3 流体动力学基础
- 格式:doc
- 大小:224.50 KB
- 文档页数:17
流体动力学基础第3章流体动力学基础一、单项选择题1、当液体为恒定流时,必有()等于零。
A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度2、均匀流过流断面上各点的()等于常数。
A.p B.z+g p ρ C. g p ρ+g u 22 D. z+g p ρ+gu 223、过流断面是指与()的横断面。
A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为()。
A.一元流B.二元流C.三元流D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A. 22dtr d B.t u ?? C.(u ·▽)u D. t u ??+(u ·▽)u 6、在恒定流中,流线与迹线在几何上()。
A.相交B.正交C.平行D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ).A.p1=p2B.p3=p4C.z1+g p ρ1 =z2+g p ρ2D.z3+g p ρ3 =z4+gp ρ4 10、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.511、根据图3.2 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得()。
A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=()。
第三章流体动力学基础复习题部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑第三章流体动力学基础复习题一、概念部分1、描述流体运动的方法有和;前者以为研究对象,而后者以为研究对象。
2、流体运动的几何描述有:,,和。
3、流线有什么特点?流线、脉线和迹线有什么区别和联系?4、流体微团基本运动形式有,和变形运动等,而变形运动又包括和两种。
5、描述有旋运动几何要素有、和。
6、判断正误:理想流体不存在有旋运动是否正确?为什么?试举例说明。
7、表征涡流的强弱的参数有和。
8、在无涡流空间画出的封闭周线上的速度环量为。
9、简述汤姆孙定理的内容10、速度势函数j存在的条件是什么?流函数存在的条件是什么?11、简述流函数的物理意义的内容,并证明。
12、流网存在的条件是什么?简述流网的性质所包含的内容?13、无环量圆柱绕流运动由流、流和流叠加而成,有环量的圆柱绕流运动是无环量的圆柱绕流运动与流叠加而成。
b5E2RGbCAP14、是驻点。
通过驻点的流线一定是零流线,是否正确?为什么?零流线是。
轮廓线是。
15、描述流体运动的微分方程有、和。
写出它们的表达式。
16、纳维-斯托克斯方程中的速度只能是平均速度,是否正确?为什么?17、写出总水头和测压管水头的表达式,并说明各项的物理意义。
18、写出总压、全压和势压得表达式,并说明各项的物理意义。
19、简述系统和控制体的定义和特点二、计算部分1、已知拉格朗日描述:求速度与加速度的欧拉描述2、试判断下列流场的描述方式:并转换成另一种描述方式3、已知用欧拉法表示的流场速度分布规律为:试求在t=0时刻位于点<a,b>的流体质点的运动轨迹及拉格朗日法表示的速度场4、粘性流体在半径为R的直圆管内做定常流动。
设圆管截面<指垂直管轴的平面截面)上有两种速度分布,一种是抛物线分布u1(r>,另一种是1/7指数分布u2(r>:p1EanqFDPw上式中um1,um2分别为两种速度分布在管轴上的最大速度。
Chapter 3 流体动力学基本方程例如求解定常均匀来流绕流桥墩时的桥墩受力问题:流场和桥墩表面受力由(边界条件+控制方程组)决定。
本章任务建立控制方程组,确定边界条件的近似描述和数学表达。
I 质量连续性方程(质量守恒方程) I-1方程的导出物质体(或系统)的质量恒定不变——质量守恒假设。
质量守恒假设对于很多流动问题是良好近似,分子热运动引起的系统与外界的物质交换可忽略不计。
在此假设下,对物质体τ有0dd dtτρτ=⎰。
根据输运定理,设t 时刻该系统所占控制体为CV ,对应控制面CS ,则有0CVCSd v ds tρτρ∂+⋅=∂⎰⎰⎰——质量守恒方程积分形式。
上式亦表明,CV 内单位时间内的质量减少=CS 上的质量通量。
由奥高公式得()CSCVv ds v d ρρτ⋅=∇⋅⎰⎰⎰,于是有()0CV v d t ρρτ∂⎡⎤+∇⋅=⎢⎥∂⎣⎦⎰。
考虑到τ的任意性,故有()0v t ρρ∂+∇⋅=∂,即 0d v dtρρ+∇⋅= ——质量守恒方程微分形式 I-2各项意义分析: 1)dt d ρ——流体微团密度随时间的变化率;定常流动0=∂∂t ρ;不可压缩流动0=dt d ρ;均质流体的不可压缩流动.const ρ=。
