为2,公差为12. 故a n =2+(n -1)×12=12n -10. 答案:12n -10等差数列的判定与证明[例1] 已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .[自主解答] (1)证明: ∵当n ≥2时, a n =S n -S n -1=-2S n S n -1,① ∴S n (1+2S n -1)=S n -1.由上式,若S n -1≠0,则S n ≠0. ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *), 由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是等差数列,其中首项为1S 1=1a 1=2,公差为2.(2)∵1S n =1S 1+2(n -1)=1a 1+2(n -1),∴S n =12n.当n≥2时,a n=S n-S n-1=-12n(n-1),当n=1时,a1=S1=12不适合上式,∴a n=⎩⎪⎨⎪⎧12,n=1,-12n(n-1),n≥2.若将条件改为“a1=2,S n=S n-12S n-1+1(n≥2)”,如何求解.解:(1)证明:∵S n=S n-12S n-1+1,∴1S n=2S n-1+1S n-1=1S n-1+2.∴1S n-1S n-1=2.∴⎩⎨⎧⎭⎬⎫1S n是以12为首项,以2为公差的等差数列.(2)由(1)知1S n=12+(n-1)×2=2n-32,即S n=12n-32.当n≥2时,a n=S n-S n-1=12n-32-12n-72=-2⎝⎛⎭⎫2n-32⎝⎛⎭⎫2n-72;当n=1时,a1=2不适合a n,故a n=⎩⎪⎨⎪⎧2(n=1),-2⎝⎛⎭⎫2n-32⎝⎛⎭⎫2n-72(n≥2).———————————————————等差数列的判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .注意:在解答题中常应用定义法和等差中项法,而通项公式法和前n 项和公式法主要适用于选择题、填空题中的简单判断.1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).(1)求证:数列{b n }是等差数列;(2)求数列{a n }中的最大项和最小项,并说明理由. 解:(1)证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1, ∴b n +1-b n =1a n +1-1-1a n -1=1⎝⎛⎭⎫2-1a n -1-1a n -1=a n a n -1-1a n -1=1. 又b 1=1a n -1=-52,∴数列{b n }是以-52为首项,以1为公差的等差数列.(2)由(1)知b n =n -72,则a n =1+1b n =1+22n -7,设f (x )=1+22x -7,则f (x )在区间⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上为减函数. 故当n =3时,a n 取得最小值-1,当n =4时,a n 取得最大值3.等差数列基本量的计算[例2] (1)已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( ) A .-1B .1C .3D .7(2)(2012·广东高考)已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n =________. (3)(2012·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=12,S 2=a 3,则a 2=________;S n =________.[自主解答] (1)两式相减,可得3d =-6,d =-2.由已知可得3a 3=105,a 3=35,所以a 20=a 3+17d =35+(-34)=1.(2)设等差数列{a n }的公差为d ,由已知得⎩⎪⎨⎪⎧ a 1=1,a 3=(a 1+d )2-4,即⎩⎪⎨⎪⎧a 1=1,1+2d =(1+d )2-4,解得⎩⎪⎨⎪⎧a 1=1,d =±2.由于等差数列{a n }是递增的等差数列,因此⎩⎪⎨⎪⎧a 1=1,d =2.所以a n =a 1+(n -1)d =2n -1.(3)设等差数列的公差为d ,则2a 1+d =a 1+2d ,把a 1=12代入得d =12,所以a 2=a 1+d=1,S n =na 1+n (n -1)2d =14n (n +1).[答案] (1)B (2)2n -1 (3)1 n (n +1)4———————————————————等差数列运算问题的通法等差数列的通项公式及前n 项和公式中,共涉及五个量,知三可求二,如果已知两个条件,就可以列出方程组求解,体现了用方程思想解决问题的方法.如果利用等差数列的性质、几何意义去考虑也可以.2.已知等差数列{a n }中,a 1=1,a 3=-3. (1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d (n ≥1,n ∈N *).由a 1=1,a 3=-3,可得1+2d =-3, 解得d =-2.从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5. 又k ∈N *,故k =7为所求结果.等差数列前n 项和的最值[例3] 已知在等差数列{a n }中,a 1=31,S n 是它的前n 项和,S 10=S 22, (1)求S n ;(2)这个数列的前多少项和最大,并求出这个最大值. [自主解答] (1)∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,即a 11+a 22=2a 1+31d =0.又a 1=31,∴d =-2.∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.(2)法一:由(1)知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 法二:由(1)知,⎩⎪⎨⎪⎧a n =31+(n -1)·(-2)=-2n +33≥0,a n +1=31+n ·(-2)=-2n +31≤0(n ∈N *), 解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.若将“a 1=31,S 10=S 22”改为“a 1=20,S 10=S 15”,则n 为何值时,S n 取得最大值? 解:法一:∵a 1=20,S 10=S 15, ∴10×20+10×92d =15×20+15×142d ,解得d =-53.