3.5 底部剪力法和时程分析法
- 格式:pptx
- 大小:313.68 KB
- 文档页数:5
计算地震作用的方法地震作用计算可是个很重要又有点复杂的事儿呢。
一、底部剪力法。
这是一种比较简单的方法哦。
它主要适用于高度不超过40m、以剪切变形为主且质量和刚度沿高度分布比较均匀的结构。
就像是那种规规矩矩的小房子,不太复杂的建筑结构就可以用这个方法来计算地震作用。
它的基本思路呢,就是先算出一个总的底部剪力,这个剪力就像是整个建筑在地震时受到的一个总的“拉拽力”。
然后再根据一定的规则把这个总的力分配到各个楼层上去。
就好比是有一大袋糖果(底部剪力),要按照一定的方法分给每个小朋友(楼层)。
二、振型分解反应谱法。
这个方法就相对复杂一些啦。
它适用于比较高的建筑或者结构不规则的建筑。
它的理念是把结构在地震下的振动分解成好多不同的振型,每个振型都有自己的频率、周期和振型参与系数。
这就像是把一个复杂的舞蹈动作(建筑在地震中的振动)分解成一个个单独的舞步(振型)。
然后呢,根据反应谱曲线,算出每个振型对应的地震作用,最后再把这些不同振型的地震作用组合起来,得到结构总的地震作用。
这就像是把每个舞步的力量(每个振型的地震作用)合起来,才是这个舞蹈完整的力量(结构总的地震作用)。
三、时程分析法。
这个方法可就更酷啦。
它是直接输入地震波,就像真的让建筑去经历一场地震一样。
然后通过数值计算,一步一步地算出结构在地震过程中的反应。
不过呢,这个方法计算量超级大,就像要做一个超级复杂的大工程。
它一般用于特别重要的建筑或者是超高层、大跨度等复杂结构。
因为这些建筑结构太特殊啦,用前面两种方法可能不够准确,就像对待超级宝贝一样,得用最精细的方法来计算地震作用。
不管是哪种方法,都是为了让我们的建筑在地震的时候能够尽可能地安全。
建筑工程师们就像建筑的守护者,通过这些方法算出地震作用,然后设计出安全可靠的建筑结构,让大家在房子里住着安心、放心。
这也是对每一个生命的尊重和保护呢。
时程分析计算精辟解读(值得收藏)时程分析法是20世纪60年代逐步发展起来的抗震分析方法.用以进行超高层建筑的抗震分析和工程抗震研究等.至80年代,已成为多数国家抗震设计规范或规程的分析方法之一.“时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法.“时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的.规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算.所以有较多设计人员对应用时程分析法进行抗震设计感到生疏.近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了.1输入地震动准则输入地震动准则即为结构时程分析选择输入地震加速度记录时程(简称地震波)的基本要求,包括:地震环境(场地类别和地震分组)、数量、持续时间、检验方法等.地震波的合理选择是时程分析结果能否既反映结构最大可能遭遇的地震作用,又满足工程抗震设计基于安全和功能要求的基础.在这里不提“真实”地反映地震作用,也不提计算结果的“精确”性,正是基于对结构可能遭遇地震的极大不确定性和计算中结构建模的近似性.在工程实际应用中经常出现对同一个建筑结构进行时程分析时,由于输入地震波的不同,造成计算结果的数倍乃至数十倍之差,使工程师无所适从.《建筑抗震设计规范》(GB50011—2010)(简称2010规范)5.1.2-3条要求“采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人工模拟的加速度时程曲线,其中实际强震记录的数量不应少于总数的2/3,多组时程曲线的平均地震影响系数曲线(即反应谱)应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符”.1.1“选波”要求1.1.1地震环境要求2010规范在构建设计反应谱时,按不同场地类别和震级、震中距从全球强震加速度记录数据库中挑选了数百条地面加速度记录,求出每条记录的反应谱.同时收集这些记录台站的地质剖面和地震震级、震中距等参数,按照2010规范的场地类别划分标准,场地分成Ⅰ~Ⅳ类和远、中、近震分组,共计12组,再经平滑处理得到2010规范5.1.5条的地震影响系数曲线,即设计反应谱.时程分析法输入地震波的选择应遵循上述构建设计反应谱的原则,考虑建设场地与记录台站场地的地震环境.1.1.2数量要求对于高度不是太高、体型比较规则的高层建筑,取2+1,即选用不少于2条天然地震波和1条拟合目标谱的人工地震波,计算结果宜取包络值.对于超高、大跨、体型复杂的建筑结构,取5+2,即不少于7组地震波,其中,天然地震波数量不少于总数的2/3,计算结果取平均值.1.1.3持续时间要求为了充分地激励建筑结构,一般要求输入的地震动有效持续时间为结构基本周期的5倍左右.对于结构动力时程分析,只有加速度记录的强震部分的时长,即有效持续时间才有意义.最常用的有效持续时间定义是:取记录最大峰值的10%~15%作为起始峰值和结束峰值,在此之间的时间段为有效持续时间.图1表示编号为US185地震加速度记录的波形,用于7度小震下结构时程分析,最大加速度峰值是35gal,取首、尾两个峰值为3.5gal之间的时间长度为有效持续时间,大约为30s,可用于基本周期小于6s的结构.ps:持续时间不是指整个时程的记录时间图1加速度记录有效持续时间的定义1.1.4统计特征要求规范规定,时程分析所采用的地震波的平均反应谱与振型分解反应谱法所采用的反应谱应“在统计意义上相符”.如前所述,天然地震波具有千变万化的特征,不同结构的动力特性也千差万别.对同一个结构,输入不同的地震波进行时程分析会得到完全不同的结果.所以,遵循“在统计意义上相符”的原则选择天然地震波时,只要求所选的天然地震加速度记录的反应谱值在对应于结构主要周期点(而不是每个周期点)上与规范反应谱相差不大于20%.这个要求只是一种参考,便于数据库管理员在数据库中挑选合适的记录.一般情况下,照此要求选择的地震波可以满足时程分析要求.但是,不宜将此作为检验地震波的标准,检验标准仍然是规范规定的结构底部剪力.为什么既要求有天然地震波,又要求有人工地震波作为输入?原因是,所谓人工地震波,是应用数学方法,将足够多的具有不同周期的正弦波叠加组合形成一个平稳或非平稳的随机时间历程,对叠加组合过程不断进行迭代修正,使它的反应谱逐步逼近规范的设计反应谱.当拟合精度达到在各个周期点上的反应谱值与规范反应谱值相差小于10%,即认为“在统计意义上相符”了.这样合成的人工地震波具有足够多的周期分量,可以均匀地“激发”结构的各个振型响应.但是,由于人工地震波是“拟合”设计反应谱的加速度时间过程,不具备天然地震波的完全非平稳随机过程特性,特别是缺少强烈变化的短周期成分.因此它只能在设计反应谱的“框架”内激励结构,无法“激发”结构的高阶振型响应,所以时程分析要求以天然地震波为主,同时辅以人工地震波作为地震动输入.ps:人工波对低阶振型激发较好,而对于高阶振型的激发不够(如肖总所说),因此对于高阶振型部分,必须仰仗天然波来激发.本人理解,作者建议采用EPA,就是为了保证天然波对于高阶振型的激发.弹性时程分析与振型分解反应谱分析的关系,实质上是事物的特殊性与一般性的关系,多条地震波时程分析结果的平均值近似于反应谱法计算结果,输入的地震波数量越多,这种近似性越好.ps:现在很多软件能够根据规范相关要求,自动选波,比如YJK弹性时程分析时就可以做相关的自动选波.