二次函数中的符号问题
- 格式:docx
- 大小:111.59 KB
- 文档页数:8
二次函数的符号问题教学目标:1.通过学习,掌握不同函数在同一坐标系中可能存在的大致图像2.通过主动探究的学习,提高学生的独立性,培养学生独立完成任务的意识3.通过分类讲解,提升学生自我认知能力,引导学生掌握二次函数a 、b 、c 与图像的关系重难点:能根据二次函数图像正确判断二次函数中系数的符号知识回忆:一、二次函数的概念一般地,如果y 与x 的关系满足:2(,,0)y ax bx c a b c a =++≠是常数,,那么y 叫做x 的二次函数。
二、二次函数的图象、开口方向及大小、对称轴、顶点坐标、增减性和最大最小值把二次函数2(,,0)y ax bx c a b c a =++≠是常数,解析式变化成()k h x a y +-=2的形式。
2224()24b ac b y ax bx c a x a a -=++=++ 新课知识:一、二次函数图像与系数a 、b 、c 关系技法:对于c bx ax y ++=2的图象特征与a 、b 、c 的关系为:①抛物线开口由a 定,上正下负;①对称轴位置a 、b 定,左同右异,b 为0时是y 轴;①与y 轴的交点由c 定,上正下负,c 为0时过原点。
1. 抛物线c bx ax y ++=2的图象如下图,则a 、b 、c 的符号为〔 〕A.0,0,0>>>c b a B.0,0,0=>>c b aC. 0,0,0=<>c b aD.0,0,0<<>c b a2. 假设a <0,b >0,c <0,则抛物线c bx ax y ++=2的大致图象为〔 〕3. 在同一直角坐标系内,二次函数()c x c a ax y +++=2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是〔 〕二、①的符号的判定ac b 42-的符号由抛物线与x 轴交点的个数确定:2个交点,042>-ac b ;1个交点,042=-ac b ;没有交点,042<-ac b4. 以下图中⊿0<的是〔 〕〔A 〕 〔B 〕 〔C 〕 〔D 〕5. 不管x 为何值,函数()02≠++=a c bx ax y 的值恒大于0的条件是( )A.a>0,①>0;B.a>0, ①<0;C.a<0, ①<0;D.a<0, ①<0 O y x O y x y x O yx O . .三、含a 、b 的代数式符号的判定 由对称轴公式a b x 2-=,可确定b a +2的符号 6.二次函数2(0)y ax bx c a =++≠的图象如下图,则①20a b +>①20a b +<①02b a-<①20a b -<①20a b ->中正确的___________.(请写出番号即可)7. 二次函数2(0)y ax bx c a =++≠的图象如下图,则以下说法不正确的是〔 〕A .240b ac ->B .0a >C .0c >D .02b a-< 四、含a 、b 、c 的代数式符号的判定当1=x 时,可确定c b a ++的符号,当1-=x 时,可确定c b a +-的符号当2=x 时,可确定c b a ++24的符号,当2-=x 时,可确定c b a +2-4的符号8. 如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P 〔3,0〕,则c b a +-的值为〔 〕A. 0B. -1C. 1D. 29. 二次函数2y ax bx c =++〔0a ≠〕的图象如下图,有以下4个结论:①0abc >;①b a c <+;①420a b c ++>;①240b ac ->;其中正确的结论有〔 〕A .1个B .2个C .3个D .4个10. 抛物线c bx ax y ++=2的图象如下图,则以下结论正确的是〔 〕A .0>++c b aB .a b 2->C .0>+-c b aD .0<c –13 3 1 -1 O x =1 yx11. 抛物线c bx ax y ++=2中,b =4a ,它的图象如图,有以下结论:①0>c ; ①0>++c b a ①0>+-c b a①042<-ac b ①0<abc ①c a >4;其中正确的为〔 〕 A .①① B .①① C .①①① D .①①①知识小结: 二次函数y=ax 2+bx+c 系数符号确实定: 〔1〕a 由抛物线开口方向确定:开口方向向上,则a >0;开口向下,则a <0.〔2〕b 和a 共同决定对称轴的位置.(由对称轴公式x=判断符号.)a,b 同号时,对称轴在y轴左侧;a,b 异号时,对称轴在y 轴右侧;简称左同右异〔3〕c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;交点在y 轴负半轴,则c <0.交点在原点, c=0.〔4〕b 2-4ac 的符号由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2-4ac=0;没有交点,b 2-4ac <0.〔5〕当x=1时,可确定a+b+c 的符号,当x=-1时,可确定a-b+c 的符号.〔6〕由对称轴公式a b x 2-=,可确定b a +2的符号. 板书设计: 二次函数的符号问题复习 含a 、b 的代数式符号的判定a 、b 、c 与图像的关系 含a 、b 、c 的代数式符号的判定①的符号的判定 知识小结。
