博弈论-第一章
- 格式:ppt
- 大小:49.50 KB
- 文档页数:10
1 完全信息静态博弈1.0 对策论研究的内容与基本形式对策论研究的内容对策论研究多个行为主体的决策问题。
对策论研究的形式博弈(game),由多个行为主体构成的系统。
例Stackelberg modelCournot model博弈的类型参与者行动的时间与顺序同时行动——静态博弈;先后行动——动态博弈。
参与者的信息多少信息相同——完全信息;信息不同——不完全信息。
1.1 基本理论: 博弈的标准式和纳什均衡例1 儿童游戏:“石头、剪刀、布”。
博弈的标准式表示(normal-form representation)(1) 参与人( player).n 个参与人:1, 2, …, i, …, n.(2) 战略(strategy).一个参与人的战略是他采取的一个行动。
参与人i 的战略:s i.参与人i 的战略空间: S i.战略的一个组合: s ={s1,s2, …, s n}.简化表示:s-i ={ s1,…, s i -1,s i+1, …, s n }.(3) 收益(payoff).参与人i 的收益:u i= u i(s1,s2, …, s n)n个参与人博弈的标准形式表示:G = {S1, S2, …, S n;u1, u2, … , u n}完全信息(complete information):每个参与人知道其他人的战略空间和收益。
静态博弈(static game):所有的参与人同时行动。
每个人行动时,不知道其他人的行动。
例1(续):博弈{石头、剪刀、布} 的描述:参与人:1,2。
战略空间:S1 = S2 = {石头、剪刀、布}收益:两人出手的函数u1 (石头,石头) = 0,u1 (石头,剪刀) = 1,u1 (石头,布) = -1 …u2 (石头,石头) = 0,u2 (石头,剪刀) = -1,u2 (石头,布) = 1 ……收益表:两个参与人,有限个战略的博弈的表示方法。
P2石头剪刀布石头0 ,0 1 ,-1 -1 ,1P1剪刀-1 ,1 0 ,0 1 ,-1布 1 ,-1 -1 ,1 0 ,0博弈的问题:能否知道每个参与人选择的战略?例2: 囚徒困境(The Prisoner’s Dilemma)囚徒 2沉默招认沉默-1 ,-1 -9 ,0囚徒 1招认0 ,-9 -6 ,-6囚徒1的考虑:无论对方选沉默还是招认,自己选“招认”好于“沉默”。
博弈论前四章笔记整理第一章:博弈论基础概念。
- 博弈的定义与要素。
- 博弈是指在一定的规则下,多个参与者(至少两个)进行策略选择并得到相应结果(收益)的过程。
- 要素包括参与者(局中人)、策略(每个参与者可选择的行动方案)、收益(每个参与者在不同策略组合下的所得)。
例如在“囚徒困境”中,两个囚犯是参与者,坦白或不坦白是他们的策略,不同策略组合下的刑期长短就是收益。
- 博弈的分类。
- 按参与者数量可分为两人博弈和多人博弈。
- 按策略空间是否有限分为有限博弈和无限博弈。
如猜硬币是有限博弈(正面或反面两种策略),企业的产量竞争(产量可在一定范围内连续取值)可能是无限博弈。
- 按收益情况分为零和博弈(一方的收益就是另一方的损失,总和为零,如赌博)、常和博弈(收益总和为常数)和非零和博弈(收益总和不为零,如企业合作共同开拓市场,双方都可能获利)。
第二章:完全信息静态博弈。
- 策略式表述(标准式表述)- 通常用一个矩阵来表示,行代表一个参与者的策略,列代表另一个参与者的策略,矩阵中的元素是对应的收益组合。
以“性别战”为例,丈夫和妻子选择看电影或看球赛,就可以构建一个2×2的收益矩阵。
- 占优策略均衡。
- 占优策略是指无论其他参与者选择什么策略,该策略都是某个参与者的最优策略。
如果每个参与者都有占优策略,那么由这些占优策略组成的策略组合就是占优策略均衡。
例如在“囚徒困境”中,每个囚徒的占优策略都是坦白,所以(坦白,坦白)是占优策略均衡。
- 纳什均衡。
- 纳什均衡是指在一个策略组合中,每个参与者的策略都是对其他参与者策略的最优反应。
即给定其他参与者的策略,没有参与者有动机单方面改变自己的策略。
与占优策略均衡不同,纳什均衡并不要求每个参与者都有占优策略。
例如在“性别战”中,(看电影,看电影)和(看球赛,看球赛)都是纳什均衡。
第三章:完全信息动态博弈。
- 扩展式表述。
- 包括博弈树的构建,节点表示参与者的决策点,树枝表示可选择的策略,终端节点表示博弈的结果并标有相应的收益。