当前位置:文档之家› 碳的同素异形体

碳的同素异形体

碳的同素异形体
碳的同素异形体

碳的同素异形体

同素异形体,是相同元素组成,不同形态的单质。如碳元素就有金钢石、石墨、无定形碳等同素异形体。同素异形体由于结构不同,彼此间物理性质有差异;但由于是同种元素形成的单质,所以化学性质相似。

同素异形体的化学性质相似。

例如氧气是没有颜色、没有气味的气体,而臭氧是淡蓝色、有鱼腥味的气体;氧气的沸点-183℃,而臭氧的沸点-111.5℃;氧气比臭氧稳定,没有臭氧的氧化性强等。一定要是单质.比如氧气和臭氧,一个是O2一个是O3

同素异形体

金刚石和石墨,都是碳

同素异形体之间的转化不一定属于化学变化(例如:单斜硫和斜方硫)。

形成方式

有三种:

1.组成分子的原子数目不同,例如:氧气O2和臭氧O3

2.晶格中原子的排列方式不同,例如:金刚石和石墨和C60

3.晶格中分子排列的方式不同,例如:正交硫和单斜硫

4. 还有红磷和白磷

性质特点

化学性质:相似或略有差异

物理性质:差别很大

示例

碳的同素异形体

(1)碳的同素异形体有金刚石、石墨和碳60等富勒烯,它们的不同性质是由微观结构的不同所决定的。

金刚石呈正四面体空间网状立体结构,碳原子之间形成共价键。当切割或熔化时,需要克服碳原子之间的共价键,金刚石是自然界已经知道的物质中硬度最大的材料,它的熔点高。上等无暇的金刚石晶莹剔透,折光性好,光彩夺目,是

人们喜爱的饰品,也是尖端科技不可缺少的重要材料。颗粒较小、质量略为低劣的金刚石常用在普通工业方面,如用于制作仪器仪表轴承等精密元件、机械加工、地质钻探等。钻石在磨、锯、钻、抛光等加工工艺中,是切割石料、金属、陶瓷、玻璃等所不可缺少的;用金刚石钻头代替普通硬质合金钻头,可大大提高钻进速度,降低成本;镶嵌钻石的牙钻是牙科医生得心应手的工具;镶嵌钻石的眼科手术刀的刀口锋利光滑,即使用1000倍的显微镜也看不到一点缺陷,是摘除眼睛内白内障普遍使用的利器。金刚石在机械、电子、光学、传热、军事、航天航空、医学和化学领域有着广泛的应用前景。

石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以三个共价键与其它碳原子结合,同层中的离域电子可以在整层活动,层间碳原子以分子间作用力(范德华力)相结合。石墨是一种灰黑色、不透明、有金属光泽的晶体。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。石墨被大量用来做电极、坩埚、电刷、润滑剂、铅笔等。具有层状结构的石墨在适当条件下使某些原子或基团插入层内与C原子结合成石墨层间化合物。这些插入化合物的性质基本上不改变石墨原有的层状结构,但片层间的距离增加,称为膨胀石墨,它具有天然石墨不具有的可绕性,回弹性等,可作为一种新型的工程材料,在石油化工、化肥、原子能、电子等领域广泛应用。

(2)碳60

1985年,美国德克萨斯洲罗斯大学的科学家们制造出了第三种形式的单质碳C60,C60是由60个碳原子形成的封闭笼状分子,形似足球,C60为黑色粉末,易溶于二硫化碳、苯等溶剂中。人们以建筑大师 B.富勒的名字命名了这种形式的单质碳,称为富勒烯(fullarene)。这是因为富勒设计了称为球状穹顶的建筑物,而某些富勒烯的结构正好与其十分相似。C60曾又被称足球烯、巴基球等,它属于球碳族,这一类物质的分子式可以表示为Cn,n为28到540之间的整数值,有C50、C70、C84、C240等,在这些分子中,碳原子与另外三个碳原子形成两个单键和一个双键,它们实际上是球形共轭烯。

富勒烯分子由于其独特的结构和性质,受到了广泛的重视。人们发现富勒烯分子笼状结构具有向外开放的面,而内部却是空的,这就有可能将其他物质引入到该球体内部,这样可以显著地改变富勒烯分子的物理和化学性质。例如化学家已经尝试着往这些中空的物质中加进各种各样的金属,使之具有超导性,已发现C60和某些碱金属化合得到的超导体其临界温度高于近年研究过的各种超导体,科学家预言C540有可能实现室温超导;也有设想将某些药物置入C60球体空腔内,成为缓释型的药物,进入人体的各个部位。在单分子纳米电子器件等方面有着广泛的应用前景,富勒烯已经广泛地影响到物理、化学、材料科学、生命及医药科学各领域。

(3)碳纳米管

碳纳米管可分单层及多层的碳纳米管,它是由单层或多层同心轴石墨层卷曲而成的中空碳管,管直径一般为几个纳米到几十个纳米,多层碳纳米管是管壁的石墨层间距为0.34纳米,与平面石墨层的间距一样,不论是单层还是多层碳纳米管,前后末端类似半圆形,结构基本上与碳六十相似,使整个碳管成为一个封闭结构,故纳米碳管也是碳族的成员之一。碳纳米管非常微小,5万个并排起来才有人的一根头发丝宽,是长度和直径之比很高的纤维。

碳纳米管强度高具有韧性、重量轻、比表面积大,性能稳定,随管壁曲卷结构不同而呈现出半导体或良导体的特异导电性,场发射性能优良。自1991年单

层碳纳米管的发现和宏观量的合成成功以来,由于具有独特的电子结构和物理化学性质,碳纳米管在各个领域中的应用已引起了各国科学家的普遍关注,已成为富勒烯和纳米科技领域的研究热点。

利用碳纳米管可以制成高强度碳纤维材料和复合材料,如其强度为钢的100倍,重量则只有钢的1/6,被科学家称为未来的“超级纤维”;在航天事业中,利用碳纳米管制造人造卫星的拖绳,不仅可以为卫星供电,还可以耐受很高的温度而不会烧毁;用金属灌满碳纳米管,然后把碳层腐蚀掉,还可以得到导电性能非常好的纳米尺度的导线;利用碳纳米管做为锂离子电池的正极和负极材料可以延长电池寿命,改善电池的充放电性能;利用碳纳米管制成极好的发光、发热、发射电子的准点光源,制成平面显示器等,使壁挂电视成为可能;在电子工业上、用碳纳米管生产的晶体管,体积只有半导体的1/10,用碳基分子电子装置取代电脑芯片,将引发计算机的新的革命;碳纳米管可以在较低的气压下存储大量的氢元素,利用这种方法制成的燃料不但安全性能高,而且是一种清洁能源,在汽车工业将会有广阔的发展前景;碳纳米管还可作为催化剂载体和膜材料。

