相似原理与相似三定理
- 格式:pps
- 大小:333.00 KB
- 文档页数:81
相似理论相似理论,是说明自然界和工程中各相似现象相似原理的学说。
是研究自然现象中个性与共性,或特殊与一般的关系以及内部矛盾与外部条件之间的关系的理论。
在结构模型试验研究中,只有模型和原型保持相似,才能由模型试验结果推算出原型结构的相应结果。
1特点编辑相似理论主要应用于指导模型试验,确定“模型”与“原型”的相似程度、等级等。
随着计算机技术的不断进步,相似理论不但成为物理模型试验的理论而继续存在,而且进一步扩充其应用范围和领域,成为计算机“仿真”等领域的指导性理论之一。
随着“相似”概念日益扩大,相似理论有从自然科学领域扩展到包括经济、社会科学以及思维科学和认知哲学领域的趋势。
相似理论从现象发生和发展的内部规律性(数理方程)和外部条件(定解条件)出发,以这些数理方程所固有的在量纲上的齐次性以及数理方程的正确性不受测量单位制选择的影响等为大前提,通过线性变换等数学演绎手段而得到了自己的结论。
相似理论的特点是高度的抽象性与宽广的应用性相结合,相似理论的内容并不多,甚至不被当作一个单独的学科。
相似理论是试验的理论,用以指导试验的根本布局问题,它为模拟试验提供指导,尺度的缩小或放太,参数的提高或降低,介质性能的改变等,目的在于以最低的成本和在最短的运转周期内摸清所研究模型的内部规律性。
相似理论在现代科技中的最主要价值在于它指导模型试验上。
尽管相似理论本身是一个比较严密的数理逻辑体系,但是,一旦进入实际的应用课题,在很多情况下,不可能是很精确的。
因为相似理论所处理的问题通常是极其复杂的。
2理论基础编辑相似理论中的三个定理赖以存在的基础为:(1)现象相似的定义;(2)自然界中存在的现象所涉及到的各物理量的变化受制于主宰这种现象的各个客观规律,它们不能任意变化;(3)现象中所涉及的各物理量的大小是客观存在的,与所采用的测量单位无关。
3相关概念编辑(1)相似及相似常数如果原型和模型相对应的各点及在时间上对应的各瞬间的一切物理量成比例,则两个系统相似。
第8章相似理论8.1 概述1 实验是检验和获取理论的重要方法实验对流体力学的发展曾起过重要作用,现在它对流体力学的发展仍然有着十分重要的意义。
实验流体力学已成为流体力学的重要分支之一。
流体的流动问题,有些可以作适当简化,得出解析结论,但得出的结论还必须通过必要的实验验证,才能用于实际。
描述粘性流体运动的N—S方程是二阶偏微分方程组,除少数简单的流动可获得解析解外,对于复杂的三维流动,难以用理论方法获得精确解,即使使用高性能的计算机也难以获得精确的数字解。
另外,由于流体运动的复杂性和人们认识的局限性,对于许多复杂的流动现象,从理论上也难以用运动微分方程描述。
再者,流体的某些力学现象,并非随时都存在,而出现的时间又往往比较短暂,为了进行较长期的探索和多次观察分析,实验就是一个必不可少的方法。
2模型实验是流体力学研究的常用手段最权威的实验就是原型或实体实验,但随着科学技术的发展,出于经济和技术上的限制,这种实验将会遇到很大困难,特别是原型尚未出现之前,只能通过模型实验作出预测。
例如新型航空航天器研究,要取得初步可靠的设计资料,常先制成模型,在风洞中进行系统的实验研究。
新型舰船和水库堤坝设计,也是先制作模型进行实验研究。
将设想的实体(原型)制成模型而进行实验研究,节省经费和时间,测试也比较方便。
在某些情况下,即使实物已经存在,但由于各种条件限制,也难以进行实体实验。
因为更多是在实验室内进行模型实验,这是研究流体流动问题的常用手段。
3 相似理论是模型实验的依据进行模型实验研究,必须解决如何设计、制作模型及将模型实验的结果折算到实体上等问题。
相似理论对如何进行模型实验以获得正确的结果,可以提供指示或答案,及总结实验结果,也只有对力学相似的流动才有可能。
说明相似方法的基本原理称为相似理论。
所以相似原理是研究、支配力学相似的系统的性质及如何用模型实验解决实际问题的一门科学,是进行模型实验研究的依据。
