实验十 用旋光仪测定糖溶液的浓度
- 格式:doc
- 大小:438.50 KB
- 文档页数:3
实验二十九 用旋光仪测糖溶液浓度【预习题】1.测量糖溶液旋光度的基本原理是什么?当偏振光通过某些透明物质(如糖溶液)后,偏振光的振动面将以光的传播方向为轴线旋转一定角度,这一现象称为旋光现象。
偏振光所转过的角度叫旋光度,对某一旋光溶液,旋光度ϕ与偏振光通过溶液的L 长度和溶液浓度C 成正比,即 L c ⋅⋅=αϕ2.什么叫左旋物质和右旋物质?如何判断?当偏振光通过一些物质后,偏振光的振动方向发生旋转,人们称这种物质为旋光物质。
不同的旋光物质可使偏振光的振动面向不同的方向旋转,若面对光源,使振动面顺时针旋转的物质称为右旋物质,使振动面逆时针旋转的物质称为左旋物质。
【思考题】1.本实验为什么采用了三分视场的方法(半荫法)来测量旋光溶液的旋光度?由于人们的眼睛很难准确地判断视场是否全暗,因而会引起测量误差。
所以采用了三分视场的方法(半荫法)来测量旋光溶液的旋光度。
实验三十 偏振现象的观测与研究【预习题】1.强度为I 的自然光通过偏振片后,其强度I I 210<,为什么?应用偏振片时,马吕斯定律是否适用,为什么?答:由于偏振片的吸收,使强度为I 的自然光通过偏振片后,其强度I I 210<。
应用偏振片时,马吕斯定律仍适用,这是因为实验中测量的各光强都经过检偏器(偏振片2)后的光强,所以其相对光强比仍为余弦的平方。
2.本实验为什么要用单色光源照明?根据什么选择单色光源的波长?若光波波长范围较宽,会给实验带来什么影响?答:因为中要用1/2波片和1/4波片,所以要用单色光源照明。
又因为1/2波片和1/4波片都是对某一单色光而言,所以实验中必须使用与之相对应的单色光源的波长。
若光波波长范围较宽,1/2波片和1/4波片将不能发挥其作用,实验中将看不到应有的实验现象。
【思考题】1.试说明椭圆偏振光通过1/4波片后变成平面偏振光的条件。
答:椭圆偏振光通过1/4波片后变成平面偏振光的条件是:1/4波片的光轴与椭圆偏振光椭圆的长轴或短轴平行。
旋光仪测浓度实验报告旋光仪测浓度实验报告摘要:本实验旨在利用旋光仪测量溶液中的物质浓度。
通过测量溶液的旋光角度,结合已知的旋光度和摩尔旋光度,可以计算出溶液中物质的浓度。
实验结果表明,旋光仪是一种有效且精确的测量浓度的工具。
引言:旋光现象是光在某些物质中传播时发生的一种特殊现象。
光线在通过旋光物质时,会发生偏转,这种偏转被称为旋光。
旋光角度与旋光物质的浓度有关,因此可以通过测量旋光角度来确定溶液中物质的浓度。
旋光仪作为一种测量旋光角度的仪器,被广泛应用于化学、生物、医药等领域。
实验方法:1. 准备实验所需的旋光仪、溶液和试管。
2. 将溶液倒入试管中,确保试管中的溶液充满。
3. 将试管放入旋光仪中,调整仪器使其对准试管中的溶液。
4. 通过旋转仪器上的旋钮,观察并记录旋光仪的读数。
5. 重复上述步骤3和4,以获得更加准确的测量结果。
实验结果与分析:在本实验中,我们选择了蔗糖溶液作为样品,利用旋光仪测量了不同浓度下的旋光角度。
通过测量,我们得到了以下数据:浓度(mol/L)旋光角度(度)0.1 2.50.2 5.10.3 7.80.4 10.30.5 12.6根据实验数据,我们可以绘制出浓度与旋光角度之间的关系曲线。
通过拟合曲线,我们可以得到旋光度和摩尔旋光度的数值。
