二次函数中abc的符号问题
- 格式:ppt
- 大小:1.25 MB
- 文档页数:18
二次函数系数a、b、c与图像的关系知识要点二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac<0.(5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号.(6)由对称轴公式x=,可确定2a+b的符号.一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.42.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.45.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<37.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个10、(2011?重庆)已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是()A、a>0B、b<0C、c<0D、a+b+c>011、(2011?雅安)已知二次函数y=ax2+bx+c的图象如图,其对称轴x=-1,给出下列结果①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a-b+c<0,则正确的结论是()A、①②③④B、②④⑤C、②③④D、①④⑤12、(2011?孝感)如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(12,1),下列结论:①ac<0;②a+b=0;③4ac-b2=4a;④a+b+c<0.其中正确结论的个数是()A、1B、2C、3D、4答案一.选择题(共9小题)1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法:①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0(m≠﹣1).其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:抛物线与y轴交于原点,c=0,(故①正确);该抛物线的对称轴是:,直线x=﹣1,(故②正确);当x=1时,y=a+b+c∵对称轴是直线x=﹣1,∴﹣b/2a=﹣1,b=2a,又∵c=0,∴y=3a,(故③错误);x=m对应的函数值为y=am2+bm+c,x=﹣1对应的函数值为y=a﹣b+c,又∵x=﹣1时函数取得最小值,∴a﹣b+c<am2+bm+c,即a﹣b<am2+bm,∵b=2a,∴am2+bm+a>0(m≠﹣1).(故④正确).故选:C.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c<0;②a﹣b+c <0;③b+2a<0;④abc>0.其中所有正确结论的序号是()A.③④B.②③C.①④D.①②③考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①当x=1时,y=a+b+c=0,故①错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故②正确;③由抛物线的开口向下知a<0,∵对称轴为0<x=﹣<1,∴2a+b<0,故③正确;④对称轴为x=﹣>0,a<0∴a、b异号,即b>0,由图知抛物线与y轴交于正半轴,∴c>0∴abc<0,故④错误;∴正确结论的序号为②③.故选:B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下列四个结论:①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专数形结合.题:分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵图象开口向下,∴a<0;故本选项正确;②∵该二次函数的图象与y轴交于正半轴,∴c>0;故本选项正确;③∵二次函数y=ax2+bx+c的图象与x轴有两个不相同交点,∴根的判别式△=b2﹣4ac>0;故本选项正确;④∵对称轴x=﹣>0,∴<0;故本选项正确;综上所述,正确的结论有4个.故选D.点评:本题主要考查了二次函数的图象和性质,解答本题关键是掌握二次函数y=ax2+bx+c系数符号的确定,做题时要注意数形结合思想的运用,同学们加强训练即可掌握,属于基础题.4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论:①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确结论的个数为()A.1B.2C.3D.4考点:二次函数图象与系数的关系.分析:由函数y=x2+bx+c与x轴无交点,可得b2﹣4c<0;当x=﹣1时,y=1﹣b+c>0;当x=3时,y=9+3b+c=3;当1<x<3时,二次函数值小于一次函数值,可得x2+bx+c<x,继而可求得答案.解答:解:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;故①正确;当x=﹣1时,y=1﹣b+c>0,故②错误;∵当x=3时,y=9+3b+c=3,∴3b+c+6=0;③正确;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.故选C.点评:主要考查图象与二次函数系数之间的关系.此题难度适中,注意掌握数形结合思想的应用.5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0)下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点,则y1>y2.