∴a n =20+(n -1)×⎝⎛⎭⎫-53=-53n +653. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为 S 12=S 13=12×20+12×112×⎝⎛⎭⎫-53=130.法二:同法一求得d =-53.∴S n =20n +n (n -1)2·⎝⎛⎭⎫-53=-56n 2+1256n =-56⎝⎛⎭⎫n -2522+3 12524. ∵n ∈N *,∴当n =12或13时,S n 有最大值, 且最大值为S 12=S 13=130. 法三:同法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值, 且最大值为S 12=S 13=130.——————————————————— 求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解;(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.3.设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中,哪一个最大,并说明理由. 解:(1)设数列首项为a 1,公差为d ,由题意可得,⎩⎨⎧S 12=12a 1+12×12×(12-1)d >0,S13=13a 1+12×13×(13-1)d <0.将a 1=a 3-2d =12-2d 代入,得⎩⎪⎨⎪⎧24+7d >0,3+d <0,即-247<d <-3.(2)法一:S n =na 1+n (n -1)2d =(12-2d )n +n (n -1)2d =d 2n 2-⎝⎛⎭⎫52d -12n ,其中-247<d <-3.由二次函数知识可得S 6最大.法二:∵a n =a 1+(n -1)d =12+(n -3)d ,由⎩⎪⎨⎪⎧ a n ≥0,a n +1≤0,得⎩⎪⎨⎪⎧12+(n -3)d ≥0,12+(n -2)d ≤0.∴-12d +2≤n ≤-12d +3.而-247<d <-3, ∴112<n <7.∴n =6. ∴前6项和S 6最大.法三:由S 13=13a 7<0,S 12=6(a 6+a 7)>0,∴a 7<0,a 6>0.∴前6项和S 6最大.等差数列性质的应用[例4] (1)(2013·江门模拟)等差数列{a n }前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13等于( )A .3B .6C .17D .51(2)等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则前9项的和S 9等于( ) A .66 B .99 C .144D .297[自主解答] (1)由于S 17=a 1+a 172×17=17a 9=51,所以a 9=3.根据等差数列的性质a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.(2)由等差数列的性质及a 1+a 4+a 7=39,可得3a 4=39,所以a 4=13.同理,由a 3+a 6+a 9=27,可得a 6=9.所以S 9=9(a 1+a 9)2=9(a 4+a 6)2=99.[答案] (1)A (2)B ———————————————————在等差数列有关计算问题中,结合整体思想,灵活应用性质,可以减少运算量,达到事半功倍的效果.4.(1)(2013·山西四校联考)在等差数列{a n }中,a 1+a 2+a 3=3,a 18+a 19+a 20=87,则此数列前20项的和等于( )A .290B .300C .580D .600(2)(2012·江西高考)设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________.解析:(1)选B 依题意得3(a 1+a 20)=90,即a 1+a 20=30,数列{a n }的前20项的和等于20(a 1+a 20)2=300. (2)法一:设数列{a n },{b n }的公差分别为d 1,d 2,因为a 3+b 3=(a 1+2d 1)+(b 1+2d 2)=(a 1+b 1)+2(d 1+d 2)=7+2(d 1+d 2)=21,所以d 1+d 2=7.所以a 5+b 5=(a 3+b 3)+2(d 1+d 2)=21+2×7=35.法二:∵2a 3=a 1+a 5,2b 3=b 1+b 5, ∴a 5+b 5=2(a 3+b 3)-(a 1+b 1) =2×21-7=35. 答案:351个技巧——利用等差数列的性质妙设项若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d ;若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.2种选择——等差数列前n 项和公式的选择等差数列前n 项和公式有两个,如果已知项数n 、首项a 1和第n 项a n ,则利用S n =n (a 1+a n )2,该公式经常和等差数列的性质结合应用.如果已知项数n 、首项a 1和公差d ,则利用S n =na 1+n (n -1)d2,在求解等差数列的基本运算问题时,有时会和通项公式结合使用.3个结论——等差数列前n 项和S n 的几个结论(1)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S 偶-S 奇=nd ,S 奇S 偶=a na n +1. (2)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .(3)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .4种方法——等差数列的判断方法①定义法;②等差中项法;③通项公式法;④前n 项和公式法.数学思想——整体思想在数列中的应用利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少数列题,其首项、公差无法确定或计算繁琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[典例] (2013·盐城模拟)设等差数列{a n }的前n 项和S n =m ,前m 项和S m =n (m ≠n )则它的前m +n 项的和S m +n =________.[解析] 法一:设{a n }的公差为d , 则由S n =m ,S m =n ,得⎩⎪⎨⎪⎧S n=na 1+n (n -1)2d =m , ①S m=ma 1+m (m -1)2d =n . ②②-①得(m -n )a 1+(m -n )(m +n -1)2·d =n -m ,∵m ≠n ,∴a 1+m +n -12d =-1.