相似原理与相似三定理
- 格式:pps
- 大小:333.00 KB
- 文档页数:81
相似理论相似理论,是说明自然界和工程中各相似现象相似原理的学说。
是研究自然现象中个性与共性,或特殊与一般的关系以及内部矛盾与外部条件之间的关系的理论。
在结构模型试验研究中,只有模型和原型保持相似,才能由模型试验结果推算出原型结构的相应结果。
1特点编辑相似理论主要应用于指导模型试验,确定“模型”与“原型”的相似程度、等级等。
随着计算机技术的不断进步,相似理论不但成为物理模型试验的理论而继续存在,而且进一步扩充其应用范围和领域,成为计算机“仿真”等领域的指导性理论之一。
随着“相似”概念日益扩大,相似理论有从自然科学领域扩展到包括经济、社会科学以及思维科学和认知哲学领域的趋势。
相似理论从现象发生和发展的内部规律性(数理方程)和外部条件(定解条件)出发,以这些数理方程所固有的在量纲上的齐次性以及数理方程的正确性不受测量单位制选择的影响等为大前提,通过线性变换等数学演绎手段而得到了自己的结论。
相似理论的特点是高度的抽象性与宽广的应用性相结合,相似理论的内容并不多,甚至不被当作一个单独的学科。
相似理论是试验的理论,用以指导试验的根本布局问题,它为模拟试验提供指导,尺度的缩小或放太,参数的提高或降低,介质性能的改变等,目的在于以最低的成本和在最短的运转周期内摸清所研究模型的内部规律性。
相似理论在现代科技中的最主要价值在于它指导模型试验上。
尽管相似理论本身是一个比较严密的数理逻辑体系,但是,一旦进入实际的应用课题,在很多情况下,不可能是很精确的。
因为相似理论所处理的问题通常是极其复杂的。
2理论基础编辑相似理论中的三个定理赖以存在的基础为:(1)现象相似的定义;(2)自然界中存在的现象所涉及到的各物理量的变化受制于主宰这种现象的各个客观规律,它们不能任意变化;(3)现象中所涉及的各物理量的大小是客观存在的,与所采用的测量单位无关。
3相关概念编辑(1)相似及相似常数如果原型和模型相对应的各点及在时间上对应的各瞬间的一切物理量成比例,则两个系统相似。
第8章相似理论8.1 概述1 实验是检验和获取理论的重要方法实验对流体力学的发展曾起过重要作用,现在它对流体力学的发展仍然有着十分重要的意义。
实验流体力学已成为流体力学的重要分支之一。
流体的流动问题,有些可以作适当简化,得出解析结论,但得出的结论还必须通过必要的实验验证,才能用于实际。
描述粘性流体运动的N—S方程是二阶偏微分方程组,除少数简单的流动可获得解析解外,对于复杂的三维流动,难以用理论方法获得精确解,即使使用高性能的计算机也难以获得精确的数字解。
另外,由于流体运动的复杂性和人们认识的局限性,对于许多复杂的流动现象,从理论上也难以用运动微分方程描述。
再者,流体的某些力学现象,并非随时都存在,而出现的时间又往往比较短暂,为了进行较长期的探索和多次观察分析,实验就是一个必不可少的方法。
2模型实验是流体力学研究的常用手段最权威的实验就是原型或实体实验,但随着科学技术的发展,出于经济和技术上的限制,这种实验将会遇到很大困难,特别是原型尚未出现之前,只能通过模型实验作出预测。
例如新型航空航天器研究,要取得初步可靠的设计资料,常先制成模型,在风洞中进行系统的实验研究。
新型舰船和水库堤坝设计,也是先制作模型进行实验研究。
将设想的实体(原型)制成模型而进行实验研究,节省经费和时间,测试也比较方便。
在某些情况下,即使实物已经存在,但由于各种条件限制,也难以进行实体实验。
因为更多是在实验室内进行模型实验,这是研究流体流动问题的常用手段。
3 相似理论是模型实验的依据进行模型实验研究,必须解决如何设计、制作模型及将模型实验的结果折算到实体上等问题。
相似理论对如何进行模型实验以获得正确的结果,可以提供指示或答案,及总结实验结果,也只有对力学相似的流动才有可能。
说明相似方法的基本原理称为相似理论。
所以相似原理是研究、支配力学相似的系统的性质及如何用模型实验解决实际问题的一门科学,是进行模型实验研究的依据。