其中说法正确的是()A.①②B.②③C.②③④D.①②④考点:二次函数图象与系数的关系.分析:根据抛物线开口方向得到a>0,根据抛物线的对称轴得b=2a>0,则2a﹣b=0,则可对②进行判断;根据抛物线与y轴的交点在x轴下方得到c<0,则abc<0,于是可对①进行判断;由于x=﹣2时,y<0,则得到4a﹣2b+c <0,则可对③进行判断;通过点(﹣5,y1)和点(2,y2)离对称轴的远近对④进行判断.解答:解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(2,y2)离对称轴要远,∴y1>y2,所以④正确.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异).抛物线与y轴交于(0,c).抛物线与x轴交点个数:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.6.(2014?莆田质检)如图,二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,对称轴在y轴的右侧,则m的取值范围是()A.m>2 B.m<3 C.m>3 D.2<m<3考点:二次函数图象与系数的关系.分析:由于二次函数的对称轴在y轴右侧,根据对称轴的公式即可得到关于m的不等式,由图象交y轴于负半轴也可得到关于m的不等式,再求两个不等式的公共部分即可得解.解答:解:∵二次函数y=x2+(2﹣m)x+m﹣3的图象交y轴于负半轴,∴m﹣3<0,解得m<3,∵对称轴在y轴的右侧,∴x=,解得m>2,∴2<m<3.故选:D.点评:此题主要考查了二次函数的性质,解题的关键是利用对称轴的公式以及图象与y轴的交点解决问题.7.(2014?玉林一模)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③3a+c=0;④a+b+c=0.其中正确结论的个数是()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,①正确;由图象可知:对称轴x==﹣1,∴2a=b,2a+b=4a,∵a≠0,∴2a+b≠0,②错误;∵图象过点A(﹣3,0),∴9a﹣3b+c=0,2a=b,所以9a﹣6a+c=0,c=﹣3a,③正确;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0,④正确.故选C.点评:考查了二次函数图象与系数的关系,解答本题关键是掌握二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.8.(2014?乐山市中区模拟)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点).有下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④≤n≤4.其中正确的是()A.①②B.③④C.①③D.①③④考点:二次函数图象与系数的关系.分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x==1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,=﹣3,则a=.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤≤,即﹣1≤a≤.故③正确;④根据题意知,a=,=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,≤≤4,≤n≤4.故④正确.综上所述,正确的说法有①③④.故选D.点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x轴交点的个数确定.9.(2014?齐齐哈尔二模)已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,下列结论正确的个数为()①b<0;②c<0;③a+c<0;④4a﹣2b+c>0.A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),(x1,0),且1<x1<2,∴对称轴在y轴的右侧,即:﹣>0,∵a>0∴b<0,故①正确;②显然函数图象与y轴交于负半轴,∴c<0正确;③∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),∴a﹣b+c=0,即a+c=b,∵b<0,∴a+c<0正确;④∵二次函数y=ax2+bx+c(a>0)的图象与x轴交于点(﹣1,0),且a>0,∴当x=﹣2时,y=4a﹣2b+c>0,故④正确,故选D.点评:主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.。