相似方法是一种科学的方法,但不是一门独立的科学研究方法,而是实验和分析研究的方法。
相似原理知识点总结相似原理是几何学中的基本概念之一,它在几何学的许多领域中都有重要的应用。
相似原理主要是指两个几何图形在形状上相似,但尺寸可能不同的原理。
在这篇文章中,我们将会对相似原理进行深入的探讨,包括其定义、性质、常见的应用以及相关的定理。
一、相似原理的定义相似原理是指两个几何图形在形状上相似,但尺寸可能不同。
两个图形相似的条件是它们的对应角相等,对应边成比例。
简而言之,如果两个几何图形的所有对应角相等,且对应边的比例相等,那么这两个几何图形就是相似的。
在直角三角形中,有一种特殊的相似原理叫做“AA相似原理”。
当两个直角三角形的一个角相等时,另外一个角也相等,那么这两个三角形就是相似的。
另外,如果两个三角形的对应边成比例,那么它们也是相似的。
除了直角三角形外,对于其他类型的多边形和圆的相似原理也有一些特殊的条件。
但其核心思想都是相似的,即对应角相等,对应边成比例。
二、相似原理的性质相似原理有一些重要的性质,下面我们将逐一介绍这些性质:性质1:相似三角形的对应角相等相似三角形的一个重要性质是它们的对应角相等。
这意味着如果两个三角形是相似的,那么它们的对应角一定相等。
性质2:相似三角形的对应边成比例相似三角形的另一个重要性质是它们的对应边成比例。
即如果两个三角形是相似的,那么它们的对应边的比例一定相等。
性质3:相似三角形的周长成比例如果两个三角形是相似的,那么它们的周长也是成比例的。
这是因为相似三角形的对应边成比例。
性质4:相似三角形的面积成比例如果两个三角形是相似的,那么它们的面积也是成比例的。
这是因为相似三角形的对应边成比例。
以上的性质都是相似原理的基本性质,它们在解题过程中非常有用。
三、相似原理的应用相似原理在几何学的许多领域中有着广泛的应用。
下面我们将介绍一些常见的应用:应用1:求图形面积在求解图形的面积时,如果我们知道图形的相似图形,并且知道两者的比例关系,那么我们就可以利用相似原理来求解图形的面积。
三角形相似的三个判定定理在几何学中,相似三角形是指具有相同形状但大小不同的三角形。
相似三角形是几何学中的重要概念,它们在许多数学问题中都有着重要的应用。
在本文中,我们将介绍三角形相似的三个判定定理。
第一个判定定理:AA相似定理AA相似定理是指,如果两个三角形的两个角分别相等,则这两个三角形是相似的。
具体来说,如果三角形ABC和三角形DEF满足∠A=∠D,且∠B=∠E,则这两个三角形是相似的。
这个定理的证明可以通过角度对应原理来完成。
因为∠A=∠D,所以角A和角D是对应角;同理,角B和角E也是对应角。
因此,根据角度对应原理,我们可以得出这两个三角形是相似的。
第二个判定定理:SAS相似定理SAS相似定理是指,如果两个三角形的两个角分别相等,并且它们的对应边的比例相等,则这两个三角形是相似的。
具体来说,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,且AB/DE=BC/EF,则这两个三角形是相似的。
这个定理的证明可以通过相似三角形的定义来完成。
因为∠A=∠D,所以角A和角D是对应角;同理,角B和角E也是对应角。
又因为AB/DE=BC/EF,所以这两个三角形的对应边的比例相等。
因此,根据相似三角形的定义,我们可以得出这两个三角形是相似的。
第三个判定定理:SSS相似定理SSS相似定理是指,如果两个三角形的对应边的比例相等,则这两个三角形是相似的。
具体来说,如果三角形ABC和三角形DEF满足AB/DE=BC/EF=AC/DF,则这两个三角形是相似的。
这个定理的证明可以通过相似三角形的定义来完成。
因为AB/DE=BC/EF=AC/DF,所以这两个三角形的对应边的比例相等。
因此,根据相似三角形的定义,我们可以得出这两个三角形是相似的。
总结三角形相似的三个判定定理分别是AA相似定理、SAS相似定理和SSS相似定理。
这些定理在几何学中有着广泛的应用,可以帮助我们解决许多数学问题。