相似方法是一种科学的方法,但不是一门独立的科学研究方法,而是实验和分析研究的方法。
相似原理知识点总结相似原理是几何学中的基本概念之一,它在几何学的许多领域中都有重要的应用。
相似原理主要是指两个几何图形在形状上相似,但尺寸可能不同的原理。
在这篇文章中,我们将会对相似原理进行深入的探讨,包括其定义、性质、常见的应用以及相关的定理。
一、相似原理的定义相似原理是指两个几何图形在形状上相似,但尺寸可能不同。
两个图形相似的条件是它们的对应角相等,对应边成比例。
简而言之,如果两个几何图形的所有对应角相等,且对应边的比例相等,那么这两个几何图形就是相似的。
在直角三角形中,有一种特殊的相似原理叫做“AA相似原理”。
当两个直角三角形的一个角相等时,另外一个角也相等,那么这两个三角形就是相似的。
另外,如果两个三角形的对应边成比例,那么它们也是相似的。
除了直角三角形外,对于其他类型的多边形和圆的相似原理也有一些特殊的条件。
但其核心思想都是相似的,即对应角相等,对应边成比例。
二、相似原理的性质相似原理有一些重要的性质,下面我们将逐一介绍这些性质:性质1:相似三角形的对应角相等相似三角形的一个重要性质是它们的对应角相等。
这意味着如果两个三角形是相似的,那么它们的对应角一定相等。
性质2:相似三角形的对应边成比例相似三角形的另一个重要性质是它们的对应边成比例。
即如果两个三角形是相似的,那么它们的对应边的比例一定相等。
性质3:相似三角形的周长成比例如果两个三角形是相似的,那么它们的周长也是成比例的。
这是因为相似三角形的对应边成比例。
性质4:相似三角形的面积成比例如果两个三角形是相似的,那么它们的面积也是成比例的。
这是因为相似三角形的对应边成比例。
以上的性质都是相似原理的基本性质,它们在解题过程中非常有用。
三、相似原理的应用相似原理在几何学的许多领域中有着广泛的应用。
下面我们将介绍一些常见的应用:应用1:求图形面积在求解图形的面积时,如果我们知道图形的相似图形,并且知道两者的比例关系,那么我们就可以利用相似原理来求解图形的面积。
三角形相似的三个判定定理在几何学中,相似三角形是指具有相同形状但大小不同的三角形。
相似三角形是几何学中的重要概念,它们在许多数学问题中都有着重要的应用。
在本文中,我们将介绍三角形相似的三个判定定理。
第一个判定定理:AA相似定理AA相似定理是指,如果两个三角形的两个角分别相等,则这两个三角形是相似的。
具体来说,如果三角形ABC和三角形DEF满足∠A=∠D,且∠B=∠E,则这两个三角形是相似的。
这个定理的证明可以通过角度对应原理来完成。
因为∠A=∠D,所以角A和角D是对应角;同理,角B和角E也是对应角。
因此,根据角度对应原理,我们可以得出这两个三角形是相似的。
第二个判定定理:SAS相似定理SAS相似定理是指,如果两个三角形的两个角分别相等,并且它们的对应边的比例相等,则这两个三角形是相似的。
具体来说,如果三角形ABC和三角形DEF满足∠A=∠D,∠B=∠E,且AB/DE=BC/EF,则这两个三角形是相似的。
这个定理的证明可以通过相似三角形的定义来完成。
因为∠A=∠D,所以角A和角D是对应角;同理,角B和角E也是对应角。
又因为AB/DE=BC/EF,所以这两个三角形的对应边的比例相等。
因此,根据相似三角形的定义,我们可以得出这两个三角形是相似的。
第三个判定定理:SSS相似定理SSS相似定理是指,如果两个三角形的对应边的比例相等,则这两个三角形是相似的。
具体来说,如果三角形ABC和三角形DEF满足AB/DE=BC/EF=AC/DF,则这两个三角形是相似的。
这个定理的证明可以通过相似三角形的定义来完成。
因为AB/DE=BC/EF=AC/DF,所以这两个三角形的对应边的比例相等。
因此,根据相似三角形的定义,我们可以得出这两个三角形是相似的。
总结三角形相似的三个判定定理分别是AA相似定理、SAS相似定理和SSS相似定理。
这些定理在几何学中有着广泛的应用,可以帮助我们解决许多数学问题。
在实际应用中,我们可以根据这些定理来判断两个三角形是否相似,从而更好地理解和应用几何学知识。