根据已知的旋光度和摩尔旋光度,我们可以计算出溶液中蔗糖的浓度。
实验结论:通过本实验,我们成功地利用旋光仪测量了蔗糖溶液的浓度。
实验结果表明,旋光仪是一种有效且精确的测量浓度的工具。
通过测量旋光角度,我们可以确定溶液中物质的浓度。
在实际应用中,旋光仪可以广泛应用于化学、生物、医药等领域,用于测量各种溶液中物质的浓度。
实验的局限性:在本实验中,我们只选取了蔗糖溶液作为样品进行测量。
实际上,不同物质的旋光度和摩尔旋光度是不同的,因此在实际应用中需要根据具体物质的特性进行测量和计算。
此外,实验中的测量误差也可能会影响最终的结果,因此在实际应用中需要注意仪器的精度和测量方法的准确性。
3.9.2用旋光仪(糖量计)测糖溶液的浓度偏振光通过某些品体或物质的溶液时,其振动面以光的传播方向为轴线发生旋转的现象,称为旋光现象。
具有旋光性的晶体或溶液称为旋光物质。
最早是发现石英晶体有这种现象,后来继续发现在糖溶液、松节油、硫化汞、氯化钠等液体中和其他一些晶体中都有此现象。
利用旋光性测量糖溶液比普通的化学方法更实用和精确。
一、实验目的要求:1.了解旋光现象2.掌握旋光仪的使用方法3.掌握旋光法测量溶液浓度二、仪器用具:301型圆盘旋光仪三、实验原理:有的旋光物质使偏振光的振动面顺时针方向旋转,称为右旋物质,反之称为左旋物质。
实验证明,光振动面旋转的角度Ψ与其所通过旋光物质的厚度L 成正比。
对溶液来说,旋转角又正比于溶液浓度C ,即Cd αψ=(1)若已知物质的旋光率α和厚度d ,并测得旋转角Ψ,就可由(1)式算出溶液浓度C 。
量糖计是通过测糖溶液使平面偏振光振动面旋转的角度来测量糖溶液浓度的仪器。
其光学结构如图七所示。
其中Q 为光源,一般用钠光灯,L 为透镜,它使光源成像于P 处以获得光源的最好利用,P 为起偏镜,A 为检偏镜,检偏镜是可以沿仪器光轴转动的,其转动的角度可由刻度盘读出。
N 为半波片。
F 为用于观察的望远镜,R 为盛待测糖溶液的玻璃管。
可见,量糖计的基本组成部分是起偏镜P 和检偏镜A (二者都是尼科尔棱镜或偏振片),前者自然光通过它之后变成平面偏振光,后者用来检验光的偏振状态,特别是检验从起偏镜1.观察目镜2.观察刻度盘放大镜3.检偏器旋转角度刻度盘4.目镜调节旋钮5.检偏旋转纽6.溶液玻璃管放置槽7.钠光灯P 发出的平面偏振光经旋光物质后其振动面的改变。
对于未放入旋光物质R 的情况,在起偏镜P 和检偏镜A 的振动平行时,通过前者的光亦通过后者,故从望远镜目镜中可看到亮视场,当起偏镜P 和检偏镜A 呈正交时,即二者的振动面垂直时,如图九(a )所示,通过前者P 出来的偏振光不能通过A ,而得暗视场。
用旋光计测定糖溶液的浓度一、[仪器与用具]旋光计,玻璃管,蔗糖溶液,钠灯。
二、[实验原理]平面偏振光在某些晶体内沿其光轴方向传播时,虽然没有发生双折射,却发现透射光的振动面相对于原入射光的振动面旋转了一个角度。
晶体的这种性质称为旋光性。
后来从实验发现,某些液体也具有旋光性。
如果迎着光的传播方向看,旋光性物质使振动面沿顺时针方向旋转,称为右旋物质;使振动面沿逆时针方向旋转,称为左旋物质。
实验表明,振动面旋转的角度ϕ与其所通过旋光性物质的厚度成正比。
若为溶液,则又正比于溶液的质量浓度c ,此外,旋转角还与入射光波长及溶液温度等有关。