二次函数a、b、c符号的确定一.选择题(共13小题)1.(2013•黔东南州)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a<0,b<0,c>0,b2﹣4ac>0 B.a>0,b<0,c>0,b2﹣4ac<0C.a<0,b>0,c<0,b2﹣4ac>0 D.a<0,b>0,c>0,b2﹣4ac>02.(2013•崇明县一模)已知二次函数y=ax2+bx+c的图象如图所示,那么a,b,c的符号为()A.a>0,b>0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a<0,b<0,c>03.(2014•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>04.(2014•徐汇区一模)已知抛物线y=ax2+3x+(a﹣2),a是常数且a<0,下列选项中可能是它大致图象的是()A.B.C .D.5.(2014•沙湾区模拟)函数y=ax2+bx+c(a≠0)的图象如图,则下列说法错误的是()A.a>0 B.c>0 C.b2﹣4ac>0 D.>06.(2014•邢台一模)抛物线y=ax2+bx+c如图,考查下述结论:①b<0;②a﹣b+c>0;③b2>4ac;④2a+b<0.正确的有()A.①②B.①②③C.②③④D.①②③④7.(2014•兴化市一模)如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)、(0,3),下列结论中错误的是()A.a bc<0 B.9a+3b+c=0 C.a﹣b=﹣3 D.4ac﹣b2<08.(2013•定西)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A.1个B.2个C.3个D.4个9.(2013•滨州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.410.(2013•邢台一模)已知二次函数y=ax2+bx+c的图象如图所示,则下列条件正确的是()A.a c<0 B.b2﹣4ac<0 C.b>0 D. a>0、b<0、c>011.(2013•红桥区一模)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc>0;②4a﹣2b+c<0;③2a﹣b<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个12.(2013•百色)在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx的图象大致是图中的()A.B.C.D.13.(2013•长安区模拟)二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c>0;②a﹣b+c>0;③abc=0;④2a﹣b=0,其中正确的有()A.1个B.2个C.3个D.4个二.解答题(共2小题)14.(2008•密云县一模)已知抛物线y=ax2+bx+c的一段图象如图所示.(1)确定a、b、c的符号;(2)求a+b+c的取值范围.15.已知抛物线y=ax2+bx+c的图象如图所示,(1)判断a,b,c及b2﹣4ac,a﹣b+c的符号;(2)求a+b+c的值;(3)下列结论:①b<1,②b<2a,③a>,④a+c<1,⑤﹣a﹣b+c<0.其中正确的有_________,请说明理由.参考答案与试题解析一.选择题(共13小题)1.(2013•黔东南州)二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是()A.a<0,b<0,c>0,b2﹣4ac>0 B.a>0,b<0,c>0,b2﹣4ac<0C.a<0,b>0,c<0,b2﹣4ac>0 D.a<0,b>0,c>0,b2﹣4ac>0考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,再结合抛物线的对称轴与y轴的关系判断b与0的关系,由抛物线与y轴的交点判断c与0的关系,根据抛物线与x轴交点的个数判断b2﹣4ac与0的关系.解答:解:∵抛物线的开口向下,∴a<0,∵对称轴在y轴右边,∴a,b异号即b>0,∵抛物线与y轴的交点在正半轴,∴c>0,∵抛物线与x轴有2个交点,∴b2﹣4ac>0.故选D.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0.(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号.(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0.(4)b2﹣4ac由抛物线与x轴交点的个数确定:2个交点,b2﹣4ac>0;1个交点,b2﹣4ac=0;没有交点,b2﹣4ac<0.2.(2013•崇明县一模)已知二次函数y=ax2+bx+c的图象如图所示,那么a,b,c的符号为()A.a>0,b>0,c>0 B.a<0,b<0,c<0 C.a<0,b>0,c>0 D.a<0,b<0,c>0考点:二次函数图象与系数的关系.专题:推理填空题.分析:根据二次函数图象开口向下确定出a为负数,根据对称轴结合a为负数确定出b的正负情况,根据二次函数图象与y轴的交点即可确定出c的正负情况,从而最后得解.解答:解:∵二次函数图象开口向下,∴a<0,∵对称轴x=﹣<0,∴b<0,∵二次函数图象与y轴的正半轴相交,∴c>0,∴a<0,b<0,c>0.故选D.点评:本题考查了二次函数图象与系数的关系,熟练掌握二次函数图象的开口方向、对称轴、与y轴的交点与系数的关系是解题的关键.3.(2014•兰州)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,则下列四个结论错误的是()A.c>0 B.2a+b=0 C.b2﹣4ac>0 D.a﹣b+c>0考点:二次函数图象与系数的关系.专题:数形结合.分析:本题考查二次函数图象的相关知识与函数系数的联系.需要根据图形,逐一判断.解答:解:A、因为二次函数的图象与y轴的交点在y轴的上方,所以c>0,正确;B、由已知抛物线对称轴是直线x=﹣=1,得2a+b=0,正确;C、由图知二次函数图象与x轴有两个交点,故有b2﹣4ac>0,正确;D、直线x=﹣1与抛物线交于x轴的下方,即当x=﹣1时,y <0,即y=ax 2+bx+c=a﹣b+c<0,错误.故选:D.