自动筛选最优地震波组合这块就给设计师在筛选地震波这块提供了相当大的便利.选择框中列出了程序根据特征周期归类后的波库中天然波和人工波,用户可从中选择参与筛选的备选地震波到中间列表框.如全选,筛选出的地震波组合可能多一些,但计算时间稍长.可根据规范在对话框下部设定地震波组合的人工波数,天然波数.按照规范要求,实际强震记录的数量不应少于总数的2/3.若选用不少于二组实际记录和一组人工模拟的加速度时程曲线作为输入,计算的平均地震效应值不小于大样本容量平均值的保证率的85%以上.YJK计算程序即根据设置好的限定条件计算每条地震波的基底剪力与结构周期点上所对应的反应谱值.最终满足要求的所有组合结果将在该按钮下方的列表框中按最优至次优的顺序显示.列表中的组合可以通过选择地震波组合按钮选择,选中的地震波组合包含的地震波将在下方列表框中显示.如下图所示图1自动筛选最优地震波组合对话框根据《建筑抗震设计规范》GB50011-2010中的规定,程序遵循的地震波组合筛选原则如下:1:单条地震波满足限制条件每条地震波输入的计算结果不会小于65%,不大于135%.2:多条地震波组合满足限制条件(1)“在统计意义上相符”,即多组时程波的平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主要振型的周期点上相差不大于20%,即:>80%并<120%(2)多条地震波计算结果在结构主方向的平均底部剪力一般不小于振型分解反应谱计算结果的80%,不大于120%.(3)按照平均底部剪力与振型分解反应谱法计算的底部剪力偏差最小的原则对已经满足上述限制的组合再进行排序,默认选出偏差最小的组合作为最有组合.在搜索过程中,当程序提示未搜索到符合要求的地震组合时,用户可根据抗震规范规定适当增加相邻特征周期的可选地震波或者放宽主次方向地震峰值加速度值以满足以上的限制条件.点击“查看计算结果文本”,程序将打开结果文件,内容包括了地震波在筛选地震波组合时计算的地震波基底剪力,周期点谱值及地震波组合计算的统计结果.用户可根据该计算统计结果适当改变地震波组合方案.图2筛选方案排序示例对于未筛选出满足要求的地震波组合工程,用户可尝试从以下几方面检查参数设置或者进行适度调整.(1)主次波峰值加速度对应地震烈度是否与前处理中地震烈度设置一致.(2)前处理中周期折减系数是否过小.(3)根据规范相关阐述,在选取不到恰当地震波组合情况下,可选取相邻特征周期地震波或增大减小地震波峰值加速度以满足剪力即谱值要求.1.2天然地震波加速度值的调整如前所述,结构时程分析法补充计算被用于校核振型分解反应谱法的计算结果.反应谱法以反应谱作为输入地震动,时程分析以加速度时程(地震波)作为输入,需要对它的加速度值进行调整.2010规范以中国地震动参数区划图定义的地面峰值加速度GPA为设防地震(中震)基本地震峰值加速度,如表3.2.2所示;表5.1.2-2分别给出多遇地震(小震)和罕遇地震(大震)加速度峰值,与之相对应的规范设计反应谱是基于大量的天然地震加速度记录,并经平滑处理和统计平均后构建的,是地震动的预期均值.对每一条天然地震波加速度时程进行调整的步骤是:根据规范给定的加速度峰值GPA,按比例调整后求得其加速度反应谱,经平滑处理得到归一化的反应谱.运用式(1)求得有效峰值加速度EPA,以其为基准对地震波加速度时程进行再调整,得到结构时程分析所需要的加速度时程.需要指出的是,有效峰值加速度EPA不等于地面峰值加速度GPA,当地震波的短周期成分显著时,GPA大于EPA.如前所述,人工地震波是采用拟合规范反应谱的数值合成方法得到的加速度时程,按GPA比例调整后即可作为时程分析的输入地震动.美国地震危险区划图定义,有效峰值加速度EPA、加速度反应谱最大值Sa(对应于中国规范的地震影响系数)和放大系数β存在如下关系:式中:Sa(0.2)为周期0.2s处的谱加速度值;β为动力放大系数,取2.50(中国规范取2.25).下面以位于7度区III类场地(Tg=0.70s)的设计地震分组为第三组的某一高层建筑为例,大震作用下结构弹塑性时程分析选用7组输入地震波,其归一化的加速度反应谱及其平均、平滑处理后的结果如图2所示.图2地震加速度反应谱表1和图3是每条地震波调整前后的地震动参数与规范的对比(大震作用GPA 取2.20m/s2).可以看到,尽管各条地震波的三个参数差别较大,但经平滑平均后接近于规范反应谱,且EPA<GPA.由此也可证明,2010规范对地震波数量的要求是必要而且合理的.ps:上表的平均值为平均谱所得的值.如amax,并不是每个波amax的平均,而是由平均谱求得的,因为每个谱的极值点不会都在同一个周期,故平均谱的amax比每个波amax的平均值小.图3地震动参数对比1.3检验要求《建筑抗震设计规范》(GB50011—2001)(简称2001规范)和2010规范提出:弹性时程分析时,每条时程曲线计算所得底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得底部剪力的平均值不应小于振型分解反应谱计算结果的80%.具体操作时,当采用一组(单向或两向水平)地震波输入进行时程分析,结构主方向基底总剪力为同方向反应谱CQC计算结果的65%~130%,多组地震波输入的平均值为80%~120%.不要求结构主、次两个方向的基底剪力同时满足这个要求.需要说明的是,对结构可以按第一、二主振型认定主、次方向,而一组地震记录的两个水平方向无法区分主、次方向.ps:X向为主时仅要求X向满足,Y向为主是仅要求Y向满足.1.4选波实例下面以两组天然地震波和一组人工合成地震波为例说明选波过程及效果.(1)图4为所选择的一组3分量天然地震波时程及反应谱,其中编号US2570和US2571为两向水平分量,US2569为竖向分量,需要按小震作用所对应的最大加速度峰值进行调整,除有特殊要求外,通常取两向水平峰值与竖向峰值之比为1.00:0.85:0.65.从波形和反应谱可以看到,竖向分量的短周期成分十分显著,水平分量在短周期部分的波动也很显著,各向分量的反应谱曲线相差明显.图4第一组天然地震波和反应谱(2)图5为另一组3分量天然地震波时程及反应谱,其中编号US184和US185为两向水平分量,US186为竖向分量.同样可以看到,竖向和水平分量在短周期部分的波动很明显,但是两个水平分量的反应谱曲线比较一致.两组地震波反应谱的明显差异反映了天然地震波特征的不确定性,用于结构时程分析时,很难做到两向水平输入的地震波均能满足规范要求,一般只要求结构主方向的底部总剪力满足规范要求即可.图5第二组天然地震波和反应谱(3)图6为三条人工地震波及反应谱.图6三条人工地震波及反应谱2时程分析输出结果解读结构时程分析一般要求进行小震作用下弹性和大震作用下弹塑性计算.对计算结果的解读可以判断结构的动力响应和损伤情况.2.1小震作用下的计算结果(1)楼层水平地震剪力分布:对于高层建筑,通常可由此判断结构是否存在高阶振型响应并发现薄弱楼层.图7为某幢高层建筑结构小震弹性时程分析得到的楼层剪力分布,可见结构存在高阶振型响应,应对结构上部相关楼层地震剪力加以调整放大.图7楼层地震剪力分布(2)弹性层间位移角分布:如图8所示,上部结构部分楼层的层间位移角大于规范限值.从图7和图8可以看到,输入3组地震波进行时程分析,结构高阶振型响应明显,上部楼层剪力和位移均放大了,应对反应谱法结果进行调整,采用包络设计.图8弹性层间位移角分布2.2大震作用下的计算结果(1)层间位移角分布:按照规范要求进行大震作用下结构的时程分析,主要是弹塑性变形计算,力的计算并不重要.