氧的同素异形体

氧气与臭氧

氧气

氧气是空气的组分之一,无色、无臭、无味。氧气比空气重,在标准状况(0℃和大气压强101325帕)下密度为1.429克/升,能溶于水,但溶解度很小。

在压强为101kPa时,氧气在约-180摄氏度时变为淡蓝色液体,在约-218摄氏度时变成雪花状的淡蓝色固体。

氧气能与很多元素直接化合,生成氧化物。

氧气是燃烧和动植物呼吸所必需的气体,富氧空气用于医疗和高空飞行,纯氧用于炼钢和切割、焊接金属,液氧用做火箭发动机的氧化剂。

生产上应用的氧气由液态空气分馏而得。实验室借含氧盐类(氯酸钾、高锰酸钾等)受热分解来制取氧气。

物理性质:

①色,味,态:无色无味气体(标准状况)

②熔沸点:

③密度:大于空气

④水溶性:不易溶于水

⑤贮存:天蓝色钢瓶

化学性质:

一、氧气跟金属反应:

2Mg+O2==2MgO,剧烈燃烧发出耀眼的强光,放出大量热,生成白色固体。

3Fe+O2==2Fe3O4,红热的铁丝剧烈燃烧,火星四射,放出大量热,生成黑色固体。

2Cu+O2==2CuO,加热后亮红色的铜丝表面生成一层黑色物质。

二、氧气跟非金属反应:

C+O2==CO2,剧烈燃烧,发出白光,放出热量,生成使石灰水变浑浊的气体。S+O2==SO2,发生明亮的蓝紫色火焰,放出热量,生成有刺激性气味的气体。

4P+5O2==2P2O5,剧烈燃烧,发出明亮光辉,放出热量,生成白烟。

三、氧气跟一些有机物反应,如甲烷、乙炔、酒精、石蜡、甘醇等能在氧气中燃烧生成水和二氧化碳。

CH4+2O==2CO2+2H2O

2C2H2+5O2==4CO2+2H2O

oxygen

一种化学元素。化学符号O ,原子序数8 ,原子量15.9994,属周期系ⅥA族。

氧的发现1774年英国J.普里斯特利用一个大凸透镜将太阳光聚焦后加热氧化汞,制得纯氧,并发现它助燃和帮助呼吸,称之为“脱燃素空气”。瑞典C.W.舍勒用加热氧化汞和其他含氧酸盐制得氧气虽然比普里斯特利还要早一年,但他的论文《关于空气与火的化学论文》直到1777年才发表,但他们二人确属各自独立制得氧。1774年,普里斯特利访问法国,把制氧方法告诉A.-L.拉瓦锡,后者于1775年重复这个实验,把空气中能够帮助呼吸和助燃的气体称为oxygene,这个字来源于希腊文oxygenēs,含义是“酸的形成者”。因此,后世把这三位学者都确认为氧气的发现者。

氧的存在氧有三种稳定同位素,即氧16、氧17和氧18,其中氧16 含量占99.759 %。氧在地壳中的含量为48.6%,居首位,氧在地球上分布极广,大气中的氧占23%,海洋和江河湖泊中到处都是氧的化合物水,氧在水中占88.8%。地球上还存在着许多含氧酸盐,如土壤中所含的铝硅酸盐,还有硅酸盐、氧化物、碳酸盐的矿物。大气中的氧不断地用于动物的新陈代谢,人体中氧占65%,植物的光合作用能把二氧化碳转变为氧气,使氧得以不断地循环。虽然地球上到处是氧,但氧主要是从空气中提取的,有取之不尽的资源。

物理化学性质氧是无色、无臭、无味的气体,熔点-218.4℃,沸点-182.962℃,气体密度1.429克/厘米3 ,液态氧是淡蓝色的。氧是化学性质活泼的元素,除了惰性气体,卤素中的氯、溴、碘以及一些不活泼的金属(如金、铂)之外,绝大多数非金属和金属都能直接与氧化合,但氧可以通过间接的方法与惰性气体氙生成氧化物:

XeF6 + 3H2OXeO3 + 6HF

同样,氯的氧化物也可以通过间接的方法制得:

2Cl2+2HgOHgO·HgCl2+Cl2O

在常温下,氧还可以将其他化合物氧化:

2NO+O22NO2

氧可以将葡萄糖氧化,这一作用是构成生物体呼吸作用的主要反应:

C6H12O6+6O26CO2+6H2O

氧的氧化态为-2 、-1、+2 。氧的氧化性仅次于氟,因此,氧和氟发生反应时,表现为+2价,形成氟化氧(F2O)。氧与金属元素形成的二元化合物有氧化物、过氧化物、超氧化物。氧分子可以失去一个电子,生成二氧基正离子(),形成O2PtF6等化合物。

氧气的实验室制法有:①氯酸钾的热分解:

②电解水:

③氧化物热分解:

④以二氧化锰做催化剂,使过氧化氢分解:

在宇宙飞船中,可利用宇航员呼出的二氧化碳气体与超氧化钾作用,产生氧气,供宇航员呼吸用。

生产和应用大规模生产氧气的方法是分馏液态空气,首先将空气压缩,待

其膨氧胀后又冷冻为液态空气,由于稀有气体和氮气的沸点都比氧气低,经过分馏,剩下的便是液氧,可贮存在高压钢瓶中。所有的氧化反应和燃烧过程都需要氧,例如炼钢时除硫、磷等杂质,氧和乙炔混合气燃烧时温度高达3500℃,用于钢铁的焊接和切割。玻璃制造、水泥生产、矿物焙烧、烃类加工都需要氧。液氧还用作火箭燃料,它比其他燃料更便宜。在低氧或缺氧的环境中工作的人,如潜水员、宇航员,氧更是维持生命所不可缺少的。但氧的活性状态如、OH以及H2O2等对生物的组织有严重的损坏作用,紫外线对皮肤和眼的损害多与此种作用有关。