对溶液来说,振动面的旋转角lc ρϕ= (3-13-10)式中l 是以分米(dm)为单位的液柱长;c 为溶液的质量浓度,代表每立方厘米溶液中所含溶质的质量(质量以克为单位);ρ为比例系数,称为物质的旋光率,旋光率的定义是平面偏振光通过1dm 长的液柱,在1cm 3溶液中含有1g 旋光物质时所产生的旋转角。
纯洁蔗糖在20℃时,对于钠黄光,经多次测定确认g /dm cm 50.663⋅= ρ。
因此,若测出糖溶液的旋转角ϕ和液柱长l ,即可按式(3-13-10)算出蔗糖溶液的质量浓度c 。
专门用于测量糖溶液浓度的旋光计,称为糖量计。
旋光计的结构如图3—13—8所示。
S 为光源(钠灯);F 为聚光镜(固定);N 1为起偏器(尼科耳棱镜);N 2为检偏器(尼科耳棱镜),N 2可以旋转,旋转的角度从N 2所附的刻度盘R 上读出;D 为半荫片(一半是玻璃,一半是石英半波片;或两旁为玻璃,中间为石英半波片如图3—13—9所示),H 为盛放溶液的管子;T 为短焦距望远镜。
由光源发出的单色光经N 1后成为平面偏振光,其偏振面与N l 的主截面平行(参看图图3—13—9 图3—13—83—13—10),平面偏振光通过半荫片D 的玻璃部分后,透射光的偏振面不变,设其振动方向为OA 1,而通过石英半波片那一部分光的振动面却转过了一角度,设其振动方向为OA 2。
用旋光计测定糖溶液的浓度一、[仪器与用具]旋光计,玻璃管,蔗糖溶液,钠灯。
二、[实验原理]平面偏振光在某些晶体内沿其光轴方向传播时,虽然没有发生双折射,却发现透射光的振动面相对于原入射光的振动面旋转了一个角度。
晶体的这种性质称为旋光性。
后来从实验发现,某些液体也具有旋光性。
如果迎着光的传播方向看,旋光性物质使振动面沿顺时针方向旋转,称为右旋物质;使振动面沿逆时针方向旋转,称为左旋物质。
实验表明,振动面旋转的角度ϕ与其所通过旋光性物质的厚度成正比。
若为溶液,则又正比于溶液的质量浓度c ,此外,旋转角还与入射光波长及溶液温度等有关。
对溶液来说,振动面的旋转角lc ρϕ= (3-13-10)式中l 是以分米(dm)为单位的液柱长;c 为溶液的质量浓度,代表每立方厘米溶液中所含溶质的质量(质量以克为单位);ρ为比例系数,称为物质的旋光率,旋光率的定义是平面偏振光通过1dm 长的液柱,在1cm 3溶液中含有1g 旋光物质时所产生的旋转角。
纯洁蔗糖在20℃时,对于钠黄光,经多次测定确认g /dm cm 50.663⋅= ρ。
因此,若测出糖溶液的旋转角ϕ和液柱长l ,即可按式(3-13-10)算出蔗糖溶液的质量浓度c 。
专门用于测量糖溶液浓度的旋光计,称为糖量计。
旋光计的结构如图3—13—8所示。
S 为光源(钠灯);F 为聚光镜(固定);N 1为起偏器(尼科耳棱镜);N 2为检偏器(尼科耳棱镜),N 2可以旋转,旋转的角度从N 2所附的刻度盘R 上读出;D 为半荫片(一半是玻璃,一半是石英半波片;或两旁为玻璃,中间为石英半波片如图3—13—9所示),H 为盛放溶液的管子;T 为短焦距望远镜。
由光源发出的单色光经N 1后成为平面偏振光,其偏振面与N l 的主截面平行(参看图图3—13—9 图3—13—83—13—10),平面偏振光通过半荫片D 的玻璃部分后,透射光的偏振面不变,设其振动方向为OA 1,而通过石英半波片那一部分光的振动面却转过了一角度,设其振动方向为OA 2。
一、实验目的1、了解旋光仪的构造和旋光度的测定原理2、掌握旋光仪的使用方法和比旋光度的计算方法二、预习要求理解旋光度的定义;了解影响旋光度的因素;了解旋光度的测定意义;了解碳水化合物的变旋光现象;思考本实验中如何保护旋光仪。