计算结果通常给出弹性和弹塑性层间位移角分布的对比,如图9所示.X向最大层间位移角为1/178,Y向为1/138,均满足规范限值1/100.一般情况下,最大弹性位移角大于弹塑性位移角.图9弹塑性层间位移角分布(弹塑性/弹性)(2)结构顶点位移时程曲线:从结构顶点位移时程曲线除了可以看出位移是否满足规范限值外,更重要的是可以判断结构整体刚度退化程度,并推测结构的塑性损伤程度.如图10所示,弹塑性位移时程曲线表明,结构的周期逐步变长,说明有部分构件累积损伤,导致结构整体刚度退化.图10结构顶点位移时程曲线对比(弹性/弹塑性)(3)构件损伤:通常要求给出主要抗侧力构件,如剪力墙、框架柱、支撑、环带桁架、伸臂桁架等,以及耗能构件,如连梁、框架梁等的损伤,以应力比、应变、损伤因子等表示.图11表示某高层建筑核心筒剪力墙受压、受拉和框架柱的损伤.图11核心筒剪力墙和框架柱损伤(4)能量分布:有的软件可以提供在地震作用下结构的能量分布情况.如图12所示,从上至下的区域分别表示结构动能、弹性应变能、与质量M相关的粘滞阻尼耗能、与刚度K相关的粘滞阻尼耗能、塑性耗能.其中,塑性耗能属于不可恢复的能量耗散,所占比例越大,表明结构整体破坏越严重.图12结构能量分布。
动力时程分析法综述本文主要介绍地震作用计算方法中的时程分析法。
通过梳理并陈述时程分析法的定义、类别、适用范围、优缺点及其实际运用的过程等多个方面,使更多初步涉及时程分析法的工程师及学生初步认识时程分析法,为进一步的抗震设计计算打下坚实基础。
标签:地震作用计算;时程分析法1、引言进行建筑抗震设计的关键步骤是要对地震作用进行计算,目前国内外常用的计算方法主要有:底部剪力法、振型分解反应谱法以及时程分析法三种。
本文将就时程分析法进行浅析。
2、时程分析法的定义及原理时程分析法是20世纪60年代逐步发展起来的一种抗震分析方法。
它是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,又称为直接动力法。
3、时程分析法的类别首先,是作为第一阶段抗震计算补充方法的弹性时程分析。
在这一阶段中,由于要满足在小震作用下,建筑物保持原样,不受破坏的要求,要用时程分析进行补充计算。
且在计算过程中,建筑物发生线性变化,结构的刚度和阻尼也保持不变。
其次是作为第二阶段抗震计算方法的弹塑性时程分析。
在这一阶段,由于要满足建筑物在强震作用下,建筑物能够挺立不倒的要求,必须要用时程分析法进行补充计算。
且在计算过程中,建筑物发生非线性变化,随时间的变化,结构刚度和阻尼也会发生变化[1]。
4、时程分析法的适用范围时程分析法的计算工作十分繁重,必须借助计算机,并且会产生较高的费用,且存在许多难以确定的计算参数。
因此目前仅在一些特殊的、复杂的、重要的以及高层建筑结构的抗震设计中应用。
《建筑抗震设计规范》对时程分析法的适用范围规定如下:特别不规则的建筑、甲类建筑和下表所列高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算[2]。
5、时程分析法相对于其他两种方法的优劣势5.1优势1)能够计算出结构和构件在弹塑性阶段(非线性阶段)的地震响应,从而能实现对模拟强震作用下的建筑物进行塑性变形计算,从而确定结构易受破坏的部位和层,以便对该部位或层采取相应补救措施。
第二章2.1钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?钢筋混凝土房屋建筑和钢结构房屋建筑各有哪些抗侧力结构体系?每种结构体系举1~2例。
答:钢筋混凝土房屋建筑的抗侧力结构体系有:框架结构(如主体18层、局部22层的北京长城饭店);框架剪力墙结构(如26层的上海宾馆);剪力墙结构(包括全部落地剪力墙和部分框支剪力墙);筒体结构[如芝加哥Dewitt-Chestnut公寓大厦(框筒),芝加哥John Hancock大厦(桁架筒),北京中国国际贸易大厦(筒中筒)];框架核心筒结构(如广州中信大厦);板柱-剪力墙结构。
钢结构房屋建筑的抗侧力体系有:框架结构(如北京的长富宫);框架-支撑(抗震墙板)结构(如京广中心主楼);筒体结构[芝加哥西尔斯大厦(束筒)];巨型结构(如香港中银大厦)。
2.2框架结构、剪力墙结构和框架----剪力墙结构在侧向力作用下的水平位移曲线各有什么特点?答:(1)框架结构在侧向力作用下,其侧移由两部分组成:梁和柱的弯曲变形产生的侧移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线为弯曲型,自下而上层间位移增大。
第一部分是主要的,所以框架在侧向力作用下的水平位移曲线以剪切型为主。
(2)剪力墙结构在侧向力作用下,其水平位移曲线呈弯曲型,即层间位移由下至上逐渐增大。
(3)框架-剪力墙在侧向力作用下,其水平位移曲线呈弯剪型, 层间位移上下趋于均匀。
2.3框架结构和框筒结构的结构构件平面布置有什么区别?答:(1)框架结构是平面结构,主要由与水平力方向平行的框架抵抗层剪力及倾覆力矩,必须在两个正交的主轴方向设置框架,以抵抗各个方向的侧向力。
抗震设计的框架结构不宜采用单跨框架。
框筒结是由密柱深梁组成的空间结构,沿四周布置的框架都参与抵抗水平力,框筒结构的四榀框架位于建筑物的周边,形成抗侧、抗扭刚度及承载力都很大的外筒。
2.5中心支撑钢框架和偏心支撑钢框架的支撑斜杆是如何布置的?偏心支撑钢框架有哪些类型?为什么偏心支撑钢框架的抗震性能比中心支撑框架好?答:中心支撑框架的支撑斜杆的轴线交汇于框架梁柱轴线的交点。
时程分析法定义:由结构基本运动方程沿时间历程进行积分求解结构振动响应的方法。
概述:时程分析法是世纪60年代逐步发展起来的抗震分析方法。
用以进行超高层建筑的抗震分析和工程抗震研究等。
至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。
原理:时程分析法在数学上称步步积分法,抗震设计中也称为“动态设计”。
由结构基本运动方程输入地面加速度记录进行积分求解,以求得整个时间历程的地震反应的方法。
此法输入与结构所在场地相应的地震波作为地震作用,由初始状态开始, 一步一步地逐步积分,直至地震作用终了。
是对工程的基本运动方程,输入对应于工程场地的若干条地震加速度记录或人工加速度时程曲线,通过积分运算求得在地面加速度随时间变化期间结构的内力和变形状态随时间变化的全过程,并以此进行结构构件的界面抗震承载力验算和变形验算。
时程分析法是世纪60年代逐步发展起来的抗震分析方法。
用以进行超高层建筑的抗震分析和工程抗震研究等。
至80年代,已成为多数国家抗震设计规范或规程的分析方法之一。
“时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法。
“时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的。
规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算。
所以有较多设计人员对应用时程分析法进行抗震设计感到生疏。
近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了。
地震动输入对结构的地震反应影响非常大。
目前的现状是,输入地震动的选择大多选择为数不多的几条典型记录(如:1940年的El Centro(NS)记录或1952年的Taft记录),国内外进行结构时程分析时所经常采用的几条实际强震记录主要有适用于I类场地的滦河波、适用于II、III类场地的El-Centrol波(1940,N-S)和Taft波(1952,E-w)、适用于IV 类场地的宁河波等。