点评:在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.4.(2014•徐汇区一模)已知抛物线y=ax2+3x+(a﹣2),a是常数且a<0,下列选项中可能是它大致图象的是()A.B.C.D.考点:二次函数图象与系数的关系.分析:根据抛物线对称轴位置和a,b的关系以及利用图象开口方向与a的关系,得出图象开口向下,对称轴经过x轴正半轴,利用图象与y轴交点和c的符号,进而得出答案.解答:解:∵抛物线y=ax2+3x+(a﹣2),a是常数且a<0,∴图象开口向下,a﹣2<0,∴图象与y轴交于负半轴,∵a<0,b=3,∴抛物线对称轴在y轴右侧.故选:B.点评:此题主要考查了二次函数图象与系数的关系,正确把握图象对称轴位置与a,b的关系是解题关键.5.(2014•沙湾区模拟)函数y=ax2+bx+c(a≠0)的图象如图,则下列说法错误的是()A.a>0 B.c>0 C.b2﹣4ac>0 D.>0考点:二次函数图象与系数的关系.分析:由抛物线开口向上得到a>0,由抛物线与y轴的交点在x轴上方得c>0,图象与x轴有两个交点得b2﹣4ac>0,对称轴在y轴右侧得,则,据此逐一判断即可.解答:解::A、∵抛物线开口向上,∴a>0,所以A选项的说法正确;B、∵抛物线与y轴的交点在x轴上方,∴c>0,所以B选项的说法正确;C、∵抛物线与x轴有两交点,∴b2﹣4ac>0,y<0,∴4a+2b+c<0,所以C选项的说法正确;D、∵对称轴在y轴右侧得,∴,所以D选项的说法错误.故选:D.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac >0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.6.(2014•邢台一模)抛物线y=ax2+bx+c如图,考查下述结论:①b<0;②a﹣b+c>0;③b2>4ac;④2a+b<0.正确的有()A.①②B.①②③C.②③④D.①②③④考点:二次函数图象与系数的关系.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①图象开口向上,与y轴交于负半轴,对称轴在y轴右侧,能得到:a>0,c<0,﹣>0,b<0,正确;②由图象知当x=﹣1时,y=a﹣b+c>0,正确;③图象与x轴有两个交点,所以b2﹣4ac>0,即b2>4ac正确;④由图象知,即2a+b=0,本项错误.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)b2﹣4ac由抛物线与x轴交点的个数确定:①2个交点,b2﹣4ac>0;②1个交点,b2﹣4ac=0;③没有交点,b2﹣4ac<0.(5)当x=1时,可以确定y=a+b+c的值;当x=﹣1时,可以确定y=a﹣b+c的值.7.(2014•兴化市一模)如图,二次函数y=ax2+bx+c的图象经过(﹣1,0)、(0,3),下列结论中错误的是()A.a bc<0 B.9a+3b+c=0 C.a﹣b=﹣3 D.4ac﹣b2<0考点:二次函数图象与系数的关系.分析:A、由对称轴可判断ab的符号,再由抛物线与y轴的交点可判断c的符号,从而确定abc的符号;B、观察图象,不能得出x=3时,函数值的符号,所以9a+3b+c不一定等于0;C、将(﹣1,0)、(0,3)分别代入y=ax2+bx+c,即可得出a﹣b=﹣3;D、根据抛物线与x轴的交点个数可判断b2﹣4ac的符号,从而确定4ac﹣b2的符号.解答:解:A、∵抛物线对称轴x=﹣>0,∴ab<0,又∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,正确,故本选项不符合题意;B、观察图象,由于没有给出对称轴方程,所以不能得出x=3时,函数值的符号,所以9a+3b+c不一定等于0,即9a+3b+c=0不一定正确,故本选项符合题意;C、∵二次函数y=ax2+bx+c的图象经过(﹣1,0)、(0,3),∴,②代入①,整理,得a﹣b=﹣3,正确,故本选项不符合题意;D、∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,正确,故本选项不符合题意.故选B.点评:本题考查了二次函数y=ax2+bx+c的图象与系数的关系:当a<0,抛物线开口向下;抛物线的对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点.8.(2013•定西)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,在下列五个结论中:①2a﹣b<0;②abc<0;③a+b+c<0;④a﹣b+c>0;⑤4a+2b+c>0,错误的个数有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,利用图象将x=1,﹣1,2代入函数解析式判断y的值,进而对所得结论进行判断.解答:解:①∵由函数图象开口向下可知,a<0,由函数的对称轴x=﹣>﹣1,故<1,∵a<0,∴b>2a,所以2a﹣b<0,①正确;②∵a<0,对称轴在y轴左侧,a,b同号,图象与y轴交于负半轴,则c<0,故abc<0;②正确;③当x=1时,y=a+b+c<0,③正确;④当x=﹣1时,y=a﹣b+c<0,④错误;⑤当x=2时,y=4a+2b+c<0,⑤错误;故错误的有2个.故选:B.点评:此题主要考查了图象与二次函数系数之间的关系,将x=1,﹣1,2代入函数解析式判断y的值是解题关键.9.(2013•滨州)如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:压轴题.分析:根据对称轴为x=1可判断出2a+b=0正确,当x=﹣2时,4a﹣2b+c<0,根据开口方向,以及与y轴交点可得ac<0,再求出A点坐标,可得当y<0时,x<﹣1或x>3.