戴维南定理的解析与练习21408
- 格式:doc
- 大小:436.50 KB
- 文档页数:7
§2-6戴维宁定理内容: 戴维宁定理的定义戴维宁定理的证明应用戴维宁定理的步骤戴维宁定理的意义和注意事项一、戴维南定理内容i a3、数学表述:二、戴维南定理的证明i’a3、最简单等效电路三、应用戴维宁定理的步骤例:电路如图(a)所示,其中x 电流I =2A ,此时电压U 为何值?将虚线所示的两个单口网络N 1和N 2分别用戴维南等效电路代替,到图(b)电路。
V103V 202)1(+=×+×Ω=U gU U 单口N 1的开路电压U oc1可从图(c)电路中求得,列出KVL方程解:将20V电压源用短路代替,得到图(d)电路,再用外加电流源I 计算电压U 的方法求得R o1。
列出KVL方程IU I I gU U )2(322)()1(Ω+=×⎟⎞⎜⎛Ω×++×Ω=求R 01:最后从图(b)电路求得电流I 的表达式为xx x R R R R R U U I +Ω=+Ω+Ω−−−=++−=1V 821)V 5(V 3o2o1oc1oc2当只对电路中某一条支路或几条支路(记为N L )的电压电流感兴趣时,可以将电路分解为两个单口网络N L 与N 1的连接,如图(a)所示。
用戴维南等效电路代替更复杂的含源单口N 1,不会影响单口N L (不必是线性的或电阻性的)中的电压和电流。
代替后的电路[图(b)]规模减小,使电路的分析和计算变得更加简单。
四、意义和注意事项1、意义:2、注意:等效电源的电压方向与开路电压(短路电流)方向一致;当有受控源时,等效内阻可能出现“-”值;受控源支路可单独进行变换;而若控制支路进行变换时,受控源支路必须一起进行变换。
如书p57图(b)到(c)的变换。
习题:p452-3-2,2-3-3p81~832-8,2-14,2-16,。
戴维宁定理七种例题
戴维南定理(或译为戴维宁定理),是由法国科学家L・C•戴维南于1883年提出的一个电学定理。
其内容是:—个线性有源二端网络,对外电路来说,可以用一个电压源和电阻的串联组合电路来等效。
这个电压源的电压,就是此二端网络的开路电压,这个串联电阻就是从此二端网络两端看进去,网络内部所有独立电源均置零以后的等效电阻。
戴维南定理是最常用的电路简化方法之一,主要用于电路的分析和计算,是电学专业基础课程《电工旨出》的重要内容。
戴维宁定理例题例1 运用戴维宁定理求下图所示电路中的电压U0图1剖析:断开待求电压地址的支路(即3Ω电阻地址支路),将剩下一端口网络化为戴维宁等效电路,需恳求开路电压U oc和等效电阻R eq。
(1)求开路电压U oc,电路如下图所示由电路联接联络得到,U oc=6I+3I,求解得到,I=9/9=1A,所以U oc=9V(2)求等效电阻R eq。
上图电路中含受控源,需求用第二(外加电源法(加电压求电流或加电流求电压))或第三种(开路电压,短路电流法)办法求解,此刻独立源应置零。
法一:加压求流,电路如下图所示,依据电路联接联络,得到U=6I+3I=9I(KVL),I=I0´6/(6+3)=(2/3)I0(并联分流),所以U=9´(2/3)I0=6I0,R eq=U/I0=6Ω法二:开路电压、短路电流。
开路电压前面已求出,U oc=9V,下面需恳求短路电流I sc。
在求解短路电流的进程中,独立源要保存。
电路如下图所示。
依据电路联接联络,得到6I1+3I=9(KVL),6I+3I=0(KVL),故I=0,得到I sc=I1=9/6=1.5A(KCL),所以R eq=U oc/I sc=6Ω终究,等效电路如下图所示依据电路联接,得到留心:核算含受控源电路的等效电阻是用外加电源法仍是开路、短路法,要详细疑问详细剖析,以核算简练为好。
戴维南定理典型例子戴维南定理指出,等效二端网络的电动势E等于二端网络开路时的电压,它的串联内阻抗等于网络内部各独立源和电容电压、电感电流都为零时,从这二端看向网络的阻抗Zi。