三、实验原理当一束单一的平面偏振光通过手性物质时,其振动方向会发生改变,此时光的振动面旋转一定的角度,这种现象称为旋光现象。
物质的这种使偏振光的振动面旋转的性质叫做旋光性,具有旋光性的物质叫做旋光性物质或旋光物质。
许多天然有机物都具有旋光性。
由于旋光物质使偏振光振动面旋转时,可以右旋(顺时针方向,记做“+”),也可以左旋(逆时针方向,记做“—”),所以旋光物质又可分为右旋物质和左旋物质。
由单色光源(一般用钠光灯)发出的光,通过起偏棱镜(尼可尔棱镜)后,转变为平面偏振光(简称偏振光)。
当偏振光通过样品管中的旋光性物质时,振动平面旋转一定角度。
调节附有刻度的检偏镜(也是一个尼可尔棱镜),使偏振光通过,检偏镜所旋转的度数显示在刻度盘上,此即样品的实测旋光度α。
其旋光原理如图10-1所示。
图10-1 旋光原理旋光度的大小除了取决于被测分子的立体结构外,,还受到待测溶液的浓度、偏振光通过溶液的厚度(即样品管的长度)以及温度、所用光源的波长、所用溶剂等因素的影响,这些因素在测定结果中都要表示出来。
常用比旋光度来表示物质的旋光性,比旋光度和旋光度的关系如下:纯液体的比旋光度l d t ⨯=ααλ][ 溶液的比旋光度l c t ⨯=ααλ][ 上两式中,t λα][表示旋光性物质在温度为t ℃、光源的波长为λ时的比旋光度;α为旋光仪所测得的旋光度;l 为液层厚度(dm );d 为纯液体的密度;c 为溶液的浓度(g/ml );t 为测定时的温度(℃);λ为所用光源的波长(nm )。
例如25℃用波长为589nm 的钠灯(D 线)作光源测定某样品的旋光度为右旋38°,则比旋光度记作[α]25D =+38°。
实验十旋光度的测定、实验目的1、了解旋光仪的构造和旋光度的测定原理2、掌握旋光仪的使用方法和比旋光度的计算方法、预习要求理解旋光度的定义;了解影响旋光度的因素;了解旋光度的测定意义;了解碳水化合物的变旋光现象;思考本实验中如何保护旋光仪。
三、实验原理当一束单一的平面偏振光通过手性物质时,其振动方向会发生改变,此时光的振动面旋转一定的角度,这种现象称为旋光现象。
物质的这种使偏振光的振动面旋转的性质叫做旋光性,具有旋光性的物质叫做旋光性物质或旋光物质。
许多天然有机物都具有旋光性。
由于旋光物质使偏振光振动面旋转时,可以右旋(顺时针方向,记做“+”),也可以左旋(逆时针方向,记做“一”),所以旋光物质又可分为右旋物质和左旋物质。
由单色光源(一般用钠光灯)发出的光,通过起偏棱镜(尼可尔棱镜)后,转变为平面偏振光(简称偏振光)。
当偏振光通过样品管中的旋光性物质时,振动平面旋转一定角度。
调节附有刻度的检偏镜(也是一个尼可尔棱镜),使偏振光通过,检偏镜所旋转的度数显示在刻度盘上,此即样品的实测旋光度a其旋光原理如图10-1所示。
图10-1 旋光原理旋光度的大小除了取决于被测分子的立体结构外,,还受到待测溶液的浓度、偏振光通过溶液的厚度(即样品管的长度)以及温度、所用光源的波长、所用溶剂等因素的影响,这些因素在测定结果中都要表示出来。
常用比旋光度来表示物质的旋光性,比旋光度和旋光度的关系如下:纯液体的比旋光度n ]tk d汉丨溶液的比旋光度=—人CX l上两式中,[:•]〔表示旋光性物质在温度为t C、光源的波长为入时的比旋光度; a为旋光仪所测得的旋光度;I为液层厚度(dm ) ; d为纯液体的密度;C为溶液的浓度(g/ml ); t为测定时的温度(C);入为所用光源的波长(nm )。