臭氧

爱恨交加说臭氧

大气中臭氧层对地球生物的保护作用现已广为人知——它吸收太阳释放出来的绝大部分紫外线,使动植物免遭这种射线的危害。为了弥补日渐稀薄的臭氧层乃至臭氧层空洞,人们想尽一切办法,比如推广使用无氟制冷剂,以减少氟利昂等物质对臭氧的破坏。世界上还为此专门设立国际保护臭氧层日。由此给人的印象似乎是受到保护的臭氧应该越多越好,其实不是这样,如果大气中的臭氧,尤其是地面附近的大气中的臭氧聚集过多,对人类来说臭氧浓度过高反而是个祸害。

臭氧是地球大气中一种微量气体,它是由于大气中氧分子受太阳辐射分解成氧原子后,氧原子又与周围的氧分子结合而形成的,含有3个氧原子。大气中90%以上的臭氧存在于大气层的上部或平流层,离地面有10~50千米,这才是需要人类保护的大气臭氧层。还有少部分的臭氧分子徘徊在近地面,仍能对阻挡紫外线有一定作用。但是,近年发现地面附近大气中的臭氧浓度有快速增高的趋势,就令人感到不妙了。

这些臭氧是从哪里来冒出来的呢?同铅污染、硫化物等一样,它也是源于人类活动,汽车、燃料、石化等是臭氧的重要污染源。在车水马龙的街上行走,常常看到空气略带浅棕色,又有一股辛辣刺激的气味,这就是通常所称的光化学烟雾。臭氧就是光化学烟雾的主要成分,它不是直接被排放的,而是转化而成的,比如汽车排放的氮氧化物,只要在阳光辐射及适合的气象条件下就可以生成臭氧。随着汽车和工业排放的增加,地面臭氧污染在欧洲、北美、日本以及我国的许多城市中成为普遍现象。根据专家目前所掌握的资料估计,到2005年,近地面大气臭氧层将成为影响我国华北地区空气质量的主要污染物。

研究表明,空气中臭氧浓度在0.012ppm水平时——这也是许多城市中典型的水平,能导致人皮肤刺痒,眼睛、鼻咽、呼吸道受刺激,肺功能受影响,引起咳嗽、气短和胸痛等症状;空气中臭氧水平提高到0.05ppm,入院就医人数平均上升7%~10%。原因就在于,作为强氧化剂,臭氧几乎能与任何生物组织反应。当臭氧被吸入呼吸道时,就会与呼吸道中的细胞、流体和组织很快反应,导致肺功能减弱和组织损伤。对那些患有气喘病、肺气肿和慢性支气管炎的人来说,臭氧的危害更为明显。

从臭氧的性质来看,它既可助人又会害人,它既是上天赐与人类的一把保护伞,有时又像是一剂猛烈的毒药。目前,对于臭氧的正面作用以及人类应该采取哪些措施保护臭氧层,人们已达成共识并做了许多工作。但是,对于臭氧层的负面作用,人们虽然已有认识,但目前除了进行大气监测和空气污染预报外,还没有真正切实可行的方法加以解决。

臭氧消毒原理可以认为是一种氧化反应。

(1)臭氧对细菌灭活的机理:

臭氧对细菌的灭活反应总是进行的很迅速。与其它杀菌剂不同的是:臭氧能与细菌细胞壁脂类双键反应, 穿入菌体内部,作用于蛋白和脂多糖,改变细胞的通透性,从而导致细菌死亡。臭氧还作用于细胞内的核物质,如核酸中的嘌呤和嘧啶破坏DNA。

(2)臭氧对病毒的灭活机理:

臭氧对病毒的作用首先是病毒的衣体壳蛋白的四条多肽链,并使RNA受到损伤,特别是形成它的蛋白质。噬菌体被臭氧氧化后,电镜观察可见其表皮被破碎成许多碎片,从中释放出许多核糖核酸,干扰其吸附到寄存体上。

臭氧杀菌的彻底性是不容怀疑的。

破坏臭氧层,危害我们每一个人。

紫外线从多方面影响着人类健康。人体会发生如晒斑、眼病、免疫系统变化、光变反应和皮肤病(包括皮肤癌)等。皮肤癌是一种顽固的疾病,紫外线的增长会使患这种病的危险性增大。紫外线光子有足够的能量去破裂双键。中短波紫外线会透人皮肤深处,使人的皮肤产生炎症,人体的遗传物质DNA(脱氧核糖核酸)受到损害,使正常生长的细胞蜕变成癌细胞并继续生长成整块的皮肤癌。也有说太阳光渗透进皮肤的表层。紫外线辐射轰击着皮肤细胞核内的DNA基本单位,使许多单位溶化成失去作用的碎片。这些毛病的修复过程可能会出现不正常,从而导致癌变。流行病学已证实厂非黑瘤皮肤癌的发病率与日晒紧密相关。各种类型皮肤的人都有患非黑瘤皮肤癌的可能,但在浅色皮肤人群中发病率较高。动物实验发现,紫外线中,紫外线B波长区是致癌作用最强的波长区域。

据估计,总臭氧量减少1%(即紫外线B增强2%),基础细胞癌变率将增加约4%。近来的研究发现,紫外线B可使免疫系统功能发生变化。有的实验结果表明,传染性皮肤病可能也与由臭氧减少而导致的紫外线B增强有关。据估计总臭氧量减少1%,皮肤癌的发病率将增加5%-7%,白内障患者将增加0.2%—0.6%。自1983年以来,加拿大皮肤癌的发病率己增加235%,1991年皮肤病患者已多达4.7万人。美国环保局局长说,美国在今后50年内死于皮肤癌者,将比过去预计的增加20万人。澳大利亚人喜欢晒日光浴,把皮肤晒得黑黑的。尽管科学家反复告诫多晒太阳会导致皮肤癌、他们对黑肤色还是乐此不疲。结果,直到澳大利亚人皮肤癌的发病率比世界上其他地方高出1倍时,才醒悟过来。全世界患皮肤癌的人已占癌症患者总人数的1/3。

联合国环境规划署曾警告说,如果地球的臭氧层会继续按照目前的速度减少并变薄,那么到2000年时全世界患皮肤癌的比例将增加26%,达到30万人。如果下个世纪初臭氧层再减少10%,那么全世界每年患白内障的人有可能达到160万-175万人。