设二端网络N中含有独立电源和线性时不变二端元件(电阻器、电感器、电容器),这些元件之间可以有耦合,即可以有受控源及互感耦合;网络N的两端ɑ、b接有负载阻抗Z(s),但负载与网络N内部诸元件之间没有耦合,U(s)=I(s)/Z(s)。
当网络N中所有独立电源都不工作(例如将独立电压源用短路代替,独立电流源用开路代替),所有电容电压和电感电流的初始值都为零的时候,可把这二端网络记作N0。
戴维南定理解题思路一、什么是戴维南定理戴维南定理,又称为系统辨识理论,是由戴维南(Davidon)提出的一种准确、有效地判定复杂系统的动态行为的方法。
通过系统的输入和输出数据,利用数学模型对系统进行辨识,从而推导出系统的状态和参数变化规律,进而理解系统的内在机理和预测未来行为。
二、戴维南定理的应用领域戴维南定理在各个领域都有广泛的应用,包括但不限于以下几个方面:1. 机械工程领域•刚体机构分析:通过测量机械系统的输入(电机转速、力等)和输出(位移、速度等)数据,辨识机械的参数,如摩擦系数、刚度等,从而对机械系统进行性能改进和优化设计。
•振动分析:通过戴维南定理,可以对机械系统的振动进行分析和预测,从而提前发现潜在的故障和问题,进而进行相应的维护和修复。
2. 控制工程领域•控制系统分析:通过收集系统的输入和输出数据,利用戴维南定理可以对控制系统的传递函数进行辨识,从而进行稳定性分析和控制参数的调整。
•自适应控制:戴维南定理可以应用于自适应控制系统中,通过对系统的辨识和参数的自动调整,实现对不确定性系统的鲁棒稳定控制。
3. 金融领域•股市预测:通过对股票市场的历史数据进行戴维南辨识,可以对股票价格的变化和趋势进行预测,从而指导投资策略和决策。
•风险分析:戴维南定理可以对金融系统中的风险进行分析和评估,对市场风险和系统风险进行预警和控制。
三、戴维南定理的基本原理戴维南定理的基本原理是:通过输入和输出数据,建立系统的数学模型,对系统进行参数辨识。
具体步骤如下:1. 收集数据首先,需要收集系统的输入和输出数据。
输入数据包括对系统的激励信号,如电压、电流、力等;输出数据包括对系统的响应,如位移、速度、温度等。
2. 建立数学模型根据收集到的数据,建立系统的数学模型。
常用的模型包括线性模型和非线性模型。
线性模型适用于变化较小的系统,非线性模型适用于变化较大的系统。
3. 参数辨识利用建立的数学模型,对系统的参数进行辨识。
第四章电路定理◆重点:1、叠加定理2、戴维南定理和诺顿定理◆难点:1、熟练地运用叠加定理、戴维南定理和诺顿定理分析计算电路。
2、掌握特勒根定理和互易定理,理解这两个定理在路分析中的意义。
4-1 叠加定理网络图论与矩阵论、计算方法等构成电路的计算机辅助分析的基础。
其中网络图论主要讨论电路分析中的拓扑规律性,从而便于电路方程的列写。
4.1.1 几个概念1.线性电路——Linear circuit由线性元件和独立源组成的电路称为线性电路。
2.激励与响应——excitation and response在电路中,独立源为电路的输入,对电路起着“激励”的作用,而其他元件的电压与电流只是激励引起的“响应”。
3.齐次性和可加性——homogeneity property and additivity property“齐次性”又称“比例性”,即激励增大K倍,响应也增大K倍;“可加性”意为激励的和产生的响应等于激励分别产生的响应的和。
“线性”的含义即包含了齐次性和可加性。
齐次性:可加性:4.1.2 叠加定理1.定理内容在线性电阻电路中,任一支路电流(电压)都是电路中各个独立电源单独作用时在该支路产生的电流(电压)之叠加。
此处的“线性电阻电路”,可以包含线性电阻、独立源和线性受控源等元件。
2.定理的应用方法将电路中的各个独立源分别单独列出,此时其他的电源置零——独立电压源用短路线代替,独立电流源用开路代替——分别求取出各独立源单独作用时产生的电流或电压。
计算时,电路中的电阻、受控源元件及其联接结构不变。