在实际应用中,我们可以根据这些定理来判断两个三角形是否相似,从而更好地理解和应用几何学知识。
相似理论 (principle of simulitude) 论述物理现象相似的条件和相似现象的性质的学说。
是模拟的理论基础。
相似理论的重要课题是确定各种物理现象的相似准数。
几何相似的概念可以推广到其他物理量的相似,例如时间相似是指两个系统中相对应的时间间隔保持相同的比例;力相似是指两个系统对应点上的作用力方向一致,大小保持相同的比例;温度相似是指两个系统对应点上的温度保持相同的比例;等等。
两个现象的物理相似是指两个现象的物理本质相同,且各对应点上和各对应瞬间内与该现象有关的各同名物理量都分别保持相同的比例,亦即与该现象有关的各同名物理量都保持相似。
相似现象中同名物理量的这种比例系数称为相似常数。
由于物理现象中各有关物理量必须服从一定的物理定律,它们之间受一定的关系方程约束,因此有关相似常数之间也存在一定关系。
相似常数之间的这种关系,称为模型定律。
它可由描述相似现象的物理方程或相似准数得出,是设计物理模型时为保证物理相似所必须遵循的依据。
相似理论的核心是相似三定理。
相似第一定理是以现象相似为前提研究彼此相似的现象具有的性质,可以表述为:彼此相似的现象,其相似准数的数值相同。
这样,根据在与原型相似的模型上得出的相似准数的数值,就可得出原型上相应相似准数的数值,进而得出所研究的物理量的值。
这样,在模型上的试验结果就可推广到其他与之相似的现象上。
根据相似现象的相似准数数值相同可确定出各物理量的相似常数之间的关系(即模型定律),这是设计模型试验的依据。
相似第二定理是关于物理量之间函数关系结构的定理,可以表述为:一个包含n 个物理量G1,G2,…,G n(其中有k个具有独立量纲的物理量)的物理方程,可以转换为m=(n-k)个由这些物理量组成的无量纲数群(指数幂乘积)π1,π2,…πm之间的函数关系,即f(G i)=0可以转换为φ(πj) =0,i=1,2,…n。
j=1,2,…m 。
相似第二定理是用量纲分析法推导相似准数的依据。
相似第一定理:两个相似的系统,单值条件相同,其相似判据的数值也相同。
相似第二定理:当一现象由n个物理量的函数关系来表示,且这些物理量中含有m种基本量纲时,则能得到(n-m)个相似判据。
相似第三定理:凡具有同一特性的现象,当单值条件(系统的几何性质、介质的物理性质、起始条件和边界条件等)彼此相似,且由单值条件的物理量所组成的相似判据在数值上相等时,则这些现象必定相似。
相似第一定律是关于相似准则存在的定理。
相似第二定律解决了实验数据的整理方法和实验结果的应用的问题。
相似第三定律确定了现象相似的充分必要条件。
相关概念(1)相似及相似常数如果原型和模型相对应的各点及在时间上对应的各瞬间的一切物理量成比例,则两个系统相似。
相似常数(也称为相似比、比尺、模拟比、相似系数等)是模型物理量同原型物理量之比。
主要有几何相似比、应力、应变、位移、弹性模量、泊松比、边界应力、体积力、材料密度、容重相似比等。
在这些相似常数中,长度、时间、力所对应的相似常数称为基本相似常数。
(2)相似指标及相似判据模型和原型中的相似常数之间的关系式称为相似指标。
若两者相似,则相似指标为1。
由相似指标导出的无量纲量群称为相似判据。
(3)同类物理现象具有相同的物理内容,并能用同一微分方程描述的物理现象。
如果两个物理现象的微分方程的形式一样,但物理内容不同,就不是同类物理现象。
(4)时间对应点是指从起始时刻起,具有的瞬时,不是从起始时刻起具有相同时间的点。
(5)空间对应点显然只有几何相似的体系才具有空间对应点,它是物理现象相似的前提。
相似模拟实验基本概念1、岩石力学模拟方法:根据相似原理,运用矿山岩石力学的理论与法则,在模型上研究岩体在各种不同受力状态下产生变形和破坏规律的方法。
岩石力学模拟方法,包括数学模拟和物理模拟。
数学模拟灵活方便,随着电子计算机的发展,用以解决的问题越来越广泛和富有成效。
物理模拟,既能全面模拟原型,又能直观地显示岩石的力学过程。