∴S m +n =(m +n )a 1+(m +n )(m +n -1)2d=(m +n )⎝ ⎛⎭⎪⎫a 1+m +n -12d =-(m +n ).法二:设S n =An 2+Bn (n ∈N *),则⎩⎪⎨⎪⎧Am 2+Bm =n , ③An 2+Bn =m , ④③-④得A (m 2-n 2)+B (m -n )=n -m . ∵m ≠n ,∴A (m +n )+B =-1. ∴A (m +n )2+B (m +n )=-(m +n ), 即S m +n =-(m +n ).[答案] -(m +n ) [题后悟道]1.本题的两种解法都突出了整体思想,其中法一把a 1+m +n -12d 看成了一个整体,法二把A (m +n )+B 看成了一个整体,解起来都很方便.2.整体思想是一种重要的解题方法和技巧,这就要求学生要掌握公式,理解其结构特征.3.本题的易错点是,不能正确运用整体思想的运算方法,不能建立数量间的关系,导致错误.[变式训练]1.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若S n T n =2n 3n +1,则a nb n =( )A.23 B.2n -13n -1 C.2n +13n +1D.2n -13n +4解析:选B a n b n =2a n 2b n =a 1+a 2n -1b 1+b 2n -1=S 2n -1T 2n -1=2(2n -1)3(2n -1)+1=2n -13n -1.2.设等差数列{a n }的前n 项和为S n ,已知其前6项和为36,S n =324,最后6项的和为180(n >6),求该数列的项数n 及a 9+a 10.解:由题意知a 1+a 2+a 3+a 4+a 5+a 6=36, a n +a n -1+a n -2+a n -3+a n -4+a n -5=180, ∴6(a 1+a n )=36+180=216. ∴a 1+a n =36.又S n =324,∴n (a 1+a n )2=324,即n =2×32436=18.∴a 9+a 10=a 1+a 18=36.一、选择题(本大题共6小题,每小题5分,共30分)1.已知{a n }是等差数列,且a 3+a 9=4a 5,a 2=-8,则该数列的公差是( )A .4B .14C .-4D .-14解析:选A 因为a 3+a 9=4a 5,所以根据等差数列的性质可得a 6=2a 5.所以a 1+5d =2a 1+8d ,即a 1+3d =0.又a 2=-8,即a 1+d =-8,所以公差d =4.2.已知等差数列{a n }的前n 项和为S n ,若S 17=a ,则a 2+a 9+a 16等于( ) A.a 17 B.4a17 C.3a 17D .-3a 17解析:选C ∵S 17=(a 1+a 17)×172=a ,∴17a 9=a ,a 9=a 17.∴a 2+a 9+a 16=3a 9=3a17.3.(2013·秦皇岛模拟)设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k=24,则k =( )A .8B .7C .6D .5 解析:选D 依题意得S k +2-S k =a k +1+a k +2=2a 1+(2k +1)d =2(2k +1)+2=24,解得k =5.4.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99.以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18解析:选B ∵a 1+a 3+a 5=105,a 2+a 4+a 6=99, ∴3a 3=105,3a 4=99,即a 3=35,a 4=33. ∴a 1=39,d =-2,得a n =41-2n . 令a n >0且a n +1<0,n ∈N *,则有n =20.5.已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53D .4解析:选A 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.6.(2013·玉溪模拟)数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N *).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11解析:选B 因为{b n }是等差数列,且b 3=-2,b 10=12, 故公差d =12-(-2)10-3=2.于是b 1=-6,且b n =2n -8(n ∈N *),即a n +1-a n =2n -8.所以a 8=a 7+6=a 6+4+6=a 5+2+4+6=…=a 1+(-6)+(-4)+(-2)+0+2+4+6=3.二、填空题(本大题共3小题,每小题5分,共15分)7.等差数列{a n }中a 1=1,前n 项和S n 满足S 4S 2=4,则数列{a n }的前n 项和S n =________.解析:设公差为d ,则由S 4S 2=4得4a 1+6d 2a 1+d =4.又∵a 1=1,∴d =2.∴S n =na 1+n (n -1)d2=n +n (n -1)=n 2.答案:n 28.已知等差数列{a n }中,a n ≠0,若n >1且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于________.解析:∵2a n =a n -1+a n +1, 又a n -1+a n +1-a 2n =0,∴2a n -a 2n =0,即a n (2-a n)=0. ∵a n ≠0,∴a n =2.∴S 2n -1=2(2n -1)=38,解得n =10. 答案:109.(2013·南京模拟)已知等差数列{a n }的前n 项和为S n ,若(a 2-1)3+2 012(a 2-1)=1,(a 2 011-1)3+2 012·(a 2 011-1)=-1,则下列四个命题中真命题的序号为________.①S 2 011=2 011;②S 2 012=2 012;③a 2 011<a 2;④S 2 011<S 2.解析:由f (x )=x 3+2 012 x 为奇函数,f ′(x )=3x 2+2 012>0,f (1)=2 013>1知f (1)>f (a 2-1),故a 2-1<1即a 2<2又f (a 2-1)=-f (a 2 011-1)=1,故a 2 011<a 2,a 2-1=(a 2 011-1)即a 2+a 2 011=2,S 2 012=a 1+a 2 0122×2 012=2 012,S 2 011=S 2 012-a 2 012=2 012-(2-a 2+d )=2 010+a 1>a 1+a 2=S 2,又假设S 2 011=2 011,则a 1=1,a 2 011=1矛盾.