2)由0=dtmd δ(m δ为微团的质量)知11d d dt dt ρδτρδτ=-(δτ为该微团t 时刻体积),从而知v ∇⋅=流体微团体积随时间的相对变化率,即体膨胀率。
3)不可压缩流体0d dtρ=,故有 0v ∇⋅=。
由奥高公式有CVCSv ds vd τ⋅=∇⋅⎰⎰⎰,可见对于不可压缩流动,任意闭合曲面上有0CSv ds ⋅=⎰⎰。
不可压缩流动满足的0v ∇⋅=或0CSv ds ⋅=⎰⎰是对速度场的一个约束。
例1、1)定常流场中取一段流管,则由0CSv ds ⋅=⎰⎰易知:222111S V S V ρρ=;如为均质不可压缩流动,则1122V S V S =。
思考题及答案一、选择 (1)二、例题 (4)三、问答 (61)一、选择问题:恒定流是:A、流动随时间按一定规律变化;B、流场中任意空间点的运动要素不随时间变化;C、各过流断面的速度分布相同;D、各过流断面的压强相同。
问题:非恒定流是:A、;B、;C、;D、。
问题:一元流动是:A、均匀流;B、速度分布按直线变化;C、运动参数是一个空间坐标和时间变量的函数;D、限于直线流动。
问题:均匀流是:A、当地加速度为零;B、迁移加速度为零;C、向心加速度为零;D、合加速度为零。
问题1:流速势函数存在的必要与充分条件是:A、平面无旋流动;B、理想流体平面流动;C、不可压缩流体平面流动;D、无旋流动。
为:问题2:设流速势函数j=xyz,则点B(1,2,1)处的速度uBA、5;B、1;C、3;D、2。
判断:公式(3-14)与公式(3-16)两式形式完全相同,因此其应用条件也相同。
你的回答:对错判断:土坝渗流中的流网网格一定是直线正方形网格。
你的回答:对错二、例题例1如图3-7,已知流速场为,其中C为常数,求流线方程。
解:由式得图3-7积分得:则:此外,由得:因此,流线为Oxy平面上的一簇通过原点的直线,这种流动称为平面点源流动(C>0时)或平面点汇流动(C<0时)例2已知平面流动试求:(1)t=0时,过点M(-1,-1)的流线。
(2)求在t=0时刻位于x=-1,y=-1点处流体质点的迹线。
解:(1)由式(2)由式得得得:由t=0时,x=-1,y=-1得C1=0, C2=0,则有:将:t=0,x=-1,y=-1 代入得瞬时流线xy=1最后可得迹线为:即流线是双曲线。
例3已知流动速度场为试求:(1)在t= t0瞬间,过A(x,y,z)点的流线方程;(2)在t= t0瞬间,位于A(x,y,z)点的迹线方程。
解:(1)流线方程的一般表达式为将本题已知条件代入,则有:积分得:(1+t)ln x = ln y + ln C '当t = t 0时,x =x 0,y =y 0 ,则有故过A ( x 0,y 0,z 0 )点的流线方程为(2)求迹线方程 迹线一般表达式为代入本题已知条件有:由(1)式得:当t = t 0时,x =x 0代入上式得由(2)式得: 当t = t 0时,y = y 0代入上式得故迹线方程为t是自变量,消t后得到的轨迹方程为迹线方程:例:已知流体流动的流速场为,判断该流动是无旋流还是有旋流?解:故液体流动是无旋流。
第三章流体动力学基础本章是流体动力学的基础。
主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。
此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。
第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。
图3-1为流线谱中显示的流线形状。
(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。
流线是欧拉法分析流动的重要概念。
图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。
图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。
b.流线不能是折线,而是一条光滑的曲线。
因为流体是连续介质,各运动要素是空间的连续函数。
c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。
因为对不可压缩流体,元流的流速与其过水断面面积成反比。
(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。
所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。
图3-5中烟火的轨迹为迹线。
(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。
第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。
如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。
如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。