4.1.3 关于定理的说明1.只适用于线性电路2.进行叠加时,除去独立源外的所有元件,包含独立源的内阻都不能改变。
3.叠加时应该注意参考方向与叠加时的符号4.功率的计算不能使用叠加定理4.1.4 例题1.已知:电路如图所示–6V+4– 6V +求:X U 及两个独立源和受控源分别产生的功率。
解:根据叠加定理,电路中电压源和电流源分别作用时的电路如图(b )、(c )所示。
复杂直流电路专项复习________戴维南定理专题一、二端网络的有关概念1. 二端网络:具有两个引出端与外电路相联的网络。
又叫做一端口网络。
2. 无源二端网络:内部不含有电源的二端网络。
可等效为一个电阻3. 有源二端网络:内部含有电源的二端网络。
可等效为一个电压源二、戴维宁定理任何一个线性有源二端电阻网络,对外电路来说,总可以用一个电压源E 0与一个电阻r 0相串联的模型来替代。
电压源的电动势E 0等于该二端网络的开路电压,电阻r 0等于该二端网络中所有电源不作用时(即令电压源短路、电流源开路)的等效电阻(叫做该二端网络的等效内阻)。
该定理又叫做等效电压源定理。
【例3-4】如图3-10所示电路,已知E 1 = 7 V ,E 2 = 6.2 V ,R 1 = R 2 = 0.2 Ω,R = 3.2 Ω,试应用戴维宁定理求电阻R 中的电流I 。
解:(1) 将R 所在支路开路去掉,如图3-11所示,求开路电压U ab :A 24.08.021211==+-=R R E E I , U ab = E 2 + R 2I 1 = 6.2 + 0.4 = 6.6 V = E 0 (2) 将电压源短路去掉,如图3-12所示,求等效电阻R ab :(3)R ab = R 1∥R 2 = 0.1 Ω = r 0(3)画出戴维宁等效电路,如图3-13所示,求电阻R 中的电流I :A 23.36.600==+=R r E I 【例3-5】如图3-14所示的电路,已知E = 8 V ,R 1= 3 Ω,R 2 = 5 Ω,R 3 = R 4 = 4 Ω,R 5 = 0.125 Ω,试应用戴维宁定理求电阻R 5中的电流I 。
图3-11 求开路电压U ab图3-10 例题3-4图3-12 求等效电阻R ab 图3-13 求电阻R 中的电流I图3-14 例题3-5图3-15 求开路电压U ab解:(1) 将R 5所在支路开路去掉,如图3-15所示,求开路电压U ab :A 1 A 143432121=+===+==R R E I I R R E I I , U ab = R 2I 2 -R 4I 4 = 5 - 4 = 1 V = E 0(2) 将电压源短路去掉,如图3-16所示,求等效电阻R ab :R ab = (R 1∥R 2) + (R 3∥R 4) = 1.875 + 2 = 3.875 Ω = r 0(3) 根据戴维宁定理画出等效电路,如图3-17所示,求电阻R 5中的电流A 25.0415005==+=R r E I 三、巩固练习1、图示电路中的有源二端线性网络接上1Ω负载时的输出功率与接上4Ω负载时相同,那么该网络的戴维南等效电路中的参数R S =__________。
戴维宁定理
一、知识点:
1、二端(一端口) 网络的概念:
二端网络:具有向外引出一对端子的电路或网络。
无源二端网络:二端网络中没有独立电源。
有源二端网络:二端网络中含有独立电源。
2、戴维宁(戴维南)定理
任何一个线性有源二端网络都可以用一个电压为U OC的理想电压源和一个电阻R0串联的等效电路来代替。
如图所示:
等效电路的电压U OC是有源二端网络的开路电压,即将负载R L断开后a 、b两端之间的电压。
等效电路的电阻R0是有源二端网络中所有独立电源均置零(理想电压源用短路代替,理想电流源用开路代替)后, 所得到的无源二端网络a 、b两端之间的等效电阻。
二、 例题:应用戴维南定理解题:
戴维南定理的解题步骤:
1.把电路划分为待求支路和有源二端网络两部分,如图1中的虚线。
2.断开待求支路,形成有源二端网络(要画图),求有源二端网络的开路电压UOC 。