综上,正确的为②③. 答案:②③三、解答题(本大题共3小题,每小题12分,共36分)10.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解:(1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎪⎨⎪⎧5a 1+10d =5,a 1+5d =-8,解得a 1=7.所以S 6=-3,a 1=7. (2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0.故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.11.已知等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S n n +c (n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由.解:(1)由题设,知{a n }是等差数列,且公差d >0,则由⎩⎪⎨⎪⎧a 2a 3=45,a 1+a 5=18,得⎩⎪⎨⎪⎧ (a 1+d )(a 1+2d )=45,a 1+(a 1+4d )=18,解得⎩⎪⎨⎪⎧a 1=1,d =4. 故a n =4n -3(n ∈N *).(2)由b n =S nn +c =n (1+4n -3)2n +c =2n ⎝⎛⎭⎫n -12n +c .∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.12.已知S n 是数列{a n }的前n 项和,S n 满足关系式2S n =S n -1-⎝⎛⎭⎫12n -1+2(n ≥2,n 为正整数),a 1=12.(1)令b n =2n a n ,求证数列{b n }是等差数列,并求数列{a n }的通项公式; (2)在(1)的条件下,求S n 的取值范围.解:(1)由2S n =S n -1-⎝⎛⎭⎫12n -1+2,得2S n +1=S n -⎝⎛⎭⎫12n +2,两式相减得2a n +1=a n +⎝⎛⎭⎫12n , 上式两边同乘以2n 得2n +1a n +1=2n a n +1,即b n +1=b n +1,所以b n +1-b n =1,故数列{b n }是等差数列,且公差为1.又因为b 1=2a 1=1,所以b n =1+(n -1)×1=n .因此2n a n =n ,从而a n =n ·⎝⎛⎭⎫12n.(2)由于2S n =S n -1-⎝⎛⎭⎫12n -1+2,所以2S n -S n -1=2-⎝⎛⎭⎫12n -1,即S n +a n =2-⎝⎛⎭⎫12n -1. S n =2-⎝⎛⎭⎫12n -1-a n ,而a n =n ·⎝⎛⎭⎫12n ,所以S n =2-⎝⎛⎭⎫12n -1-n ·⎝⎛⎭⎫12n =2-(n +2)·⎝⎛⎭⎫12n . 所以S n +1=2-(n +3)·⎝⎛⎭⎫12n +1,且S n +1-S n =n +12n +1>0.所以S n ≥S 1=12,又因为在S n =2-(n +2)·⎝⎛⎭⎫12n 中,(n +2)·⎝⎛⎭⎫12n >0,故S n <2, 即S n 的取值范围是⎣⎡⎭⎫12,2.1.已知数列{a n }的通项公式a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数). (1)当p 和q 满足什么条件时,数列{a n }是等差数列? (2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.解:(1)a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q ,要使{a n }是等差数列,则2pn +p +q 应是一个与n 无关的常数,所以2p =0,即p =0.故当p =0时,数列{a n }是等差数列. (2)证明:∵a n +1-a n =2pn +p +q , ∴a n +2-a n +1=2p (n +1)+p +q .而(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数, ∴{a n +1-a n }是等差数列.2.设{a n }是一个公差为d (d ≠0)的等差数列,它的前10项和S 10=110,且a 1,a 2,a 4成等比数列.(1)证明a 1=d ;(2)求公差d 的值和数列{a n }的通项公式. 解:(1)证明:因a 1,a 2,a 4成等比数列, 故a 22=a 1a 4.而{a n }是等差数列,有a 2=a 1+d ,a 4=a 1+3d .于是(a 1+d )2=a 1(a 1+3d ),即a 21+2a 1d +d 2=a 21+3a 1d ,化简得a 1=d .(2)由条件S 10=110和S 10=10a 1+10×92d ,得到10a 1+45d =110.由(1),a 1=d ,代入上式得55d =110, 故d =2,a n =a 1+(n -1)d =2n .因此,数列{a n }的通项公式为a n =2n (n =1,2,3,…).3.已知{a n }为等差数列,若a 11a 10<-1,且它的前n 项和S n 有最大值,那么当S n 取得最小正值时,n 等于多少?解:由已知得,{a n }是首项为正,公差为负的递减等差数列. 由a 11a 10<-1得a 10+a 11<0且a 10>0,a 11<0, ∴S 20=20(a 1+a 20)2=20(a 10+a 11)2=10(a 10+a 11)<0.而S 19=19a 10>0, ∴S n 取最小正值时n =19.4.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .求数列{a n }与{b n }的通项公式.解:当n ≥2时,a n =S n -S n -1=2n 2+2n -2(n -1)2-2(n -1)=4n , 又a 1=S 1=4,故a n =4n .当n ≥2时,由b n =T n -T n -1=2-b n -2+b n -1, 得b n =12b n -1,又T 1=2-b 1,即b 1=1, 故b n =⎝⎛⎭⎫12n -1=21-n.。