武汉理工大学《建筑结构抗震设计》复试第1章绪论1.震级和烈度有什么区别和联系?震级是表示地震大小地一种度量,只跟地震释放能量地多少有关,而烈度则表示某一区域地地表和建筑物受一次地震影响地平均强烈地程度.烈度不仅跟震级有关,同时还跟震源深度. 距离震中地远近以及地震波通过地介质条件等多种因素有关.一次地震只有一个震级,但不同地地点有不同地烈度.2.如何考虑不同类型建筑地抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类).乙类(重点设防类).丙类(标准设防类).丁类(适度设防类).1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度地预估罕遇地震影响时不致倒塌或发生危及生命安全地严重破坏地抗震设防目标.2)重点设防类,应按高于本地区抗震设防烈度一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施;地基基础地抗震措施,应符合有关规定.同时,应按本地区抗震设防烈度确定其地震作用.3 )特殊设防类,应按高于本地区抗震设防烈度提高一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施.同时,应按批准地地震安全性评价地结果且高于本地区抗震设防烈度地要求确定其地震作用.4)适度设防类,允许比本地区抗震设防烈度地要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低.一般情况下,仍应按本地区抗震设防烈度确定其地震作用.3.怎样理解小震.中震与大震?小震就是发生机会较多地地震,50年年限,被超越概率为63.2%;中震,10%;大震是罕遇地地震,2%.4.概念设计.抗震计算.构造措施三者之间地关系?建筑抗震设计包括三个层次:概念设计.抗震计算.构造措施.概念设计在总体上把握抗震设计地基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性. 加强局部薄弱环节等意义上保证抗震计算结果地有效性.他们是一个不可割裂地整体.5.试讨论结构延性与结构抗震地内在联系.延性设计:通过适当控制结构物地刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大地延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒” .延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件地延性,提高抗震性能.第2章场地与地基1.场地土地固有周期和地震动地卓越周期有何区别和联系?由于地震动地周期成分很多,而仅与场地固有周期T接近地周期成分被较大地放大,因此场地固有周期T也将是地面运动地主要周期,称之为地震动地卓越周期.2.为什么地基地抗震承载力大于静承载力?地震作用下只考虑地基土地弹性变形而不考虑永久变形.地震作用仅是附加于原有静荷载上地一种动力作用,并且作用时间短,只能使土层产生弹性变形而来不及发生永久变形,其结果是地震作用下地地基变形要比相同静荷载下地地基变形小得多.因此,从地基变形地角度来说,地震作用下地基土地承载力要比静荷载下地静承载力大.另外这是考虑了地基土在有限次循环动力作用下强度一般较静强度提高和在地震作用下结构可靠度容许有一定程度降低这两个因素.3.影响土层液化地主要因素是什么?⑴土地类型.级配和密实程度⑵土地初始应力状态(地震作用时,土中孔隙水压力等于固结水压力是产生土体液化地必要条件)⑶震动地特性(地震地强度和持续时间)⑷先期振动历史或者:土层地质年代;土地颗粒组成及密实程度;埋置深度.地下水;地震烈度和持续时间.第3章结构地震反应分析与抗震计算1.结构抗震设计计算有几种方法?各种方法在什么情况下采用?底部剪力法.振型分解反应谱法.时程分析法.静力弹塑性法⑴高度不超过40m .以剪切变形为主且质量和刚度沿高度分布比较均匀地结构,以及近似于单质点体系地结构,可采用底部剪力法等简化方法.⑵除⑴外地建筑结构,宜采用振型分解反应谱法.⑶特别不规则地建筑.甲类建筑和表3—10所列高度范围地高层建筑,应采用时程分析法进行多遇地震下地补充计算,可取多条时程曲线计算结果地平均值与振型分解反应谱法计算结果地较大值.2.什么是地震作用?什么是地震反应?地震作用:结构所受最大地地震惯性力;地震反应:由地震动引起地结构内力.变形.位移及结构运动速度与加速度等统称为结构地震反应.是地震动通过结构惯性引起地.3.什么是地震反应谱?什么是设计反应谱?它们有何关系?地震反应谱:为便于求地震作用,将单自由度体系地地震最大绝对加速度.速度和位移与其自振周期T地关系定义为地震反应谱.设计反应谱:地震反应谱是根据已发生地地震地面运动记录计算得到地,而工程结构抗震设计需考虑地是将来发生地地震对结构造成地影响.工程结构抗震设计不能采用某一确定地震记录地反应谱,考虑到地震地随机性.复杂性,确定一条供设计之用地反应谱,称之为设计反应谱.设计抗震反应谱和实际地震反应谱是不同地,实际地震反应谱能够具体反映1次地震动过程地频谱特性,而抗震设计反应谱是从工程设计地角度,在总体上把握具有某一类特征地地震动特性.地震反应谱为设计反应谱提供设计依据.4.计算地震作用时结构地质量或重力荷载应怎样取?质量:连续化描述(分布质量) .集中化描述(集中质量);进行结构抗震设计时,所考虑地重力荷载,称为重力荷载代表值.结构地重力荷载分恒载(自重)和活载(可变荷载)两种.活载地变异性较大,我国荷载规范规定地活载标准值是按50 年最大活载地平均值加0.5〜1.5倍地均方差确定地,地震发生时,活载不一定达到标准值地水平,一般小于标准值,因此计算重力荷载代表值时可对活载折减.抗震规范规定:G E = D k+EV i L ki -5 .什么是地震系数和地震影响系数?它们有什么关系?• •口 X ..…S“(T )F = mg -g max ―a, --g xg 1 一 g max 是确定地震烈度地一个定量指标. P (T ) —动力系数.a (T ) = k P (T ) a 为地震影响系数,是多次地震作用下不同周期T,相同阻尼比Z 地理 想简化地单质点体系地结构加速度反应与重力加速度之比.6 .为什么软场地地错误!未找到引用源。
多高层钢结构的地震作用计算方法说实话多高层钢结构的地震作用计算方法这事,我一开始也是瞎摸索。
我最早的时候就知道反应谱法,想着这应该很好理解吧,不就是按照一些既定的公式和参数来计算嘛。
结果做起来才发现不是那么回事。
我那时候按照书上的公式,一个一个代入数值去算,就像搭积木一样,一块一块往上垒,结果呢,算出的结果怎么都感觉不对。
后来我才发现我在阻尼比这个参数上理解错了,我之前按照一个固定的值来算,其实不同的多高层钢结构建筑,阻尼比是会有区别的,要根据建筑的结构形式、材料等去估算合适的阻尼比。
我还试过底部剪力法呢。
我当初想,这个看起来很简洁嘛,步骤也很少。
但是我在计算等效重力荷载的时候出了岔子。
我没有准确理解哪些荷载要怎么等效,就像做饭的时候把盐当成了糖放一样,全乱套了。
这个底部剪力法只适用于比较规则、高度不是很高的多高层钢结构,当时我就忽略了对建筑结构规则性的判断,就盲目去用了。
后来又接触了时程分析法。