3.将有源二端网络内的电源置零,保留其内阻(要画图),求网络的入端等效电阻Rab 。
4.画出有源二端网络的等效电压源,其电压源电压US=UOC (此时要注意电源的极性),内阻R0=Rab 。
5.将待求支路接到等效电压源上,利用欧姆定律求电流。
例1:电路如图,已知U 1=40V ,U 2=20V ,R 1=R 2=4W ,R 3=13 W ,试用戴维宁定理求电流I 3。
解:(1) 断开待求支路求开路电压
U OC
U OC = U 2 + I R 2 = 20 +2.5 ´ 4 =
30V
或: U OC = U 1 – I R 1 = 40 –2.5 ´ 4 = 30V
U OC 也可用叠加原理等其它方法求。
(2) 求等效电阻R 0
将所有独立电源置零(理想电压源
用短路代替,理想电流源用开路代替)
(3) 画出等效电路求电流I 3
例2:试求电流 I 1
A 5.24420402121
=+-=+-=R R U U I Ω=+⨯=22
1210R R R R R A 213
23030OC 3=+=+=R R U I
解:(1) 断开待求支路求开路电压U OC
U OC = 10 – 3 ´ 1 = 7V
(2) 求等效电阻R 0
R 0 =3 W
(3) 画出等效电路求电流I 3
解得:I 1 = 1. 4 A
【例3】 用戴维南定理计算图中的支路电流I 3。
解:① 等效电源的电动势E 可由图1-58(b)求得
于是
或
② 等效电源的内阻R O 可由图1-58(c)求得
因此
3Ω + _ 2Ω a
b I 1
7V
③ 对a和b两端讲,R
1和R
2
是并联的,由图1-58(a)可等效于图1-58(d)。
所以
【例4】电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。
解:图1-59(a)的电路可等效为图1-59(b)的电路。
将a、b间开路,求等效电源的电动势E,即开路电压U
ab0。
应用结点电压法求a、b间开路时a和b两点的电位,即
将a、b间开路,求等效电源的内阻R
R
=3KΩ//6KΩ+2KΩ//1KΩ//2KΩ=2.5KΩ
求电阻R中的电流I
三、应用戴维宁定理应注意的问题:
应用戴维南定理必须注意:
①戴维南定理只对外电路等效,对内电路不等效。
也就是说,不可应用该定理求出等效电源电动势和内阻之后,又返回来求原电路(即有源二端网络内部电路)的电流和功率。
②应用戴维南定理进行分析和计算时,如果待求支路后的有源二端网络仍为复杂电路,可再次运用戴维南定理,直至成为简单电路。
③使用戴维南定理的条件是二端网络必须是线性的,待求支路可以是线性或非线性的。
线性电路指的是含有电阻、电容、电感这些基本元件的电路;非线性电路指的是含有二极管、三极管、稳压管、逻辑电路元件等这些的电路。
当满足上述条件时,无论是直流电路还是交
流电路,只要是求解复杂电路中某一支路电流、电压或功率的问题,就可以使用戴维南定理。
四、练习题:
1、用戴维南定理求图中5Ω电阻中的电流I ,并画出戴维南等效电路
2、试用戴维南定理计算图示电路中3欧电阻中的电流I.(-35/31(A ))
3、试用戴维南定理计算图示电路中6欧电阻中的电流I 。
(0.75A )
4、如图中已知US1=140V US2=90V R1=20欧姆 R2=5欧姆 R3=6欧姆,用戴维宁定律计算电流 I 3 值 (10A )
5、计算图示电路中的电流I 。
(用戴维南定理求解)(2A ) - 10V + 6Ω
3Ω
3Ω 5A 2A - 20V +
题3图
6、计算图示电路中的电流I。
(用戴维南定理求解)(-1A)
7、计算图示电路中的电流I。
(用戴维南定理求解)
(1.6A)
7、用戴维南定理计算图中的支路电流I。
(10A)
3
8、电路如图所示,R=2.5KΩ,试用戴维南定理求电阻R中的电流I。
(0.35 mA)
9、用戴维南定理求下图所示电路中的电流I(2A)。