等差数列及其前n 项和一、知识梳理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b 2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2. 3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 小结:1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( )(4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数.(4)若公差d =0,则前n 项和不是二次函数.答案 (1)√ (2)√ (3)× (4)×2.设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( )A.31B.32C.33D.34解析 由已知可得⎩⎨⎧a 1+5d =2,5a 1+10d =30, 解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32. 答案 B3.在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180.答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( )A.-3B.-52C.-2D.-4 解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4.答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中,∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0, ∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5.答案 S 5考点一 等差数列基本量的运算【例1】 (1)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8 (2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( )A.9B.10C.11D.15 解析 (1)法一 设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4.法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎨⎧a1=-33,d =7,∴a m =a 1+(m -1)d =7m -40=30,∴m =10.答案 (1)C (2)B【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于()A.3B.4C.log 318D.log 324(2)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2,解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318,∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎨⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎨⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎨⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎨⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30. 答案 (1)A (2)30考点二 等差数列的判定与证明【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列; (2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2, 又1S 1=1a 1=2, 故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n=2n ,∴S n =12n . 当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1). 当n =1时,a 1=12不适合上式.故a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.解 (1)设{a n }的公比为q ,由题设可得⎩⎨⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎨⎧q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 1(1-q n )1-q=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23. =2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.考点三 等差数列的性质及应用角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A.6B.12C.24D.48 解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120,由等差数列的性质,a 1+3a 8+a 15=5a 8=120,∴a 8=24,∴a 2+a 14=2a 8=48.答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A.63B.45C.36D.27 解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6),得到S 9-S 6=2S 6-3S 3=45,所以a 7+a 8+a 9=45.答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则(1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1);(2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( )A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( ) A.3727B.1914C.3929D.43 解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3,∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质,∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8.∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立.