这可复杂得多了,感觉就像在走迷宫一样。
要选择合适的地震波,这里我就耗费了好多精力。
我开始的时候随便选了几条地震波,计算出来的结果那叫一个乱啊。
后来我才知道,要根据建筑场地的类别、地震分组等好多因素来选择地震波。
这过程就好比你挑衣服得根据天气、场合来挑一样。
再就是算完地震作用之后,要进行内力分析和组合。
这中间可别马虎了,要把每个构件的地震内力都仔细分析,就像数钱一样,一张一张理清了,然后按照规范要求进行内力组合。
说到这里我又想起来,在计算钢结构的侧向刚度时,也很容易犯错。
我当时没考虑二阶效应的影响,这就导致计算出来的结果偏差很大。
这就好比你估算一个容器的容量,忘记考虑容器壁的厚度一样。
关于多高层钢结构的地震作用计算方法,一定要多看书,多对照规范,规范就是咱们的指南针。
每一个参数的取值都不是随随便便的,都是经过大量实践和研究得出来的。
还有在计算过程中,我觉得可以找一些类似的已经算好的案例来对比参考,这样能及时发现自己有没有犯错。
1. 地震分为诱发地震和天然地震(天然地震包括:构造地震、火山地震)2. 震源、震中、震中距:地球内部断层错动并引起周围介质振动的部位称为震源;震源正上方的地面位臵叫震中;地面某处至震中的距离叫震中距。
3. 构造地震:地壳的构造运动使深部岩石的应变超过容许值,岩层错动而引起的地面振动。
4. 地震波:由地下岩层断裂错动引起的振动,振动以波的形式从震源向外传播,就形成了地震波。
包括体波和面波,体波是沿地球内部传播的波,分为横波和纵波;面波是沿地球表面传播的波,包括瑞雷柏和乐夫波。
5. 地震波的传播速度,以纵波最快、横波次之、面波最慢。
故在地震发生的中心地区人们的感觉是,先上下颠簸、后左右摇晃。
6. 地震动:地震波传播到地面引起的振动。
其三要素:峰值、频谱、持续时间。
7. 地震震级是表示地震大小一种度量,用M表示。
其数值是根据地震仪记录到的地震波图确定的。
微震M<2有害地震2<M<4破坏地震M>7,特大地震M>88. 地震烈度指某一区域内的地表和各类建筑物遭遇一次地震影响的平均强弱程度。
9. 基本烈度指一个地区在一定时期(我国取50年)内在一般场地条件下按一定概率(我国取10%可能遇到的最大地震烈度。
它是一个地区进行抗震设防的依据。
10. 地震的破坏作用:主要表现为地表破坏、建筑物破坏和次生灾害三种形式。
地表破坏主要表现为地裂缝、地面下沉、喷水冒砂、滑坡、塌方等形式;建筑物的破坏主要表现为主体结构强度不足形成的破坏和结构丧失整体性两种形式。
11. 工程抗震设防的基本目的:在一定的经济条件下,最大限度的限制和减轻建筑物的地震破坏,保障人民生命财产的安全。
12. 三水准抗震设防要求:第一水准:当遭受低于本地区设防烈度的多遇地震影响时,建筑物一般不受破坏或不需修理仍可继续使用。
第二水准:当遭遇相当于本地区设防烈度的地震影响时,建筑物可能损坏,但经一般修理仍可继续使用。
第三水准:当遭遇高于本地区设防烈度的罕遇地震影响时,建筑物不致倒塌或发生危机安全生命的严重破坏。
第3章 工程结构地震反应分析与抗震验算1、地震作用的计算方法:底部剪力法(不超过40m 的规则结构)、振型分解反应谱法、时程分析法(特别不规则、甲类和超过规定范围的高层建筑)、静力弹塑性方法。
一般的规则结构:两个主轴的振型分解反应谱法;质量和刚度分布明显不对称结构:考虑扭转或双向地震作用的振型分解反应谱法;8、9度时的大跨、长悬臂结构和9度的高层建筑:考虑竖向地震作用。
2、结构抗震理论的发展:静力法、定函数理论、反应谱法、时程分析法、非线性静力分析方法。
3、单自由度体系的运动方程:g xm kx x c x m -=++或m t F x x x e /)(22=++ωξω 。
杜哈美积分x(t)= ⎰----tt t e xd )(g dd )(sin )(1ττωτωτξω , ωξωm cm k 2,2== 单自由度体系自由振动:)sin cos ()(d d000t x xt x e t x d t ωωξωωξω++=- 。
4、最大反应之间的关系:d v a S S S 2ωω==5、地震反应谱:单自由度体系在给定的地震作用下某个最大反应与体系自振周期的关系曲线。
特点:⑴阻尼比对反应谱影响很大;⑵对于加速度反应谱,当结构周期小于某个值时幅值随周期急剧增大,大于某个值时,快速下降;⑶对于速度反应谱,当结构周期小于某个值时幅值随周期增大,随后趋于常数;⑷对于位移反应谱,幅值随周期增大。
地震反应谱是现阶段计算地震作用的基础,通过它把随时程变化的地震作用转化为最大等效侧向力。
6、单自由度体系的水平地震作用:F G k G gt x t xS mgg g a αβ===maxmax)()(β为动力系数,k 为地震系数,α=k β为水平地震影响系数。
7、抗震设计反应谱αmax 地震影响系数最大值,查表;T 为结构周期;T g 为特征周期,查表;例:单层单跨框架。
屋盖刚度为无穷大,质量集中于屋盖处。
时程分析法时程分析法又称直接动力法,在数学上又称步步积分法。
顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。
它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。
当用此法进行计算时,系将地震波作为输入。
一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。
当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。
这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。
作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。
时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。
特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。
2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。
3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。
总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。
时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。
2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。