受紫外线侵害还可能会诱发麻疹、水痘、疟病、疤疹、真菌病、结核病、麻风病、淋巴癌。

紫外线的增加还会引起海洋浮游生物及虾、蟹幼体、贝类的大量死亡,造成某些生物灭绝。紫外线照射结果还会使成群的兔子患上近视眼,成千上万只羊双目失明。

紫外线B削弱光台作用根据非洲海岸地区的实验推测,在增强的紫外线B 照射下,浮游生物的光合作用被削弱约5%。增强的紫外线B还可通过消灭水中微生物而导致淡水生态系统发生变化,并因而减弱了水体的自净化作用。增强的紫外线B还可杀死幼鱼、小虾和蟹。如果南极海洋中原有的浮游生物极度下降,则海洋生物从整体上会发生很大变化。但是,有的浮游生物对紫外线很敏感,有

的则不敏感。紫外线对不同生物的DNA的破坏程度有100倍的差别。

严重阻碍各种农作物和树木的正常生长有些植物如花生和小麦,对紫外线B有较好的抵御能力,而另一些植物如莴苣、西红柿、大豆和棉花,则是很敏感的。美国马里兰大学农业生物技术中心的特伦莫拉用太阳灯对6个大豆品种进行了观察实验,结果显示其中3个大豆品种对紫外线辐射极为敏感。具体表现为,大豆叶片光合作用强度下降,造成减产,同时也使大豆种于蛋白质和油脂含量下降。大气臭氧层损失1%,大豆也将减产1%。

特伦莫拉还用了4年时间,对高剂量紫外辐射给树木生长造成的影响进行了观察。结果表明,木材积累量明显下降,它们的根部生长也因而受阻。

对全球气候的不良扰乱作用平流层上层臭氧的大量减少以及与此有关的平流层下层和对流层上层臭氧量的增长,可能会对全球气候起不良的扰乱作用。臭氧的纵向重分布可能使低空大气变暖,并加剧由二氧化碳量增加导致的温室效应。

光化学大气污染过量的紫外线使塑料等高分子材料容易老化和分解,结果又带来新的污染——光化学大气污染。

但要注意:臭氧和二氧化碳虽然电子式类似,但分子结构不同。臭氧是折线形,二氧化碳是直线形。对此的解释要用到大学的无机化学知识。

美国航空航天局的科学家们最近发现,在地球南极洲上空的巨大臭氧空洞在9月份发生了明显变化,从原先的旋涡状变成了两头大、中间小的“变形虫”形状。

虽然这两年,臭氧空洞面积看上去在缩小,但科学家警告说,目前就断言臭氧层在“修复还原”还为时尚早。航空航天局的臭氧专家包罗-纽曼介绍,大气层的温度不断上升造成了空洞的缩小。在2000年,南极洲的臭氧空洞面积曾经一度达到280万平方公里,相当于3个美国大陆的面积;在2002年9月初,航空航天局的科学家们估算,空洞缩小到150万平方公里。

澳大利亚一个臭氧层研究小组曾向全世界报告了一条好消息:由于环保措施这些年来得到有效地执行,南极洲上空的臭氧空洞正在不断缩小,预计到2050年之前,这个“臭名昭著”的巨大空洞就可以完全被“填补”上了。

据报道,南极洲上空的臭氧空洞一直是困扰全世界环保人士的难题之一。最严重的时候,臭氧空洞的面积曾一度有3个澳大利亚那么大。科学家们研究发现,“吞噬”臭氧的罪魁祸首原来是大气层中的氯氟烃——一种含有氯、氟、碳三种元素的有机化合物(俗称“氟里昂”)。

为了防止臭氧空洞进一步加剧,保护生态环境和人类健康,1990年各国制定了《蒙特利尔议定书》,对氯氟烃的排放量规定了严格的限制。如今,这些年来环保组织的不懈努力终于获得了回报:臭氧又回来了!澳大利亚英联邦科学与工业研究组织(CSIRO)的大气研究专家保罗·弗雷舍激动地说:“这是一条重大新闻。我们期待这一天已经很久了!”他说,虽然影响臭氧空洞缩小进度的因素还有很多,比如温室效应、气候变化等等,“但我们在将各种因素综合起来考虑之后,得出了这一结论:南极洲上空的臭氧空洞不出50年便会完全消失”。

编辑本段同素异形体和同位素的区别

同素异形体是指同种元素的不同单质,它们是单质,换句话说它是物质。比如石墨和金刚石,它们是物质把?而不只是一种元素把?所以它们是同素异形体。

而同位素是中子数不同但质子数相同的同种元素,它只是元素,比如,没有中子的H1和有一个中子的2H 或者C12和C14 那么它们只是元素而已它们

不是单独的物质所以它们是同位素。

H2和H3的话H3是3个氢原子H2是两个氢原子那么它们是不同的物质它们是同素异形体。

而如果你的意思是H3是指质量数为3的H元素那么它们是元素是同位素。

编辑本段同分异构现象

同分异构现象是指有机物具有相同的分子式,但具有不同结构的现象.

常见的异构类型

1.碳链异构由于分子中碳链形状不同而产生的异构现象.如正丁烷和异丁烷.

2.位置异构由于取代基或官能团在碳链上或碳环上的位置不同而产生的异构现象. 如: 1-丁炔与2-丁炔1-丙醇与2-丙醇

3.官能团异构分子中由于官能团不同而产生的异构现象. 如:单烯烃与环烷烃,醇与醚,醛与酮,炔烃与二烯烃,酯和羧酸,酚和芳香醇.

4.立体异构:结构相似,但由于微小偏差导致结构不同(1)顺反异构:立体异构的一种,由于双键不能自由旋转引起的,一般指烯烃的双键或多取代环烃的取代基位于环的不同侧造成的同分异构。(2)光学异构:构造相同的分子,如使其一平面偏振光向右偏转,另一侧向左。则两种互为光学异构体。