前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。
如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。
与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。
由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。
教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。
在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。
3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。
若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。
1.3 流体动力学基础 教案目录 电子课件【掌握内容】(1)基本概念:流量、流速、压头等(2)质量流量、体积流量之间关系(3)流态判断(4)连续性方程的表达式、物理意义及计算(5)伯努利方程的表达式、物理意义及计算(6)流体阻力的种类及产生的原因【理解内容】(1)管道截面上的速度分布(2)阻力计算(3)简单管路、串联管路、并联管路计算【了解内容】(1)伯努利方程的应用(2)动量方程1.3.1基本概念1.3.1.1流量与流速(1)流量:单位时间内流过管道任一截面的流体量,称为流量。
①体积流量:单位时间内流过管道任一截面的流体体积,以符号V 表示,单位为m 3/s ②质量流量:单位时间内流过管道任一截面的流体质量,以符号M 表示,单位为kg/s(2)流速:单位时间内流体的质点在流动方向上流过的距离称为流速.FV w = (m/s ) (3)质量流量与体积流量和平均流速间的关系。
wF V =(m 3/s )ρρwF V M == (kg/s )对于气体: 222111T V p T V p = 122112T T p p V V = (m 3/s ) 122111221122T T p p w T T p p F V F V w === (m/s ) [例题1-4] 某硅酸盐窑炉煅烧后产生的烟气量为10万m 3/h ,该处压强为负100Pa ,气温为800℃,经冷却后进入排风机,这时的风压为负1000Pa ,气温为200℃,求这时的排风量(不计漏风等影响)。
解: 1p =101325-100=101225Pa , 2p =101325-1000=100325Pa1T =273+800=1073K 2T =273+200=473K1V =1.0×105m 3/h 2V =1073473100325101225100.15⨯⨯⨯ =4.44×104 (m 3/h)硅酸盐窑炉系统中,可近似认为1p =2p =0p (大气压),1211212273273t t V T T V V ++== (m 3/s ) 1.3.1.2稳定流与非稳定流运动流体全部质点所占的空间称为流场。
第三章流体动力学基础(总8页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章 流体动力学基础习 题一、单选题1、在稳定流动中,在任一点处速度矢量是恒定不变的,那么流体质点是( )A .加速运动B .减速运动C .匀速运动D .不能确定2、血管中血液流动的流量受血管内径影响很大。
如果血管内径减少一半,其血液的流量将变为原来的( )倍。
A .21B .41C .81D .1613、人在静息状态时,整个心动周期内主动脉血流平均速度为 m/s ,其内径d =2×10-2m ,已知血液的粘度η =×10-3 Pa·S,密度ρ=×103 kg/m 3,则此时主动脉中血液的流动形态处于( )状态。
A .层流B .湍流C .层流或湍流D .无法确定4、正常情况下,人的小动脉半径约为3mm ,血液的平均速度为20cm/s ,若小动脉某部分被一硬斑阻塞使之变窄,半径变为2mm ,则此段的平均流速为( )m/s 。
A .30B .40C .45D .60 5、有水在同一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强差为1500Pa ,则A 处的流速为( )。
A .1m/sB .2m/sC .3 m/sD .4 m/s6、有水在一水平管道中流动,已知A 处的横截面积为S A =10cm 2,B 处的横截面积为S B =5cm 2,A 、B 两点压强之差为1500Pa ,则管道中的体积流量为( )。
A .1×10-3 m 3/sB .2×10-3 m 3/sC .1×10-4 m 3/sD .2×10-4 m 3/s 7、通常情况下,人的小动脉内径约为6mm ,血流的平均流速为20cm/s ,若小动脉某处被一硬斑阻塞而变窄,测得此处血流的平均流速为80cm/s ,则小动脉此处的内径应为( )mm 。