时程分析计算精辟解读(值得收藏)时程分析法是20世纪60年代逐步发展起来的抗震分析方法.用以进行超高层建筑的抗震分析和工程抗震研究等.至80年代,已成为多数国家抗震设计规范或规程的分析方法之一.“时程分析法”是由结构基本运动方程输入地震加速度记录进行积分,求得整个时间历程内结构地震作用效应的一种结构动力计算方法,也为国际通用的动力分析方法.“时程分析法”常作为计算高层或超高层的一种(补充计算)方法,也就是说满足了规范要求的时候是可以不用它计算结构的.规范规定:对于特别不规则的建筑、甲类建筑及超过一定高度的高层建筑,宜采用时程分析法进行补充计算.所以有较多设计人员对应用时程分析法进行抗震设计感到生疏.近年来,随着高层建筑和复杂结构的发展,时程分析在工程中的应用也越来越广泛了.1输入地震动准则输入地震动准则即为结构时程分析选择输入地震加速度记录时程(简称地震波)的基本要求,包括:地震环境(场地类别和地震分组)、数量、持续时间、检验方法等.地震波的合理选择是时程分析结果能否既反映结构最大可能遭遇的地震作用,又满足工程抗震设计基于安全和功能要求的基础.在这里不提“真实”地反映地震作用,也不提计算结果的“精确”性,正是基于对结构可能遭遇地震的极大不确定性和计算中结构建模的近似性.在工程实际应用中经常出现对同一个建筑结构进行时程分析时,由于输入地震波的不同,造成计算结果的数倍乃至数十倍之差,使工程师无所适从.《建筑抗震设计规范》(GB50011—2010)(简称2010规范)5.1.2-3条要求“采用时程分析法时,应按建筑场地类别和设计地震分组选用实际强震记录和人工模拟的加速度时程曲线,其中实际强震记录的数量不应少于总数的2/3,多组时程曲线的平均地震影响系数曲线(即反应谱)应与振型分解反应谱法所采用的地震影响系数曲线在统计意义上相符”.1.1“选波”要求1.1.1地震环境要求2010规范在构建设计反应谱时,按不同场地类别和震级、震中距从全球强震加速度记录数据库中挑选了数百条地面加速度记录,求出每条记录的反应谱.同时收集这些记录台站的地质剖面和地震震级、震中距等参数,按照2010规范的场地类别划分标准,场地分成Ⅰ~Ⅳ类和远、中、近震分组,共计12组,再经平滑处理得到2010规范5.1.5条的地震影响系数曲线,即设计反应谱.时程分析法输入地震波的选择应遵循上述构建设计反应谱的原则,考虑建设场地与记录台站场地的地震环境.1.1.2数量要求对于高度不是太高、体型比较规则的高层建筑,取2+1,即选用不少于2条天然地震波和1条拟合目标谱的人工地震波,计算结果宜取包络值.对于超高、大跨、体型复杂的建筑结构,取5+2,即不少于7组地震波,其中,天然地震波数量不少于总数的2/3,计算结果取平均值.1.1.3持续时间要求为了充分地激励建筑结构,一般要求输入的地震动有效持续时间为结构基本周期的5倍左右.对于结构动力时程分析,只有加速度记录的强震部分的时长,即有效持续时间才有意义.最常用的有效持续时间定义是:取记录最大峰值的10%~15%作为起始峰值和结束峰值,在此之间的时间段为有效持续时间.图1表示编号为US185地震加速度记录的波形,用于7度小震下结构时程分析,最大加速度峰值是35gal,取首、尾两个峰值为3.5gal之间的时间长度为有效持续时间,大约为30s,可用于基本周期小于6s的结构.ps:持续时间不是指整个时程的记录时间图1加速度记录有效持续时间的定义1.1.4统计特征要求规范规定,时程分析所采用的地震波的平均反应谱与振型分解反应谱法所采用的反应谱应“在统计意义上相符”.如前所述,天然地震波具有千变万化的特征,不同结构的动力特性也千差万别.对同一个结构,输入不同的地震波进行时程分析会得到完全不同的结果.所以,遵循“在统计意义上相符”的原则选择天然地震波时,只要求所选的天然地震加速度记录的反应谱值在对应于结构主要周期点(而不是每个周期点)上与规范反应谱相差不大于20%.这个要求只是一种参考,便于数据库管理员在数据库中挑选合适的记录.一般情况下,照此要求选择的地震波可以满足时程分析要求.但是,不宜将此作为检验地震波的标准,检验标准仍然是规范规定的结构底部剪力.为什么既要求有天然地震波,又要求有人工地震波作为输入?原因是,所谓人工地震波,是应用数学方法,将足够多的具有不同周期的正弦波叠加组合形成一个平稳或非平稳的随机时间历程,对叠加组合过程不断进行迭代修正,使它的反应谱逐步逼近规范的设计反应谱.当拟合精度达到在各个周期点上的反应谱值与规范反应谱值相差小于10%,即认为“在统计意义上相符”了.这样合成的人工地震波具有足够多的周期分量,可以均匀地“激发”结构的各个振型响应.但是,由于人工地震波是“拟合”设计反应谱的加速度时间过程,不具备天然地震波的完全非平稳随机过程特性,特别是缺少强烈变化的短周期成分.因此它只能在设计反应谱的“框架”内激励结构,无法“激发”结构的高阶振型响应,所以时程分析要求以天然地震波为主,同时辅以人工地震波作为地震动输入.ps:人工波对低阶振型激发较好,而对于高阶振型的激发不够(如肖总所说),因此对于高阶振型部分,必须仰仗天然波来激发.本人理解,作者建议采用EPA,就是为了保证天然波对于高阶振型的激发.弹性时程分析与振型分解反应谱分析的关系,实质上是事物的特殊性与一般性的关系,多条地震波时程分析结果的平均值近似于反应谱法计算结果,输入的地震波数量越多,这种近似性越好.ps:现在很多软件能够根据规范相关要求,自动选波,比如YJK弹性时程分析时就可以做相关的自动选波.自动筛选最优地震波组合这块就给设计师在筛选地震波这块提供了相当大的便利.选择框中列出了程序根据特征周期归类后的波库中天然波和人工波,用户可从中选择参与筛选的备选地震波到中间列表框.如全选,筛选出的地震波组合可能多一些,但计算时间稍长.可根据规范在对话框下部设定地震波组合的人工波数,天然波数.按照规范要求,实际强震记录的数量不应少于总数的2/3.若选用不少于二组实际记录和一组人工模拟的加速度时程曲线作为输入,计算的平均地震效应值不小于大样本容量平均值的保证率的85%以上.YJK计算程序即根据设置好的限定条件计算每条地震波的基底剪力与结构周期点上所对应的反应谱值.最终满足要求的所有组合结果将在该按钮下方的列表框中按最优至次优的顺序显示.列表中的组合可以通过选择地震波组合按钮选择,选中的地震波组合包含的地震波将在下方列表框中显示.如下图所示图1自动筛选最优地震波组合对话框根据《建筑抗震设计规范》GB50011-2010中的规定,程序遵循的地震波组合筛选原则如下:1:单条地震波满足限制条件每条地震波输入的计算结果不会小于65%,不大于135%.2:多条地震波组合满足限制条件(1)“在统计意义上相符”,即多组时程波的平均地震影响系数曲线与振型分解反应谱法所用的地震影响系数曲线相比,在对应于结构主要振型的周期点上相差不大于20%,即:>80%并<120%(2)多条地震波计算结果在结构主方向的平均底部剪力一般不小于振型分解反应谱计算结果的80%,不大于120%.(3)按照平均底部剪力与振型分解反应谱法计算的底部剪力偏差最小的原则对已经满足上述限制的组合再进行排序,默认选出偏差最小的组合作为最有组合.在搜索过程中,当程序提示未搜索到符合要求的地震组合时,用户可根据抗震规范规定适当增加相邻特征周期的可选地震波或者放宽主次方向地震峰值加速度值以满足以上的限制条件.点击“查看计算结果文本”,程序将打开结果文件,内容包括了地震波在筛选地震波组合时计算的地震波基底剪力,周期点谱值及地震波组合计算的统计结果.用户可根据该计算统计结果适当改变地震波组合方案.图2筛选方案排序示例对于未筛选出满足要求的地震波组合工程,用户可尝试从以下几方面检查参数设置或者进行适度调整.(1)主次波峰值加速度对应地震烈度是否与前处理中地震烈度设置一致.(2)前处理中周期折减系数是否过小.(3)根据规范相关阐述,在选取不到恰当地震波组合情况下,可选取相邻特征周期地震波或增大减小地震波峰值加速度以满足剪力即谱值要求.1.2天然地震波加速度值的调整如前所述,结构时程分析法补充计算被用于校核振型分解反应谱法的计算结果.反应谱法以反应谱作为输入地震动,时程分析以加速度时程(地震波)作为输入,需要对它的加速度值进行调整.2010规范以中国地震动参数区划图定义的地面峰值加速度GPA为设防地震(中震)基本地震峰值加速度,如表3.2.2所示;表5.1.2-2分别给出多遇地震(小震)和罕遇地震(大震)加速度峰值,与之相对应的规范设计反应谱是基于大量的天然地震加速度记录,并经平滑处理和统计平均后构建的,是地震动的预期均值.