5.构象异构:同一种化合物的构象,可通过单键旋转由一种变为另一种,则这两种互为构象异构体。

同素异形体教案

新课标(苏教版)化学2 第三单元从微观结构看物质的多样性 同素异形现象(1课时) 漳州二中化学组黄凌燕 【教学设计思路概述】 本课与同分异构现象、不同类型的晶体共同构成一单元,帮助学生认识物质的多样性与微观结构的关系,为《化学2》中的有机化合物的知识、选修《物质结构与性质》及《有机化学基础》的学习打好基础。教材以碳的同素异形体为例,帮助学生认识金刚石与石墨中碳原子间的结合方式、作用力和空间排列方式的不同,并简要介绍了氧和磷的同素异形体,丰富了学生对同素异形体的认识,故而在设计课堂教学环节时,碳的同素异形现象及同素异形体是重点,从学生熟悉的金刚石和石墨入手,从“同”和“异”两个角度帮助学生认识自然界的同素异形现象,本堂课中,碳、氧、磷三种元素的同素异形体就如同语文中的排比句式,但尤为突出碳的同素异形体,从学生熟悉的物质到新鲜的物质,符合学生认知规律。【教学目标】 1、知识与技能 从同素异形现象认识物质的多样性与微观结构的关系; 以金刚石、石墨、富勒烯等碳的同素异形体为例,认识由于微观结构不同而导致的同素异形现象 2、过程与方法 以生活中熟悉的两种碳的同素异形体——金刚石和石墨性质的“异”“同”为切入点,从“同素”和“异形”两个角度帮助学生认识同素异形现象和同素异形体。 3、情感态度价值观 学生在认识同素异形体的过程中加深了对原子不同连接方式的印象,从中体会到化学学习的趣味性和科学性,使学生在丰富的教学活动中深刻认识到“物质的性质决定性质,性质体现结构”这一观点。 【教学重点】同素异形现象、同素异形体 【教学难点】同素异形体的判断、同位素与同素异形体的辨别 【教学过程】 多媒体展示铅笔芯、钻石图片 引导学生思考比较:金刚石与石墨物理性质的差异

碳的同素异形体

碳的同素异形体 同素异形体,是相同元素组成,不同形态的单质。如碳元素就有金钢石、石墨、无定形碳等同素异形体。同素异形体由于结构不同,彼此间物理性质有差异;但由于是同种元素形成的单质,所以化学性质相似。 同素异形体的化学性质相似。 例如氧气是没有颜色、没有气味的气体,而臭氧是淡蓝色、有鱼腥味的气体;氧气的沸点-183℃,而臭氧的沸点-111.5℃;氧气比臭氧稳定,没有臭氧的氧化性强等。一定要是单质.比如氧气和臭氧,一个是O2一个是O3 同素异形体 金刚石和石墨,都是碳 同素异形体之间的转化不一定属于化学变化(例如:单斜硫和斜方硫)。 形成方式 有三种: 1.组成分子的原子数目不同,例如:氧气O2和臭氧O3 2.晶格中原子的排列方式不同,例如:金刚石和石墨和C60 3.晶格中分子排列的方式不同,例如:正交硫和单斜硫 4. 还有红磷和白磷 性质特点 化学性质:相似或略有差异 物理性质:差别很大 示例 碳的同素异形体 (1)碳的同素异形体有金刚石、石墨和碳60等富勒烯,它们的不同性质是由微观结构的不同所决定的。 金刚石呈正四面体空间网状立体结构,碳原子之间形成共价键。当切割或熔化时,需要克服碳原子之间的共价键,金刚石是自然界已经知道的物质中硬度最大的材料,它的熔点高。上等无暇的金刚石晶莹剔透,折光性好,光彩夺目,是

人们喜爱的饰品,也是尖端科技不可缺少的重要材料。颗粒较小、质量略为低劣的金刚石常用在普通工业方面,如用于制作仪器仪表轴承等精密元件、机械加工、地质钻探等。钻石在磨、锯、钻、抛光等加工工艺中,是切割石料、金属、陶瓷、玻璃等所不可缺少的;用金刚石钻头代替普通硬质合金钻头,可大大提高钻进速度,降低成本;镶嵌钻石的牙钻是牙科医生得心应手的工具;镶嵌钻石的眼科手术刀的刀口锋利光滑,即使用1000倍的显微镜也看不到一点缺陷,是摘除眼睛内白内障普遍使用的利器。金刚石在机械、电子、光学、传热、军事、航天航空、医学和化学领域有着广泛的应用前景。 石墨是片层状结构,层内碳原子排列成平面六边形,每个碳原子以三个共价键与其它碳原子结合,同层中的离域电子可以在整层活动,层间碳原子以分子间作用力(范德华力)相结合。石墨是一种灰黑色、不透明、有金属光泽的晶体。天然石墨耐高温,热膨胀系数小,导热、导电性好,摩擦系数小。石墨被大量用来做电极、坩埚、电刷、润滑剂、铅笔等。具有层状结构的石墨在适当条件下使某些原子或基团插入层内与C原子结合成石墨层间化合物。这些插入化合物的性质基本上不改变石墨原有的层状结构,但片层间的距离增加,称为膨胀石墨,它具有天然石墨不具有的可绕性,回弹性等,可作为一种新型的工程材料,在石油化工、化肥、原子能、电子等领域广泛应用。 (2)碳60 1985年,美国德克萨斯洲罗斯大学的科学家们制造出了第三种形式的单质碳C60,C60是由60个碳原子形成的封闭笼状分子,形似足球,C60为黑色粉末,易溶于二硫化碳、苯等溶剂中。人们以建筑大师 B.富勒的名字命名了这种形式的单质碳,称为富勒烯(fullarene)。这是因为富勒设计了称为球状穹顶的建筑物,而某些富勒烯的结构正好与其十分相似。C60曾又被称足球烯、巴基球等,它属于球碳族,这一类物质的分子式可以表示为Cn,n为28到540之间的整数值,有C50、C70、C84、C240等,在这些分子中,碳原子与另外三个碳原子形成两个单键和一个双键,它们实际上是球形共轭烯。 富勒烯分子由于其独特的结构和性质,受到了广泛的重视。人们发现富勒烯分子笼状结构具有向外开放的面,而内部却是空的,这就有可能将其他物质引入到该球体内部,这样可以显著地改变富勒烯分子的物理和化学性质。例如化学家已经尝试着往这些中空的物质中加进各种各样的金属,使之具有超导性,已发现C60和某些碱金属化合得到的超导体其临界温度高于近年研究过的各种超导体,科学家预言C540有可能实现室温超导;也有设想将某些药物置入C60球体空腔内,成为缓释型的药物,进入人体的各个部位。在单分子纳米电子器件等方面有着广泛的应用前景,富勒烯已经广泛地影响到物理、化学、材料科学、生命及医药科学各领域。 (3)碳纳米管 碳纳米管可分单层及多层的碳纳米管,它是由单层或多层同心轴石墨层卷曲而成的中空碳管,管直径一般为几个纳米到几十个纳米,多层碳纳米管是管壁的石墨层间距为0.34纳米,与平面石墨层的间距一样,不论是单层还是多层碳纳米管,前后末端类似半圆形,结构基本上与碳六十相似,使整个碳管成为一个封闭结构,故纳米碳管也是碳族的成员之一。碳纳米管非常微小,5万个并排起来才有人的一根头发丝宽,是长度和直径之比很高的纤维。 碳纳米管强度高具有韧性、重量轻、比表面积大,性能稳定,随管壁曲卷结构不同而呈现出半导体或良导体的特异导电性,场发射性能优良。自1991年单