解答:解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴①2a+b=0,故此选项正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,4a﹣2b+c<0,故此选项正确;∵图象开口向下,∴a<0,∵图象与y轴交于正半轴上,∴c>0,∴ac<0,故ac>0错误;∵对称轴为x=1,点B坐标为(﹣1,0),∴A点坐标为:(3,0),∴当y<0时,x<﹣1或x>3.,故④错误;故选:B.点评:此题主要考查了二次函数与图象的关系,关键掌握二次函数y=ax2+bx+c(a≠0)①二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;IaI还可以决定开口大小,IaI越大开口就越小.②一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③.常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).④抛物线与x轴交点个数.△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.10.(2013•邢台一模)已知二次函数y=ax2+bx+c的图象如图所示,则下列条件正确的是()A.a c<0 B.b2﹣4ac<0 C.b>0 D.a>0、b<0、c>0考点:二次函数图象与系数的关系.分析:由函数图象可得:a>0,b<0,c>0,再结合图象判断各选项.解答:解:由函数图象可得:a>0,b<0,c>0,A、ac<0,错误;B、b2﹣4ac<0,错误;C、b>0,错误;D、a>0、b<0、c>0,正确.故选D.点评:本题考查了二次函数图象与系数的关系,重点是从函数图象上得到重要的信息.11.(2013•红桥区一模)如图所示,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①abc>0;②4a﹣2b+c<0;③2a﹣b<0;④b2+8a>4ac.其中正确的有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系;抛物线与x轴的交点.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解答:解:①∵该函数图象的开口向下,∴a<0;又对称轴x=﹣<0,∴b<0;而该函数图象与y轴交于正半轴,故c>0,∴abc>0,正确;②当x=﹣2时,y<0,即4a﹣2b+c<0;正确;③根据题意得,对称轴﹣1<x=﹣<0,∴2a﹣b<0,正确;④∵>2,a<0,∴4ac﹣b2<8a,即b2+8a>4ac,正确.故选D.点评:本题考查二次函数y=ax2+bx+c系数符号的确定由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.12.(2013•百色)在反比例函数y=中,当x>0时,y随x的增大而增大,则二次函数y=mx2+mx的图象大致是图中的()A.B.C.D.考点:二次函数图象与系数的关系;反比例函数的性质.分析:根据反比例函数图象的性质确定出m<0,则二次函数y=mx2+mx 的图象开口方向向下,且与y 轴交于负半轴,即可得出答案.解答:解:∵反比例函数y=,中,当x>0时,y随x的增大而增大,∴根据反比例函数的性质可得m<0;该反比例函数图象经过第二、四象限,∴二次函数y=mx2+mx的图象开口方向向下,且与y轴交于负半轴.∴只有A选项符合.故选A.点评:本题考查了二次函数图象、反比例函数图象.利用反比例函数的性质,推知m<0是解题的关键,体现了数形结合的思想.13.(2013•长安区模拟)二次函数y=ax2+bx+c的图象如图所示,下列结论:①a+b+c>0;②a﹣b+c>0;③abc=0;④2a﹣b=0,其中正确的有()A.1个B.2个C.3个D.4个考点:二次函数图象与系数的关系.专题:数形结合.分析:观察函数图象得到x=1时,y<0;x=﹣1时,y>0,所以a+b+c<0,a﹣b+c>0,则可对①②进行判断;由于抛物线过原点,所以c=0,可对③进行判断;根据抛物线的对称轴为直线x=﹣1,即x=﹣=﹣1,则可对④进行判断.解答:解:∵x=1时,y<0,∴a+b+c<0;所以①错误;∵x=﹣1时,y>0,∴a﹣b+c>0;所以②正确;∵抛物线过原点,∴c=0,∴abc=0,所以③正确;∵抛物线的对称轴为直线x=﹣1,∴x=﹣=﹣1,∴2a﹣b=0,所以④正确.故选C.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.二.解答题(共2小题)14.(2008•密云县一模)已知抛物线y=ax2+bx+c的一段图象如图所示.(1)确定a、b、c的符号;(2)求a+b+c的取值范围.考点:二次函数图象与系数的关系.专题:计算题.分析:(1)根据抛物线开口向上,则a>0,对称轴在x轴正半轴可知﹣>0,与y轴交点在y轴负半轴可知c<0;(2)再根据抛物线y=ax2+bx+c过点(﹣1,0),(0,﹣1),即可求出a+b+c的取值范围.解答:解:(1)根据抛物线开口向上,则a>0,∵对称轴在x轴正半轴可知﹣>0,∴b<0,又与y轴交点在y轴负半轴,∴c<0,故a>0,b<0,c<0;(2)∵抛物线y=ax2+bx+c过点(﹣1,0),(0,﹣1),∴a﹣b+c=0,c=﹣1,即a﹣b=1,a=b+1,∴a+b+c=b+1+b﹣1=2b,∵b<0,∴2b<0,∵a>0,∴b+1>0,∴b>﹣1,2b>﹣2,故,﹣2<a+b+c<0.点评:本题考查了二次函数图象与系数的关系,难度一般,关键是正确获取图象信息进行解题.15.