对每一条天然地震波加速度时程进行调整的步骤是:根据规范给定的加速度峰值GPA,按比例调整后求得其加速度反应谱,经平滑处理得到归一化的反应谱.运用式(1)求得有效峰值加速度EPA,以其为基准对地震波加速度时程进行再调整,得到结构时程分析所需要的加速度时程.需要指出的是,有效峰值加速度EPA不等于地面峰值加速度GPA,当地震波的短周期成分显著时,GPA大于EPA.如前所述,人工地震波是采用拟合规范反应谱的数值合成方法得到的加速度时程,按GPA比例调整后即可作为时程分析的输入地震动.美国地震危险区划图定义,有效峰值加速度EPA、加速度反应谱最大值Sa(对应于中国规范的地震影响系数)和放大系数β存在如下关系:式中:Sa(0.2)为周期0.2s处的谱加速度值;β为动力放大系数,取2.50(中国规范取2.25).下面以位于7度区III类场地(Tg=0.70s)的设计地震分组为第三组的某一高层建筑为例,大震作用下结构弹塑性时程分析选用7组输入地震波,其归一化的加速度反应谱及其平均、平滑处理后的结果如图2所示.图2地震加速度反应谱表1和图3是每条地震波调整前后的地震动参数与规范的对比(大震作用GPA 取2.20m/s2).可以看到,尽管各条地震波的三个参数差别较大,但经平滑平均后接近于规范反应谱,且EPA<GPA.由此也可证明,2010规范对地震波数量的要求是必要而且合理的.ps:上表的平均值为平均谱所得的值.如amax,并不是每个波amax的平均,而是由平均谱求得的,因为每个谱的极值点不会都在同一个周期,故平均谱的amax比每个波amax的平均值小.图3地震动参数对比1.3检验要求《建筑抗震设计规范》(GB50011—2001)(简称2001规范)和2010规范提出:弹性时程分析时,每条时程曲线计算所得底部剪力不应小于振型分解反应谱法计算结果的65%,多条时程曲线计算所得底部剪力的平均值不应小于振型分解反应谱计算结果的80%.具体操作时,当采用一组(单向或两向水平)地震波输入进行时程分析,结构主方向基底总剪力为同方向反应谱CQC计算结果的65%~130%,多组地震波输入的平均值为80%~120%.不要求结构主、次两个方向的基底剪力同时满足这个要求.需要说明的是,对结构可以按第一、二主振型认定主、次方向,而一组地震记录的两个水平方向无法区分主、次方向.ps:X向为主时仅要求X向满足,Y向为主是仅要求Y向满足.1.4选波实例下面以两组天然地震波和一组人工合成地震波为例说明选波过程及效果.(1)图4为所选择的一组3分量天然地震波时程及反应谱,其中编号US2570和US2571为两向水平分量,US2569为竖向分量,需要按小震作用所对应的最大加速度峰值进行调整,除有特殊要求外,通常取两向水平峰值与竖向峰值之比为1.00:0.85:0.65.从波形和反应谱可以看到,竖向分量的短周期成分十分显著,水平分量在短周期部分的波动也很显著,各向分量的反应谱曲线相差明显.图4第一组天然地震波和反应谱(2)图5为另一组3分量天然地震波时程及反应谱,其中编号US184和US185为两向水平分量,US186为竖向分量.同样可以看到,竖向和水平分量在短周期部分的波动很明显,但是两个水平分量的反应谱曲线比较一致.两组地震波反应谱的明显差异反映了天然地震波特征的不确定性,用于结构时程分析时,很难做到两向水平输入的地震波均能满足规范要求,一般只要求结构主方向的底部总剪力满足规范要求即可.图5第二组天然地震波和反应谱(3)图6为三条人工地震波及反应谱.图6三条人工地震波及反应谱2时程分析输出结果解读结构时程分析一般要求进行小震作用下弹性和大震作用下弹塑性计算.对计算结果的解读可以判断结构的动力响应和损伤情况.2.1小震作用下的计算结果(1)楼层水平地震剪力分布:对于高层建筑,通常可由此判断结构是否存在高阶振型响应并发现薄弱楼层.图7为某幢高层建筑结构小震弹性时程分析得到的楼层剪力分布,可见结构存在高阶振型响应,应对结构上部相关楼层地震剪力加以调整放大.图7楼层地震剪力分布(2)弹性层间位移角分布:如图8所示,上部结构部分楼层的层间位移角大于规范限值.从图7和图8可以看到,输入3组地震波进行时程分析,结构高阶振型响应明显,上部楼层剪力和位移均放大了,应对反应谱法结果进行调整,采用包络设计.图8弹性层间位移角分布2.2大震作用下的计算结果(1)层间位移角分布:按照规范要求进行大震作用下结构的时程分析,主要是弹塑性变形计算,力的计算并不重要.计算结果通常给出弹性和弹塑性层间位移角分布的对比,如图9所示.X向最大层间位移角为1/178,Y向为1/138,均满足规范限值1/100.一般情况下,最大弹性位移角大于弹塑性位移角.图9弹塑性层间位移角分布(弹塑性/弹性)(2)结构顶点位移时程曲线:从结构顶点位移时程曲线除了可以看出位移是否满足规范限值外,更重要的是可以判断结构整体刚度退化程度,并推测结构的塑性损伤程度.如图10所示,弹塑性位移时程曲线表明,结构的周期逐步变长,说明有部分构件累积损伤,导致结构整体刚度退化.图10结构顶点位移时程曲线对比(弹性/弹塑性)(3)构件损伤:通常要求给出主要抗侧力构件,如剪力墙、框架柱、支撑、环带桁架、伸臂桁架等,以及耗能构件,如连梁、框架梁等的损伤,以应力比、应变、损伤因子等表示.图11表示某高层建筑核心筒剪力墙受压、受拉和框架柱的损伤.图11核心筒剪力墙和框架柱损伤(4)能量分布:有的软件可以提供在地震作用下结构的能量分布情况.如图12所示,从上至下的区域分别表示结构动能、弹性应变能、与质量M相关的粘滞阻尼耗能、与刚度K相关的粘滞阻尼耗能、塑性耗能.其中,塑性耗能属于不可恢复的能量耗散,所占比例越大,表明结构整体破坏越严重.图12结构能量分布。
时程分析法时程分析法又称直接动力法,在数学上又称步步积分法。
顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。
它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。
当用此法进行计算时,系将地震波作为输入。
一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。
当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。
这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。
作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。
时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。
特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。
2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。
3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。
总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。
时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。