4.2碳_同素异形体之习题

4.2(1) 碳 同素异形体习题 一、选择题 1.北约空袭南联盟期间,曾使用“石墨炸弹”使南联盟的高压输变电线路短路,这是利用了石墨的( ) A 、 可燃性 B 、还原性 C 、导电性 D 、润滑性 2.纳米是一个长度单位,1nm =10- 9m ,纳米科技开辟了人类认识世界的新纪元。纳米材料是纳米科技最基本的组成部分。把固体物质加工到纳米级(1nm —100nm )的超细粉末,即可得到纳米材料。该过程属于( ) A 、物理变化 B 、物理变化和化学变化 C 、化学变化 D 、既不是物理变化也不是化学变化 3.下列各组物质中,属于同素异形体的是( ) A、冰和水 B、一氧化碳和二氧化碳 C、木炭和活性炭 D、红磷和白磷 4.由一种元素组成的物质( ) A、一定是一种单质 B、一定是一种混合物 C、一定是一种纯净物 D、无法确定 5.最近科学家研制出一种新的物质,它的化学式为C 60,下列说法中,正确的是( ) ①它是一种新型化合物 ②C 60是金刚石的同素异形体 ③C 60式量是720 ④C 60是一种单质 A、①③ B、 ②③ C、③④ D、②③④ 6.碳的化学性质是( ) A . 不活泼 B 、较活泼 C 、 常温下不活泼,高温下较活泼 D 、常温下不活泼,高温下不活泼 7.下列物质中,有一种物质能跟其余三种物质反应的是( ) A 、氧气 B 、二氧化碳 C 、活性炭 D 、氧化铜 8.对于反应 2CuO + C ??→?高温 2Cu +CO 2↑,下列说法不正确的是( ) A 、CuO 是氧化剂 B 、 C 被氧化,CuO 被还原 C 、C 是还原剂 D 、Cu 是还原剂,CO 2是氧化剂 二、填空题 9.自然界里游离态的碳主要有____________和___________以及 ,其中__________是天然物质里最硬的物质之一;___________是最软的矿物之一。 10.金刚石和石墨的__________(填物理或化学)性质差异很大,这是因为____________________________而引起的。 11.金刚石可用于切割玻璃和大理石,这是利用了它的________,同理还可作采矿用钻探机的钻头。 12.石墨用作干电池和高温电炉里的电极,这是利用了它的_______ ;石墨还可用作高温润滑剂,这是利用了它具有__________性和__________性质;石墨用作电车顶上导电杆与电线接触处的滑块,这是因为它具有_________性和__________性。

碳有三种同素异形体

碳有三种同素异形体,即金刚石、石墨和无定形碳。无定形碳有炭黑、木炭、焦炭、骨炭、活性炭等。统称黑碳。这三种同素异形体的物理性质差别很大。但在氧气里燃烧后的产物都是二氧化碳。 1.金刚石的晶体结构 金刚石是典型的原子晶体,在这种晶体中的基本结构粒子是碳原子。每个碳原子都以sp3 杂化轨道与四个碳原子形成共价单键,键长为1.55×10-10 m,键角为109°28′,构成正四面体。每个碳原子位于正四面体的中心,周围四个碳原子位于四个顶点上,在空间构成连续的、坚固的骨架结构。因此,可以把整个晶体看成一个巨大的分子。由于C—C键的键能大(为347 kJ/mol),价电子都参与了共价键的形成,使得晶体中没有自由电子,所以金刚石是自然界中最坚硬的固体,熔点高达3 550 ℃,并且不导电。 2.石墨的晶体结构 石墨晶体是属于混合键型的晶体。石墨中的碳原子用sp2杂化轨道与相邻的三个碳原子以σ键结合,形成正六角形蜂巢状的平面层状结构,而每个碳原子还有一个2p轨道,其中有一个2p电子。这些p轨道又都互相平行,并垂直于碳原子sp2杂化轨道构成的平面,形成了大π键。因而这些π电子可以在整个碳原子平面上活动,类似金属键的性质。而平面结构的层与层之间则依靠分子间作用力(范德华力)结合起来,形成石墨晶体.石墨有金属光泽,在层平面方向有很好的导电性质。由于层间的分子间作用力弱,因此石墨晶体的层与层之间容易滑动,工业上用石墨作固体润滑剂。 3.无定形碳 所谓无定形碳是指其内部结构而言。实际上它们的内部结构并不是真正的无定形体,而是具有和石墨一样结构的晶体,只是由碳原子六角形环状平面形成的层状结构零乱而不规则,晶体形成有缺陷,而且晶粒微小,含有少量杂质。 无定形碳包括: 炭黑木炭焦炭活性炭骨炭糖炭 无定形碳跟少量砂子、氧化铁催化剂混合,在约3500℃中加热,使产生的碳蒸气凝聚,可得人造石墨。 1