二次函数判断符号问题大全1 函数y=ax + 1与y=ax 2+ bx + 1 (a 工0的图象可能是()大而增大;④a - b ■ C ::: 0,其中正确的个数() A . 4个B . 3个C . 2个D . 1个4、 二次函数y=ax 2+bx+c 的图象如图2所示,若点A (1, yj 、B (2, y ?)是它图象上的两点,贝V y i 与y 2的大小关系是( 、A . y 1 ::: y 2 B . y 1 = y 2 C . y 1 y 2 D .不能确定 5、 已知二次函数 y = ax 2 + bx + c (a 丰0)的图象如图所示,给出以下结论: ①a > 0.②该函数的图象关于直线 x =1对称•③当x 二-1或x 二3时,函数y 的值都等于0. 其中正确结论的个数是( 、A . 3 B . 2 C . 1 D . 02y = bx • b 2 -4ac 与反比例函数1Xo2、(3、 A .B .C .D .①ac 0 ;②方程ax 2 bx 0的两根之和大于 0 ;③y 随x 的增6、二次函数y =ax bx c的图象如图所示,则一次函数在同一坐标系内的图象大致为(①b ::: 0②c0③b 2-4ac 0④a-b ,c :::0,其中正确的个数有()A . 1个B . 2个C . 3个D . 4个2①b :::0②c 0③b -4ac 0④a-b ,c :::O ,其中正确的个数有(2已知二(a = 0 )的图象如图4所示,有下列四个结论:7 题图 8 题图 9 题图8、已知=次函数y = ax 2 +bx+c 的图象如图.则下列5 个代数式:ac , a+b+c , 4a — 2b+c ,2a+b , 2a — b 中,其值大于0的个数为(B 3C 、4D 、52已知二次函数y = ax bx c(a = 0 )的图象如图所示,有下列四个结论:2a +b + c则一次函数 y = bx • b -4ac 与反比例函数 y 二10、二次函数y =ax bx c 的图象如图所示,A . 在同一坐标系内的图象大致为B .x C.xD .211、小强从如图所示的二次函数y =ax bx c 的图象中,观察得出了下面五条信息:(1) a ::: 0 ; (2)c 1 ; ( 3)b 0 ; ( 4) a b c 0 ;( 5)a-b ・c 0.你认为其中正确信息的个数有A . 2个B . 3个C . 4个D . 5个能是()14、 二次函数y =ax 2 bx c 的图象如图6所示,则下列关系式不正确的是A . a v 0B. abc >0C. a b c > 0D. b 2 -4ac > 02J严:1 11 i/O ! 4\212、二次函数 y =ax bx c (a = 0)的图象如图所示,对称轴是直线x = 1,则下列四个结论错误.的是13、在同一直角坐标系中,函数2B . 2a b=0C . b -4ac 0D . a -b c 02y = mx m 和函数 y = -mx 2x 2(m 是常数,且m = 0 )的图象可12题图15、已知二次函数y =ax - bx - c的图象如图所示,有以下结论:① a b : 0:② b c 1 :③abc 0 :④4a -2b • c ::: 0 :⑤c - a 1其中所有正确结论的序号是()A .①②B .①③④C .①②③⑤D .①②③④⑤15题图216、二次函数 y =ax bx c(a =0)B . b :: 017、二次函数y 二ax 2 - bx c 的图象如图所示,则下列关系式中错误的是()D . b 2 -4ac ::0 C . c : 0)。
第二十二章二次函数
22.1.4二次函数y= a x2+bx+c的图像和性质
第2课时:二次函数中的符号问题
【教学目标】
1.复习巩固二次函数的图象及其性质。
2.由a,b,c,△的符号确定抛物线的位置;由抛物线的位置确
定a,b,c,△等式子的符号。
【学情分析】
学生之前已经系统学习了二次函数的定义,图像及性质等基本知识,但是缺乏对知识之间内在联系的再认知,本节课内容的复习既是旧知识的再现,又是知识内部联系规律的生成,考虑到本节课要应用图像分析系数,要运用规律综合解决一些问题,所以在设计教学时有意识的注重思路、方法、规律的总结,重视原理的建构和方法的应用。
【教学重、难点】
教学重点是:掌握二次函数y=a x2+bx+c的图像与系数符号之间的关系。
教学难点是:运用数形结合思想,选用恰当的数学关系式解决不同类型的二次函数符号问题。
【教学方法】启发引导、观察、探索
【学法引导】化归迁移举一反三
【教学过程】
一、知识链接温故而知新
(一)回味知识点:
1、抛物线y=a x2+bx+c的开口方向与什么有关?