例如25 C用波长为589nm的钠灯(D线)作光源测定某样品的旋光度为右旋38。
,则比旋光度记作[a]25D = + 38 °。
实验 葡萄糖溶液旋光度的测定一、实验目的1.了解旋光仪的构造。
2.熟悉比旋光度的计算方法。
3.掌握旋光仪的使用方法。
二、实验原理1.旋光度是指旋光性物质使偏振光的振动面旋转,所旋转的角度,用α表示。
2.比旋光度 l c D t ⨯=αα][ 其中c 的单位为g/ml ;l 的单位为dm 。
三、实验步骤1.打开旋光仪的开关,预热10~20min 。
2.校正零点。
1)装入蒸馏水:将测定管清洗干净,装上蒸馏水,使液面凸出管口,将玻璃盖沿管口边缘轻轻平推盖好(不能带入气泡),拧上螺丝帽(紧度适中)。
2)擦干测定管外壁,放入旋光仪,罩上盖子。
3)旋转旋钮,使视野内Ⅰ和Ⅱ两部分亮度一致,记录读数。
重复三次,取平均值。
Ⅰ Ⅱ Ⅰ Ⅰ Ⅱ Ⅰ Ⅰ Ⅱ Ⅰ旋光仪目镜视场图◎读数方法(与游标卡尺读数方法一致):1)根据0刻度线所指数值,读出整数。
2)小刻度盘中,与大刻度盘完全对齐的线的数值为小数点后的数值。
3)记录数值=整数+小数。
4)自己测定方向看,顺时针旋转旋钮的记录“+”,顺时针旋转旋钮的记录“-”。
3.测定已知浓度的葡萄糖溶液的旋光度。
1)装入已知浓度的葡萄糖溶液:先润洗,后装液。
装液步骤同上。
2)擦干测定管外壁,放入旋光仪,罩上盖子。
3)旋转旋钮(由暗的部分向将其调亮的方向旋转,根据旋转方向确定是左旋体还是右旋体),使视野内Ⅰ和Ⅱ两部分亮度一致,记录读数【读数方法同上,但是右旋记录数值=180°-读数值+零点的平均值;左旋记录数值=读数值-零点的平均值】。
重复三次,取平均值。
4.计算葡萄糖的比旋光度。
四、实验结果温度 ℃ c (已知)= g/ml l = dmG 的比旋光度的计算公式为l c D t ⨯=已知αα][仅供个人用于学习、研究;不得用于商业用途。
For personal use only in study and research; not for commercial use.Nur für den persönlichen für Studien, Forschung, zu kommerziellen Zwecken verwendet werden.Pour l 'étude et la recherche uniquement à des fins personnelles; pas à des fins commerciales.толькодля людей, которые используются для обучения, исследований и не должны использоваться в коммерческих целях.以下无正文。
用旋光仪测糖溶液的浓度1、什么叫旋光率?它与哪些因素有关?对于液体物质,旋转角φ与偏振光通过溶液的长度L 及溶液中旋光物质浓度成正比,可表示为Lc ϕα=式中α是一个系数,称为该物质的旋光率。
它与入射光的波长和温度有关。
2、盛液管中如果有气泡,为什么让气泡位于盛液管的鼓起部分?为什么让有鼓起部分的一端朝上?让气泡位于盛液管鼓起一端可以使光顺利通过待测溶液,不影响光路。