碳精品教案教学目标1

4.2碳 教学目标:1,掌握碳的三种单质(金刚石,石墨,C60) 2,理解同素异形现象,同素异形体 3,木炭,活性炭的吸附作用 难点,重点:难点:理解碳的三种单质的性质差异 判断同素异形体 重点:金刚石,石墨,C60的物性与用途 教具,媒体:讲解,演示,讨论 板书设计:引入→碳,同素异形体→金刚石与石墨的性质与用途 →C60→思考1,2→引出:同素异形现象与同素异形体→无定型碳→吸附作用;作业布置:精练与博览 教学过程:导入:光彩夺目的钻石对于我们来说,肯定不陌生,可这种昂贵的物品都与我们铅笔盒中的某一件东西有着同样的元素组成,它就是铅笔蕊。铅笔蕊中含 有大量的石墨,而钻石则是由金刚石经过琢磨而制成的。这节课我们就来 学习自然界中存在的碳的丙种单质――金刚石与石墨的性质与用途。 板书一、碳同素异形体 讲述:碳是组成物质的重要元素,自然界中含有碳元素的单质化合物占物质总数的90%以上,例如:金刚石与石墨,都是由碳元素组成的单质,那么, 这两种物质的性质与用途是否相同呢? 板书1,金刚石与石墨的性质与用途 演示:P99 动手作实验 学生归纳:实验现象 讲述:通过刚才的实验可知:铅笔芯(主要成分是石墨)有滑腻感,而且很软,具有导电性;金刚石没有导电性,而且它是天然物质中最硬的物质。利用 它的坚硬,金刚石可用来切割玻璃,用于钻探机得钻头等,并且由于它的 光彩夺目,还可做装饰品,如钻石。石墨除了用软和滑腻感的特性来做铅 笔芯外,高温下还可作润滑剂,还可利用它的导电性来做电极。 板书:小结 讲述:除了金刚石和石墨外,其实还有一种碳的单质――碳60(C60)又称富勒烯或足球烯,它是由60个碳原子构成了一个分子,其结构类似足球的三 维空心球状结构。 板书2,碳的另一单质――C60(富勒烯或足球烯) 特性:有金属光泽,能抗辐射,耐高压,抗化学腐蚀。 思考1:在电车顶上的两根导线杆,根电线接处处分别装上一块石墨制成的滑块,以保证行驶时供电。为什么运用石墨来供电? ①熔点高,易导电②有滑腻感,可作润滑剂

碳的同素异形体

碳的同素异形体 王法泽F0611004班5061109114 摘要:归纳总结了碳的四种同素异形体,并从结构和性质方面进行简要地比较,从而体现结构决定性质的化学思想。 关键词:同素异形体、富勒烯、碳纳米管。 碳是最早被发现和利用的元素之一。长期以来人们以为单质碳的同素异形体有金刚石、石墨和无定形碳三种,1985年C60的发现将人类领入认识碳的全新领域——富勒烯,美国科学家Curl和Smalley教授及英国科学家Kroto教授为此获得1996年诺贝尔化学奖。从平面低对称性分子到全对称的球形分子,从简单分子到富勒烯笼内包原子的超分子,从一维超导到三维超导,从平面的石墨到一维管状的碳纳米管,富勒烯已经广泛地影响到物理、化学、材料科学、生命及医药科学各领域,极大地丰富和提高了科学理论,同时也显示出巨大的潜在应用前景。 图1各种结构的碳:金刚石,C60,石墨,(10,10)型纳米碳管 (From Nanotube image gallery at Rice University) 下面简单介绍几种同素异形体的结构和性质: (1)金刚石的结构和性质:

在金刚石中,C原子以sp3杂化轨道形成四面体的键,每个碳原子均以四个 按四面体分布的键与相邻的四个碳原子结合成庞大的分子。在金刚石中C原子 的所有外层电子都参与成键,所以高纯而完整的金刚石晶体是绝缘体。金刚石的 晶体结构除通常见到的立方晶体外还有六方晶体。 由于C—C键贯穿整个晶体,使晶体解离困难,因此金刚石是天然存在最硬 的物质。它的抗压强度高,耐磨性能好,熔点高,而且具有抗腐蚀、抗辐射等优 良性能。 (2)石墨的结构和性质: 石墨为层型结构,层中每个C原子以sp2杂化轨道与三个相邻的碳原子形成 三个等距离的σ键,由此形成C原子的无限平面层。而各个碳原子垂直于该平 面的Pz轨道,彼此相互重叠形成离域π键,使层中C原子间距离变为141.5pm, 较C—C单键短,其键级相当于 4/3 。石墨晶体主要有六方晶系和三方晶系两种 对称性。 这种结构使石墨的力学性质显示出鲜明的各向异性,在和层平等的方向上显 示出完整的解离性,层间易于滑动,所以石墨很软,是良好的固体润滑剂。 (3)无定形碳的结构和性质: 无定形碳是由石墨层型结构的分子碎片互相大致平等地无序堆积,间或有碳 按四面体成键方式互相键连,而形成无序结构。在无定形碳中,以四面体成键的 碳有多有少,多则形成比较坚硬的无定形碳如焦Array炭、玻璃态碳等。焦炭、木炭、炭黑和玻璃态碳 等是无定形碳的主要存在形式,而煤和碳纤维等 的结构则介于石墨和无定形碳之间。 (4)C60的结构与特性 C60的结构研究表明,C60是一个由12个五元 环和20个六元环组成的球形32面体,它的外形 酷似足球。六元环的每个碳原子均以双键与其他 碳原子结合,形成类似苯环的结构,它的σ键不 同于石墨中sp2杂化轨道形成的σ键,也不同于金刚石中sp3杂化轨道形成的σ 键,是以sp2.28杂化轨道(s成分为30%,p成分为70%)形成的σ键。C60的л

同素异形体

同素异形体 同素异形体:是指由同样的单一化学元素组成,因排列方式不同,而具有不同性质的单质。 同素异形体之间的性质差异主要表现在物理性质上,性质差异的原因是结构不同。 化学性质上也有着活性的差异。 例如磷的两种同素异形体,红磷和白磷,它们的着火点分别是240和40摄氏度,但是充分燃烧之后的产物都是五氧化二磷; 白磷有剧毒,可溶于二硫化碳, 红磷无毒,却不溶于二硫化碳。 同素异形体之间在一定条件下可以相互转化,这种转化是一种化学变化,但不属于氧化还原反应。 例如:氧气是没有颜色、没有气味的气体,而臭氧是淡蓝色、有鱼腥味的气体;氧气的沸点为-183℃,而臭氧的沸点为-112.4℃。 同素异形体的存在不是个别的孤立的现象,而是非金属元素(也包括周期表上对角线附近的少数金属)的最外层电子数较多,成键方式多样的宏观反映。稀有气体元素由于原子结构的稳定性,氢及卤素由于成键方式的单一性,都难以形成同素异形体。 同素异形体的化学性质相似。以熟知的金刚石与石墨为例,金刚石每个碳原子与相邻的四个碳原子以共价键连接,形成四面体结构,是一种原子晶体。而石墨中,碳原子呈层状排列,每一层的碳原子以共价键连接形成平面六边形,因此相对稳定,但层与层只见仅依靠微弱的分子间作用力连接,易发生相对滑动,因此石墨的化学性质与金刚石相比更为活泼,物理性质差异更加明显,金刚石是无色透明的晶体,熔点与硬度远大于石墨。而石墨是深灰色、质软、不透明,易导电的片状固体。 生活中最常见的同素异形体: 1\碳的同素异形体:金刚石、石墨、富勒烯、碳纳米管、石墨烯和石墨炔; 2\磷的同素异形体:白磷和红磷; 3\氧的同素异形体:氧气、臭氧、四聚氧和红氧。 4\硫的同素异形体:有许多同素异形体,最常见的是晶状的单斜硫和斜方硫 适用对象-----单质 形成方式-----原子排列方式与数目 化学式-----元素符号相同,分子式可以不同 物理性质-----有差异 化学性质-----有差异 ※※与同分异构体关系 ※※与同位素关系 (一) 形成方式 1.组成分子里原子个数不同, 如:氧气(O?)和臭氧(O?)。 2.晶体, 如:金刚石(正四面体空间网状结构的原子晶体)、石墨 (层状结构的混合型晶体)和C??(存在单个分子的分子晶体)。 3.晶体里分子的排列方式不同; 如:斜方硫和单斜硫。