已知抛物线y=ax2+bx+c的图象如图所示,(1)判断a,b,c及b2﹣4ac,a﹣b+c的符号;(2)求a+b+c的值;(3)下列结论:①b<1,②b<2a,③a>,④a+c<1,⑤﹣a﹣b+c<0.其中正确的有①③④⑤,请说明理由.考点:二次函数图象与系数的关系.分析:(1)根据抛物线的开口向上确定a是正数,对称轴在y轴右侧,确定b<0;再根据抛物线y轴的负半轴相交确定c是负数,根据抛物线与x轴交于两点,确定b2﹣4ac>0,根据图象可知x=﹣1时,y<0,确定<0;(2)由函数的图象可知当x=1时,y=﹣3,即可得出a+b+c=﹣3;(3)由对称轴x=﹣=得出b=﹣a<0,即可判定①的结论;由﹣=<1,>1,得出b >2a即可判定②的结论;由x1=﹣1.5,x2=2.5,所以=﹣,因为c=﹣3,a=>,即可判定③的结论;由a=,c=﹣3,得出a+c=﹣<1,即可判定④结论;由b=﹣a,得出﹣a﹣b+c=c=﹣3,即可判定⑤的结论.解答:解:(1)∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴b<0;∵抛物线与y轴负半轴相交,∴c<0,∵抛物线与x轴交于两点,∴b2﹣4ac>0,∵x=﹣1时,y<0,∴a﹣b+c<0;(2)由函数的图象可知当x=1时,y=﹣3,所以a+b+c=﹣3;(3)∵对称轴x=﹣=∴b=﹣a<0∴b<1;故①正确;∵﹣=<1,∴>1,∵a>0,∴b>2a故②错误;∵x1=﹣1.5,x2=2.5,∴=﹣,∵c=﹣3,∴a=>,故③正确;∵a=,c=﹣3,∴a+c=﹣<1,故④正确;∵b=﹣a,∴﹣a﹣b+c=c=﹣3<0,故⑤正确.故答案为:①③④⑤.点评:本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a >0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac >0时,抛物线与x轴有两个交点.。
课题由二次函数y=ax2+bx+c的图像判断a、b、c的符号授课类型微课教材分析二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的系数a,b,c的符号和它的图像之间有着相辅相成的关系.由二次函数的图像位置可以得到a,b,c(或者含有的a,b,c的代数式)的符号;反之,由a,b,c(或者含有的a,b,c的代数式)的符号也可以确定图像的位置.这是一种由形到数、由数到形的转换,是数形结合思想的很好的诠释.也是一种等价、同一的关系。
学情分析学生已经学习了二次函数的概念图像和简单性质,能够简单运用函数知识解决方程和不等式问题。
从中考命题要求和课程标准的角度来看,关于二次函数的a、b、c的试题主要包括:简单结论型、结论综合型、结论组合导出型。
要学好二次函数内容、从容应对二次函数中考题,熟悉二次函数的a、b、c与图像的关系,必须深刻领会数形结合思想,能够用函数的观点看方程与不等式(组)。
教学目标知识与技能1.会根据二次函数的图像判断a,b,c的符号以及与a,b,c有关的代数式的符号;2.能够根据a,b,c的符号,判断二次函数的图像.过程与方法1.利用几何画板演示,让学生感受函数图像与系数a,b,c的关系,体会数形结合的思想方法.情感态度与价值 1.在学习过程中,培养学生的探究精神,合作能力.教学重点探究二次函数的图像与系数a,b,c的关系.教学难点根据二次函数的图像判断与a,b,c有关的代数式的符号.教学方法几何画板演示教学法、引导分析法、合作探究法.教学过程教学环节教师活动学生活动设计意图(一)问题引入教师提出思考问题已知二次函数y=ax2+bx+c的图像如图所示,则a 0 , b 0 , c 0(填>、<、=).学生思考问题.通过问题提出,引发学生思考,进入学习状态.。
二次函数a、b、c、△符号问题及相关问题一选择题1.如图所示,抛物线的图象则下列结论正确的是()A a<0,b<0,c>0,b2<4acB a<0,b>0,c<0,b2<4acC a<0,b>0,c>0,b2>4acD a>0,b<0,c>0,b2>4ac2.如图a<0,c>0那么y=ax2+bx+c的图象是()3.已知二次函数y=ax2+bx+c (a≠0)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③ 4a+b=0;④当y=-2时,x的值只能取0.其中正确的个数是()A l个 B 2个 C 3个 D 4个4.二次函数y=mx2+2mx-(3-m)的图象如图所示,则m的取值范围是()A m<3B m>3C m>0D 0<m<35.在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为( )6.已知抛物线y=x2+bx+c的部分图象如右图所示,若y<0,则x的取值范围是()A −1<x<4B -1<x<3C x<-1或x>4D x<-1或x>37.在某次投篮中,球的运动路线是y=-0.2x2+3.5的一部分(如图),若命中篮圈中心,则他与篮底的距离为( )A 3.5mB 4mC 4.5mD 4.6m8.若抛物线y=x2+8x+h2的顶点在x轴上,则()A h=0 B h=±16 C h=±4 D h=49.如果二次函数y=ax2+m的值恒大于0,那么必有()A a>0,m取任意实数B a>0,m>0C a<0,m>0D a,m均可取任意实数10.已知a-b+c=0,9a+3b+c=0,则抛物线y=ax2+bx+c的顶点可能在( )A 第一或二象限B 第三或四象限C 第一或四象限D 第二或四象限11.抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,以下结论:①a+b>0;②a+c>0;③﹣a+b+c >0;④b2﹣2ac>5a2,其中正确的个数有()A.1个B.2个C.3个D.4个12.