2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。
常用的地震分析方法
国内常用的分析法都有底部剪力法,振型分解反应谱法和时程分析法。
1、底部剪力法
适用条件:对于重量和刚度沿高度分布比较均匀、高度不超过40m,并以剪切变形为主(房屋高宽比小于4时)的结构,振动时具有以下特点;(1)位移反应以基本振型为主;(2)基本振型接近直线。
基本原理:在振型分解反应谱法的基础上,针对某些建筑物的特定条件做进一步简化,而得到的一种近似计算水平地震作用的方法:将多自由度体系简化成单自由度体系,计算出结构总的地震作用(即结构底部剪力),再将其按倒三角形原则分配到各个楼层,计算结构内力。
2、振型分解反应谱法
适用范围:除上述底部剪力法外的建筑结构。
基本原理:利用振型分解法的概念,把多自由度体系分解成若干个单自由度体系振动的组合,并利用单自由度体系的反应谱理论计算各个振型振动的地震作用,最后将各个振型计算出的地震效应按一定的规则组合起来,求出总的地震响应。
3、时程分析法
适用范围:《抗震规范》规定,重要的工程结构,例如:大跨
桥梁,特别不规则建筑、甲类建筑,高度超出规定范围的高层建筑应采用时程分析法进行补充计算。
基本原理:时程分析法是对结构物的运动微分方程直接进行逐步积分求解的一种动力分析方法。
由时程分析可得到各质点随时间变化的位移、速度和加速度动力反应,并进而可计算出构件内力的时程变化关系。
[转]时程分析法来源:潘宇翔的日志时程分析法又称直接动力法,在数学上又称步步积分法。
顾名思义,是由初始状态开始一步一步积分直到地震作用终了,求出结构在地震作用下从静止到振动以至到达最终状态的全过程。
它与底部剪力法和振型分解反应谱法的最大差别是能计算结构和结构构件在每个时刻的地震反应(内力和变形)。
当用此法进行计算时,系将地震波作为输入。
一般而言地震波的峰值应反映建筑物所在地区的烈度,而其频谱组成反映场地的卓越周期和动力特性。
当地震波的作用较为强烈以至结构某些部位强度达到屈服进入塑性时,时程分析法通过构件刚度的变化可求出弹塑性阶段的结构内力与变形。
这时结构薄弱层间位移可能达到最大值,从而造成结构的破坏,直至倒塌。
作为高层建筑和重要结构抗震设计的一种补充计算,采用时程分析法的主要目的在于检验规范反应谱法的计算结果、弥补反应谱法的不足和进行反应谱法无法做到的结构非弹性地震反应分析。
时程分析法的主要功能有:1)校正由于采用反应谱法振型分解和组合求解结构内力和位移时的误差。
特别是对于周期长达几秒以上的高层建筑,由于设计反应谱在长周期段的人为调整以及计算中对高阶振型的影响估计不足产生的误差。
2)可以计算结构在非弹性阶段的地震反应,对结构进行大震作用下的变形验算,从而确定结构的薄弱层和薄弱部位,以便采取适当的构造措施。
3)可以计算结构和各结构构件在地展作用下每个时刻的地震反应(内力和变形),提供按内力包络值配筋和按地震作用过程每个时刻的内力配筋最大值进行配筋这两种方式。
总的来说,时程分析法具有许多优点,它的计算结果能更真实地反映结构的地震反应,从而能更精确细致地暴露结构的薄弱部位。
时程分析法有关的几个问题:1、恢复力特性曲线;恢复力特性曲线应用于计算必须模型化,常用的有双线型模型与退化三线型模型;退化三线型模型(附图)能较好地反映以弯曲破坏为主的钢筋混凝土构件的的特性,所以适用于此类构件计算。
2、结构计算模型及分析方法;3、地震波的选用;4、时程分析计算结果的处理。
地震作用计算的方法我折腾了好久地震作用计算的方法,总算找到点门道。
说实话地震作用计算这事,我一开始也是瞎摸索。
我最开始尝试的方法是底部剪力法。
这个方法听起来好像很简单,就是根据地震影响系数、结构等效总重力荷载等这些数值来计算总的地震剪力。
我以为只要把公式里给的参数都找对了,往里一代就搞定了。
可是真做起来才发现,这里边的坑太多了。
像结构等效总重力荷载的计算就不是那么直接,有不少的组合还有系数要考虑。
我刚开始就弄错了这些系数,结果算出来的数据和实际应该有的差了好多。
这就好比你做菜,盐放错量了,整道菜的味道就不对了。
后来我又去研究振型分解反应谱法。
这个方法就复杂很多了。
感觉就像是走迷宫,每个振型要分别计算地震作用,然后再把这些按照一定比例组合起来。
这里面最大的难点是那个振型参与系数的计算。
当时我觉得那些公式特别难懂,看了好多遍书本的解释才算是有点明白。
我自己拿出以前的一些结构模型案例来试着去计算,过程中不断地去翻各种建筑规范的条文,就是想确定每个参数到底怎么取值。
我还犯了一个错误,把计算频率的公式用错了,这导致整个振型的计算都错了,真的是一错全错。
还有一种方法叫时程分析法。
这个可更难了,它需要输入地震的波,然后像对一个动态的结构进行模拟计算。
这个模拟的过程很复杂,我第一次尝试的时候,都不知道从哪里去找到合适的地震波。
我就随便找了几条,然后结果肯定是不准确的。
后来我才知道,其实有专门的地震波库,而且选择地震波还有很多规范上的要求,比如说要根据场地类别、设计分组等去选,就像你买衣服得按照尺码和风格去挑合适的一样。
对于想要做地震作用计算的新手,我得说千万得把基础打牢。
像《建筑抗震设计规范》这种一定要多读几遍,还有就是计算的时候每一步都要仔细,不确定的参数千万别瞎用。
多找一些实际的例子来练习计算,在做振型分解反应谱法计算的时候,自己多推导推导公式,这样能更好地理解。
时程分析法的话,也得先去了解一下地震波相关的知识,这样就不会像我开始那样瞎找乱算。
底部剪⼒法--反应谱法--时程分析法概念及分析底部剪⼒法/反应谱法/时程分析法⼀些有⽤的概念从传统的观点来看,底部剪⼒法,反应谱法和时程分析法是三⼤最常⽤的结构地震响应分析⽅法。
那么正确的认识它们的⼀些关键概念,对于建筑结构的抗震设计具有⾮常重要的意义。
HiStruct在此简单的总结⼀些,全当抛砖引⽟。
1. 底部剪⼒法⾼规规定:⾼度不超过40m、以剪切变形为主且质量和刚度沿⾼度分布⽐较均匀的⾼层建筑结构,可采⽤底部剪⼒法。
底部剪⼒法适⽤于基本振型主导的规则和⾼宽⽐很⼩的结构,此时结构的⾼阶振型对于结构剪⼒的影响有限,⽽对于倾覆弯矩则⼏乎没有什么影响,因此采⽤简化的⽅式也可满⾜⼯程设计精度的要求。
底部剪⼒法尚有⼀个重要的意义就是我们可以⽤它的理念,简化的估算建筑结构的地震响应,从⽽⾄少在静⼒的概念上把握结构的抗震能⼒,它还是很有⽤的。
2. 反应谱⽅法⾼规规定:⾼层建筑结构宜采⽤振型分解反应谱法。
对质量和刚度不对称、不均匀的结构以及⾼度超过100m的⾼层建筑结构应采⽤考虑扭转耦联振动影响的振型分解反应谱法。
反应谱的振型分解组合法常⽤的有两种:SRSS和CQC。
虽然说反应谱法是将并⾮同⼀时刻发⽣的地震峰值响应做组合,仅作为⼀个随机振动理论意义上的精确,但是从实际上它对于结构峰值响应的捕捉效果还是很不错的。
⼀般⽽⾔,对于那些对结构反应起重要作⽤的振型所对应频率稀疏的结构,并且地震此时长,阻尼不太⼩(⼯程上⼀般都可以满⾜)时,SRSS 是精确的,频率稀疏表⾯上的反应就是结构的振型周期拉的⽐较开;⽽对于那些结构反应起重要作⽤的振型所对应的频率密集的结果(⾼振型的影响较⼤,或者考虑扭转振型的条件下),CQC是精确的。
这是因为对于建筑⼯程上常⽤的阻尼⽽⾔,振型相关系数(见⾼规3.3.11-6)在很窄的范围内才有显著的数值。
3.反应谱分析的精确性对于采⽤平均意义上的光滑反应谱进⾏分析⽽⾔,其峰值估计与相应的时程分析的平均值相⽐误差很⼩,⼀般只有百分之⼏,因此可以很好的满⾜⼯程精度的要求,正是在这个平均(普遍性)意义上,我们认为反应谱分析⽅法是精确的。