同位素,同素异形体,同分异构体,同系物的概念

同位素的表示符号 同位素是具有相同原子序数的同一化学元素的两种或多种原子之一,在元素周期表上占有同一位置,化学行为几乎相同,但原子质量或质量数不同,从而其质谱行为、放射性转变和物理性质(例如在气态下的扩散本领)有所差异。同位素的表示是在该元素符号的左上角注明质量数,例如碳14,一般用14C而不用C14。 自然界中许多元素都有同位素。同位素有的是天然存在的,有的是人工制造的,有的有放射性,有的没有放射性。 同一元素的同位素虽然质量数不同,但他们的化学性质基本相同(如:化学反应和离子的形成),物理性质有差异[主要表现在质量上(如:熔点和沸点)]。自然界中,各种同位素的原子个数百分比一定。 同位素是指具有相同核电荷但不同原子质量的原子(核素)称为同位素。在19世纪末先发现了放射性同位素,随后又发现了天然存在的稳定同位素,并测定了同位素的丰度。大多数天然元素都存在几种稳定的同位素。同种元素的各种同位素质量不同,但化学性质几乎相同。 同素异形体,是相同元素组成,不同形态的单质。如碳元素就有金钢石、石墨、无定形碳等同素异形体。同素异形体由于结构不同,彼此间物理性质有差异;但由于是同种元素形成的单质,所以化学性质相似。 同分异构体: 化学上,同分异构体是一种有相同化学式,有同样的化学键而有不同的原子排列的化合物。简单地说,化合物具有相同分子式,但具有不同结构的现象,叫做同分异构现象;具有相同分子式而结构不同的化合物互为同分异构体。很多同分异构体有相似的性质。 同系物定义 化学上,我们把结构相似,组成上相差1个或者若干个某种原子团的化合物互称为同系物。多用于有机化合物。 旧定义(在比较旧的化学书上可能存在这个概念)化学上,我们把结构、化学性质、通式相似,组成上相差1个或者若干个CH2原子团(系差)具有相同官能团的化合物统称为同系物。 烷烃中的甲烷、乙烷、丁烷等,他们相差n个CH2,互为同系物。 又比如(假设存在,只是为了说明)CH2O、C2H4O2、C3H6O3,他们相差n个CH2O,也互为同系物

高中化学同素异形体教案

同素异形现象 设计课时:1课时 课的类型:新授课 【教学理念】 美国心理学家奥苏贝尔认为,影响学习的最重要因素是学生已知的内容,学生只有进行有意义的学习才有价值。有意义的学习是内发的、主动的,是整体性的质变过程。结合现代教学理念,高中化学课堂教学要围绕“收获者”即学生为中心展开,体现“以学生为主体,教师为主导”的教学理念。 基于以上思想,本节教学设计将充分体现学生的主体性,积极性引导学生参与到教学活动当中,让学生亲历科学探究过程,从而学会学习、乐于学习。 【教材分析】 本节课选自苏教版化学2专题一第三单元,本节课旨在通过几种常见的同素异形体的微观结构,理解微观结构与物质多样性的关系,进一步加深结构与性质的关系,本节课学习的微观结构知识,既是化学键及结构决定性质等知识的初步应用,也为后面《不同的晶体类型》和选修模块《物质的结构与性质》的学习奠定了基础。 《普通高中化学课程标准》对于本课的要求:以碳元素为例认识同素异形现象,从微观结构了解物质形态的多样性的要求。 知识与技能: 1、以金刚石石墨等碳的同素异形体为例,认识由于微观结构的不同而导致的同素异形现象 2、从同素异形现象认识物质的多样性与微观结构的关系 3、能例举碳氧元素的常见同素异形体 教材内容、地位及作用 1 教学目标 2

过程与方法:通过金刚石与石墨等微观结构模型的比较,分析金刚石与石墨等物质的性 质了解模型法在化学研究中的重要作用。 情感、态度与价值观:通过臭氧层的形成与臭氧空洞的危害,体会臭氧对人类的重要性, 激发学习化学的兴趣,树立保护环境的责任感。 教学重点:以金刚石、石墨为例认识由于微观结构的不同从而导致的同素异形现象 突出方法:小组讨论法 教学难点:金刚石、石墨、和纳米管道的结构 突破方法:小组讨论法 【学情分析】 学生的差异是客观存在的,教师只有全面了解学生情况,才可能因材施教,有的放矢。本 节教学设计主要针对普通中学的高一学生。从知识的起点上看,学生对碳的单质的性质了解并 不多,但多数学生在生活中与金刚石与石墨有过接触,对其物理性质有感性认识,但并不知道 这两种碳单质性质及性质差异的原因,另外在前一节中,学生学习了化学键的基础知识,已经 具备通过模型简单分析金刚石与石墨的结构差异能力,可为本节课打下良好的基础。从思维角 度看,高一年级的学生思维敏捷、活跃,但不够严谨,未学习过立体几何,空间现象力较差, 对金刚石石墨等空间结构了解将存在一定困难。 【教法阐述】 【教具】 教 法 方 法 使 用 发现教学法 教师不直接把现成的知识传授给学生,而是通过在教师事先精心设 计,组织安排的一系列活动中,让学生像科学家一样去发现科学事实, 获取科学知识,本节课主要是让学生通过观察和讨论物质的微观结 构,从而理解同分异构体间的本质区别,学会用科学的方法去思考和 研究问题。 媒体类型 媒体来源 媒体使用 媒体效果 教学重、难点 3

相关主题
文本预览
相关文档 最新文档