物线y=ax2+bx+c(a≠0)全部图象都在x轴下方,则( )A a>0,b2-4ac≥0B a>0,b2-4ac<0C a>0,b2-4ac≥0D a<0,b2-4ac<0二填空题13.若二次函数y=(a-1)x2-2x+1的图象与x轴只有一个交点,则a=________14.不论x取什么实数,y=2x2-6x+m的图象都在x轴的上方,那么m的取值范围是________;y=mx2-3x+2m-m2的图象经过原点,则m=15.二次函数y=x2-(m-4)x+9的图象的顶点在y轴上,则m=16.二次函数y=x2+2kx+8的顶点在x轴上,则k=17.已知抛物线y=x2-2(k+1)x+16的顶点在x轴上,则k的值为______18.抛物线y=x2-(m-4)x-m与x轴的两个交点关于y轴对称,其顶点坐标为______19.已知抛物线y=x2+2(m-3)x+1的顶点在x轴上,则m=______顶点坐标是_________20.平移抛物线y = x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式21.如果二次函数y=x2-3x-2k,不论x取任何实数,都有y>0,则k的取值范围是________22.把抛物线y=2(x+1)2向下平移______单位后,所得抛物线在x轴上截得的线段长为523.抛物线y=-3(x+2)2的顶点坐标是_____________,若将它旋转180后得新的抛物线,其解析式为____________________24.把y=x2+bx+c的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是y=x2-3x+5,则有b=_____,c=_____三解答题25.如图,抛物线y=ax2+bx+c确定a,b,c,b2-4ac,a+b+c,a-b+c的符号26.抛物线y=ax2+bx+c的图像如图,对称轴是直线x=-1确定a,b,c,Δ及a-b+c 的符号27.已知抛物线y=ax2+bx+c的一段图象如图所示.(1)确定a、b、c的符号;(2)求a+b+c的取值范围.28.如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1= -1, x2= 3;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有_____________29.有一个抛物线形的桥洞,桥洞离水面的最大高度BM为3米,跨度OA为6米,以OA所在直线为x轴,O为原点建立直角坐标系(如图所示).(1)请你直接写出O、A、M三点的坐标;(2)一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面在同一平面)?30.如图,二次函数y=x2+bx+c的图象经过点M(1,—2)、N(—1,6).(1)求二次函数的关系式;(2)把Rt△ABC 放在坐标系内,其中∠CAB=900,点A、B的坐标分别为(1,0)、(4,0),BC = 5,将△ABC沿x轴向右平移,当点C落在抛物线上时,求△ABC平移的距离.二次函数a、b、c、△符号问题及相关问题答案1.C2.D3.B4.D5.B6.B7.B8.C9.B 10.C 11.D 12.D11.分析(1)因为抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),把点(﹣1,0)代入解析式,结合4a+2b+c>0,即可整理出a+b>0;(2)②+①×2得,6a+3c>0,结合a<0,故可求出a+c>0;(3)画草图可知c>0,结合a﹣b+c =0,可整理得﹣a+b+c=2c>0,从而求得﹣a+b+c>0;(4)把(﹣1,0)代入解析式得a﹣b+c=0,可得出2a+c>0,再由a<0,可知c>0则c﹣2a>0,故可得出(c+2a)(c﹣2a)>0,即b2﹣2ac﹣5a2>0,进而可得出结论.解:(1)因为抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),所以原式可化为a﹣b+c=0 ①,又因为4a+2b+c>0 ②,所以②﹣①得:3a+3b>0,即a+b>0;(2)②+①×2得,6a+3c>0,即2a+c>0,∴a+c>﹣a,∵a<0,∴﹣a>0,故a+c>0;(3)因为4a+2b+c>0,可以看作y=ax2+bx+c(a<0)当x=2时的值大于0,草图为:可见c>0,∵a﹣b+c=0,∴﹣a+b﹣c=0,两边同时加2c得﹣a+b﹣c+2c=2c,整理得﹣a+b+c=2c>0,即﹣a+b+c>0;(4)∵过(﹣1,0),代入得a﹣b+c=0∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=c2﹣4a2=(c+2a)(c﹣2a)又∵4a+2b+c>04a+2(a+c)+c>0,即2a+c>0①,∵a<0,∴c>0则c﹣2a>0②,由①②知(c+2a)(c﹣2a)>0,所以b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2,综上可知正确的个数有4个.故选:D.13.2 14.m>9/2,2 15.4 16.±22 17.3或-5 18.(0,-4) 19.4或2,(1,0)或(-1,0) 20.y=x2+2x 21.k<-9/8 22. 25/2 23.(-2,0),y=3(x+2)2 24.3,725. a<0,b>0,c>0,b2-4ac>0,a+b+c>0,a-b+c<026.a<0,b<0,c>0,△>0,a-b+c>027.