(1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0,因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2).所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2n λ.(2)当a 1>0,λ=100时,由(1)知,a n =2n 100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n =2-n lg 2, 所以数列{b n }是单调递减的等差数列,公差为-lg 2,所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大. 规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值.①当a 1>0,d <0时,满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( ) A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎨⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S n n =na 1+n (n -1)2d n =-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4. (2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2 =-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122, 又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110三、课后练习1.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269.答案 B2.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( )A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1), 所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A3.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0, ∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 1304.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81, ∴⎩⎨⎧2a 7=26,9a 5=81,解得⎩⎨⎧a 7=13,a 5=9,∴d =a 7-a 57-5=13-92=2, ∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.。
等差数列的前N项和公式等差数列是指数列中任意两个相邻项之差保持不变的数列。
前N项和指的是数列前N项之和。
首先,我们来推导等差数列的通项公式。
设等差数列的第一项为a1,公差为d,第n项为an。
根据等差数列的定义可知,第2项为a2 = a1 + d,第3项为a3 = a1 + 2d,以此类推,第n项为an = a1 + (n-1)d。
我们可以把等差数列展开,得到:a1,a1+d,a1+2d,a1+3d,...,a1+(n-2)d,a1+(n-1)d将这些项相加,得到:S=(a1+a1+d+a1+2d+a1+3d+...+a1+(n-2)d+a1+(n-1)d)我们可以将等差数列中的每一项按照公差d进行分组,得到:S=(a1+a1+(n-1)d)+(a1+d+a1+(n-2)d)+(a1+2d+a1+(n-3)d)+...+(a1+(n-2)d+a1+d)+(a1+(n-1)d+a1)根据等差数列的恒等差性质,每一组中的两项之和都等于2a1+(n-1)d。
因此,上式可以进一步化简为:S=n(2a1+(n-1)d)这就是等差数列的前N项和公式,也被称为等差数列求和公式。
为了更好地理解该公式,我们可以举一个具体的例子。
假设有一个等差数列:2,5,8,11,14,求前四项的和。
首先,确定已知量:a1=2(第一项)d=5-2=3(公差)n=4(前四项)代入前N项和公式,可得:S=4(2+(4-1)3)=4(2+3*3)=4(2+9)=4*11=44因此,2,5,8,11的和为44除了使用前N项和公式,我们还可以利用等差数列的性质进行计算。
等差数列可以通过两种方法计算前N项的和:方法一:逐项相加。
通过将每一项相加,可以得到等差数列的前N项和。
在大多数情况下,这种方法适用于较小的N。
方法二:首项加末项乘N除以2、由于等差数列的第一项和最后一项之和等于N,将这两项相加,并乘以N除以2,即可得到前N项和。
这个方法适用于所有的等差数列。
高中数学等差数列前n项和公式高中数学学习中,等差数列是一个非常重要的概念,它在数学中有着广泛的应用。
等差数列是指一个数列中每一项与它的前一项之差都相等,这个相等的差值被称为公差。
等差数列的前n项和公式是一个非常重要的公式,它可以帮助我们快速计算等差数列的前n项和。
等差数列前n项和公式如下:Sn = n(a1 + an)/2其中,Sn表示等差数列的前n项和,a1是等差数列的首项,an是等差数列的第n项。
这个公式的推导比较简单,我们可以通过数学归纳法来证明它的正确性。
首先,当n=1时,等差数列的前1项和就是a1,这个结论显然成立。
接着,我们假设当n=k时,等差数列的前k项和公式成立,即Sk = k(a1 + ak)/2那么当n=k+1时,等差数列的前k+1项和为S(k+1) = S k + a(k+1)根据归纳假设,我们可以将Sk带入上面的公式中,得到S(k+1) = k(a1 + ak)/2 + a(k+1)将上面的式子进行化简,可以得到S(k+1) = (k+1)(a1 + ak+1)/2这个式子就是等差数列前k+1项和的公式。
根据归纳法的原理,我们可以证明这个公式对于任意的n都成立。
这个公式在实际应用中非常有用。
例如,当我们需要计算一个等差数列的前100项和时,可以直接使用这个公式,将a1和an代入公式中,即可得到结果。
这个方法比逐项相加更加快速和方便。
此外,这个公式还可以用于解决一些数学问题,例如等差数列的最大值、最小值等等。
等差数列前n项和公式是一个非常重要的公式,它可以帮助我们计算等差数列的前n项和,并解决一些数学问题。
希望大家在学习数学的过程中能够熟练掌握这个公式,发挥它的作用。