对《粘性土地基强夯地面变形与应用的模型试验研究》的相似原理与量纲分析包思远摘要:实验研究是力学研究方法中的重要组成部分。
量纲分析和相似原理是关于如何设计和组织实验,如何选择实验参数,如何处理实验数据等问题的指导性理论。
相似原理与量纲分析的主要内容为物理方程的量纲齐次性,π定理与量纲分析法,流动相似与相似准则,相似准则的确定,常用的相似准则数、相似原理与模型实验。
本文主要分析和学习例文中的相似模型的建立和量纲分析方法,用相似原理和量纲分析方法解决实验中遇到的问题。
关键字模型试验,相似原理,量纲分析1 模型实验相似原理基础模型顾名思义是把实际工程中的原型缩小N倍,进行相应的实验,得到相应的规律,来反映原型在现实工程中的状态,起到一个指导作用。
模型试验它的优点在于小巧,轻便,易于安装和拆卸,最重要的原因是它的经济性高能够从少量的实验经费中得到较好的实验规律。
回归于模型试验的本质就是相似原理,而相似理论有三个,分别为相似第一、二、三三大定理,其中相似第一定律是:彼此相似的物理现象,单值条件相同,其相似准数的数值也相同;相似第二定律,也称为π定律,即:两个物体相似,无论采用哪种相似判据,某些情况下的相似判据均可写成为无量纲方程。
第二相似定理表明现象的物理方程可以转化为相似准数方程。
它告诉人们如何处理模型试验的结果,即以相似准数间的关系给定的形式处理试验数据,并将试验结果推广到其它相似现象上去;相似第三定律是相似现象的充要条件。
现象相似的充分和必要条件是:现象的单值条件相似,并且由单值条件导出来的相似准数的数值相等。
实际应用时,相似条件都是由无量纲形式的π数来表示的。
目前推导原型与模型相似条件的方法主要有方程分析法和量纲分析法。
方程分析法是根据支配现象的微分方程来推导相似关系。
在使用方程分析法推导相似关系时,首先要列出支配现象的微分方程,然后取项与项之比就可以求出无量纲的二数。
这种方法对实验者知识的掌握程度要求较高。
第七章相似原理与量纲分析第一节相似的概念在几何学的学习中,人们已建立起几何图形的相似概念。
工程中很多物理现象也有相似的特点。
人们把可用同样形式数学式表达的物理现象群称为同类现象。
但属于同类现象的不同物理现象不一定都相似,只有当同类不同物理现象中,它们的各自空间中相对应的各点上的表征现象特性的同类物理量的比例,在时间上相对应的瞬间为常数时,两个同类的不同物理现象才相似。
由于物理现象都是在一定的空间中进行的,相似的物理现象应在相似的空间中进行。
所以完整的物理现象相似应包含两个相似概念,即几何相似和物理现象本身的相似,其中包括初始条件和边界条件的相似。
后者习惯被称为物理现象相似。
一、几何相似几何相似即几何图形相似,如两个相似三角形的对应边长成比例,其比例常数可称为相似常数。
如教材85页图7-1所示。
其中的C l称为相似常数,由于相似常数是同类量之比值,因此相似常数无量纲。
二、物理现象相似如教材86页图7-2所示为物理现象相似。
质点A、B沿几何相似的路径作相似运动。
针对物理现象相似,有如下推论:(1)如果物理现象相似,则在相应的时刻,它们空间任意相应点上的任意同名物理量应该成比例关系;(2)如果物理现象相似,在选取相似的物理量作为量度单位后,将描述物理现象的数学方程式转换成的无量纲方程式应该一样。
需要注意的是,在几何相似时,相似常数只有一个,而物理相似时,由于方程式中的物理量有很多种,不同名的物理量都有各自的相似常数,如空间相似常数C l=l/l’,时间相似常数Ct=t/t’,速度相似常数Cv=v/v’等。
各相似常数又有一定的约束关系,如对两相似质点A和B运动的物理现象,v=l/t和v’=l’/t’,则即或这就是相似物理现象中相似常数关系的附加条件,C称为相似指示数或相似指标,用它来控制相似常数的关系。
如果两现象相似,则其相似指标等于1。
由教材86页图7-2所示物理现象:此式等号左右由物理参数组成的项为无量纲的不变量,或称定数,可取定数的统一符号表示,即此式说明,像质点运动那样的物理现象相似时,则对应点上由各相关参数组成的无量纲数在对应的时间上具有相同的数值,如Ho。