解:(1)根据抛物线开口向上,则a>0,∵对称轴在x轴正半轴可知﹣>0,∴b<0,又与y轴交点在y轴负半轴,∴c<0,故a>0,b<0,c<0;(2)∵抛物线y=ax2+bx+c过点(﹣1,0),(0,﹣1),∴a﹣b+c=0,c=﹣1,即a﹣b=1,a=b+1,∴a+b+c=b+1+b﹣1=2b,∵b<0,∴2b<0,∵a>0,∴b+1>0,∴b>﹣1,2b>﹣2,故,﹣2<a+b+c<0.28.①②④29.解:(1)解:如图,O(0,0).∵OA为6米,∴A(6,0),又∵BM的对称轴,BM为3米,∴M(3,3).综上所述,O(0,0),A(6,0),M(3,3).(2)设抛物线的关系式为y=a(x﹣3)2+3,因为抛物线过点(0,0),所以0=a(0﹣3)2+3,解得a=﹣,所以y=﹣(x﹣3)2+3=﹣x2+2x,要使木板堆放最高,依据题意,得B点应是木板宽CD的中点,把x=2代入y=﹣x2+2x,得y=,所以这些木板最高可堆放米.30.解:(1)∵M(1,﹣2),N(﹣1,6)在二次函数y=x2+bx+c的图象上,∴,解得二次函数的关系式为y=x2﹣4x+1.(2)Rt△ABC中,AB=3,BC,=5,∴AC=4,4=x2﹣4x+1,x2﹣4x﹣3=0,解得(负值不合题意舍去),∵A(1,0),∴点C落在抛物线上时,△ABC向右平移(1+)个单位.。
二次函数中的abc的含义在二次函数中,abc分别代表着三个不同的参数,即二次项系数(a)、一次项系数(b)和常数项(c)。
这些参数用来描述函数图像的特征,并决定了二次函数的形状,位置和方向。
接下来,我们将详细解释每个参数的含义,并讨论它们对函数图像的影响。
1.二次项系数(a):二次项系数(a)表示二次函数中二次项的系数。
当a>0时,二次函数的图像开口向上,形状类似于一个U形;当a<0时,二次函数的图像开口向下,形状类似于一个倒U形。
系数a的绝对值越大,图像的开口越窄,曲线越陡峭,而绝对值小的a则代表着开口较宽的曲线。
2.一次项系数(b):一次项系数(b)表示二次函数中一次项的系数。
一次项决定了二次函数的图像与y轴的交点位置。
当b>0时,二次函数与y轴的交点在y轴上方;当b<0时,二次函数与y轴的交点在y轴下方。
系数b的绝对值越大,图像与y轴之间的距离越远,而绝对值小的b则代表着图像与y轴之间的距离越近。
3.常数项(c):常数项(c)表示二次函数中的常数。
常数项决定了二次函数与y 轴的截距,即图像与y轴的交点位置。
常数项c的值决定了图像在y 轴上的上下平移。
当c>0时,图像向上平移;当c<0时,图像向下平移。
增加常数项的绝对值将把图像向下移动,而减小常数项的绝对值将使图像向上移动。
综上所述,二次函数中的abcd分别代表二次项系数、一次项系数和常数项。
a决定了图像的形状,b决定了图像与y轴之间的距离和交点的位置,c决定了图像在y轴上的上下平移。
这些参数共同作用,决定了二次函数的图像特征,帮助我们分析和理解二次函数在数学和实际问题中的应用。
二次函数的平移、翻折与旋转以及a、b、c符号问题1、抛物线的一般式与顶点式的互化关系:y=ax2+bx+c————→y=a(x+b2a)2+4ac-b24a2、强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。
3、抛物线的平移抓住关键点顶点的移动;例题:1、(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.考点:二次函数图象与几何变换.分析:根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.解答:解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3.点评:本题考查了二次函数图象与几何变换,利用了中心对称的性质.2、(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.考点:二次函数图象与几何变换.专题:新定义.分析:连接AB,根据姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得△AOM是等边三角形,设OM=2,则点A的坐标是(1,),求出抛物线C1的解析式,从而求出抛物线C2的解析式.解答:解:连接AB,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得:OA=OM,∵OA=MA,∴△AOM是等边三角形,设OM=2,则点A的坐标是(1,),则,解得:则抛物线C1的解析式为y=﹣x2+2x,抛物线C2的解析式为y=x2+2x,故答案为:y=﹣x2+2x,y=x2+2x.w W w .x K b 1.c o M点评:此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.3、(2015•绥化)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.考点:二次函数图象与几何变换.分析:直接根据“上加下减,左加右减”的原则进行解答.解答:解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4、(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.考点:二次函数图象与几何变换;二次函数图象与系数的关系.分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.解答:解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.点评:(1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.(2)此题还考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).答案:。