2、抛物线y=a x2+bx+c与y轴的交点是。
3、抛物线y=a x2+bx+c的对称轴是。
(二)归纳知识点:
抛物线y=a x2+bx+c的符号问题:
(1)a的符号:由抛物线的开口方向确定:
开口向上a>0
开口向下a<0
(2)C的符号:由抛物线与y轴的交点位置确定:
交点在x轴上方c>0
交点在x轴下方c<0
经过坐标原点c=0
(3)b的符号:由对称轴的位置确定:
对称轴在y轴左侧a、b同号
对称轴在y轴右侧a、b异号
对称轴是y轴b=0
简记为:左同右异(4)b2-4ac的符号:
由抛物线与x轴的交点个数确定:
与x轴有两个交点b2-4ac>0
与x轴有一个交点b2-4ac=0
与x轴无交点b2-4ac<0
抛物线y=a x2+bx+c的符号问题:
(5)a+b+c的符号:
由x=1时抛物线上的点的位置确定。
(6)a-b+c的符号:
由x=-1时抛物线上的点的位置确定。
你还可想到啥?
利用以上知识主要解决以下几方面问题:
(1)由a,b,c,△的符号确定抛物线在坐标系中的大致位置;(2)由抛物线的位置确定系数a,b,c,△等符号及有关a,b,c 的代数式的符号;
二、探究活动
【活动一】快速回答:
抛物线y=a x2+bx+c如图所示,试确定a、b、c、△的符号:
【活动二】想一想
(2009年枣庄市)二次函数的图象如图所示,
则下列关系式中错误的是( ) A .a <0 B .c >0 C .>0 D .>0
三 、 教学互动 效果检测
1.(2008甘肃兰州)已知二次函数
c bx ax y ++=2
(a ≠0)的图象如图所示,有下列4个结论:① abc >0;② b <a +c ;③4a +2b+c >0;④b 2-4a c >0;其中正确的结论有( ) (A )1个 (B )2个 (C )3个 (D
2.(2009丽水市)已知二次函数y =a x 2+bx +c(a ≠0)的图象如图所示,给出以下结论:①
a >0. ②该函数的图象关于直线1x =对称. ③当13x x =-=或时,函数y 的值都等于0. 其中正确结论的个数是( ) A .3 B .2 C .1 D .0
c bx ax y ++=2
ac b 42-c b a ++
O
3.(2009年济宁市)小强从如图所示的二次函数
2
y ax bx c =++的图象中,观察得出了下面五条信息:(1)0a <;(2) 1c >;(3)0b >;(4) 0a b c ++>; (5)0a b c -+>. 你认为其中正确信息的个数有
A .2个
B .3个
C .4个
D .5
(第3题)
四、这节课你有哪些体会?
1.a,b,c等符号与二次函数y=ax2+bx+c有密切的联系;
2.解决这类问题的关键是运用数形结合思想,即会观察图象;如遇到2a+b,2a-b要与对称轴联系等;
3.要注意灵活运用数学知识,具体问题具体分析……
五、【当堂检测题】:
1. 若a >0,b >0,c >0,△>0,那么抛物线y=a x 2+bx +c 经过
象限.
2.(2009年兰州)二次函数c bx ax y ++=2的图象如图6所
示,则下列关系式不正确的是
A .a <0 B.abc >0 C.c b a ++>0
D.ac b 42->0
3.(2009
年黄石市)已知二次函数
2
y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;
④420a b c -+<;⑤1c a ->其中所有正确结论的序号是( )A .①② B . ①③④ C .①②③⑤ D .①②③
④⑤
4.(2009
年齐齐哈尔市)已知二次函数
2
(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程2
0ax bx c ++=的两
根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正
确的个数() A .4个
B .3个
C .2个
D .1个
5.(2009
年内蒙古包头)已知二次函数
2
y ax bx c =++的图象与x 轴交于点(20)-,、1(0)x ,,且112x <<,与y 轴的正半轴的交点在(02),的下方.下列结论:①420a b c -+=;②0a b <<;③20a c +>;
④210a b -+>.其中正确结论的个数是 个.。