让鼓起部分朝上是为了防止当将液管放入镜筒后气泡走到液管两端从而影响光路。
3、说明用半荫法判断视场的原理人眼难以精确判断视场明暗的微小变化,用半荫法判断视场,不需要判断视场是否最暗,只需比较视场中两相邻区域的高度是否相等。
4、对不同波长的光,测量结果有何不同?为什么? 旋光率21αλ=的平法,又Lc ϕα=,故入射光的波长越长,α越小,在溶液长度和浓度不变的条件下,测量的φ角越小,反之越大。
5、如果目镜未调节好,三分视野界限模糊,对测量有何影响?糊的视场将导致测量过程中寻找零点视场位置不准,产生较大的人为误差【数据处理】(要求写出计算过程)1.11011=()ki i i k φφφ=-∑= ° 22011=()ki i i k φφφ=-∑= ° 2.111=L C φα= °/m211212=L C C L φφ= % 3.1φσ= °2φσ= °1U φ== °(其中∆仪=0.05°)2U φ== °E == %22C U C E == % 222C C C U =±=( ± )%。
4.12用旋光测糖溶液的浓度通过旋光度的测定可检查旋光性物质的纯度和含量,还可测定旋光性物质的反应速率常数,即研究旋光性物质的反应机理等。
当这种平面偏振光通过旋光物质的溶液时,光的偏振面会向右旋转一定的角度,则该物质有右旋光性。
同样道理,向左旋转的称为左旋光性。
光线从光源经过起偏镜,再经过盛有旋光性物质的旋光管时,因物质的旋光性致使偏振光不能通过第二个棱镜,必须转动(检偏镜),并带动标尺盘转动,由标尺盘读出转动的角度即为所测物质在此浓度时的旋光度,一种旋光物质的旋光度与该旋光物质浓度及偏振光通过待测液路径长度的乘积成正比。
因此,在旋光检测仪中可以根据旋光度的大小来测定某物质溶液的浓度。
【实验目的】1. 观察光的偏振现象和偏振光通过旋光物质后的旋光现象;2. 了解旋光仪的结构原理;3. 学习测定旋光性溶液的旋光率和浓度的方法;4. 掌握用图解法处理数据.【实验仪器】WXG-4型圆盘旋光仪(如图4-12-1),盛未知浓度的葡萄糖溶液玻璃管数根。
图4-12-1WXG-4型旋光仪【实验仪器介绍】图4-12-2 WXG-4型旋光仪结构图图4-12-3 仪器还在视场调节用WXG-4型旋光仪来测量旋光性溶液的旋光角,其结构如图4-12-2所示.为了准确地测定旋光角,仪器的读数装置采用双游标读数,以消除度盘的偏心差.度盘等分360格,分度值α=1°,角游标的分度数n=20,因此,角游标的分度值i=1/20=0.05o,与20分游标卡尺的读数方法相似。
度盘和检偏镜联结成一体,利用度盘转动手轮作粗(小轮)、细(大轮)调节.游标窗前装有供读游标用的放大镜.仪器还在视场中采用了半荫法比较两束光的亮度,其原理是在起偏镜后面加一块石英晶体片,石英片和起偏镜的中部在视场中重叠,如图4-12-3所示,将视场分为三部分.并在石英片旁边装上一定厚度的玻璃片,以补偿由于石英片的吸收而发生的光亮度变化,石英片的光轴平行于自身表面并与起偏镜的偏振化方向夹一小角θ (称影荫角).由光源发出的光经过起偏镜后变成偏振光,其中一部分再经过石英片,石英是各向异性晶体,光线通过它将发生双折射.可以证明,厚度适当的石英片会使穿过它的偏振光的振动面转过2θ角,这样进入测试管的光是振动面间的夹角为2θ的两束偏振光.在图4-12-4中, OP表示通过起偏镜后的光矢量,而OP′则表示通过起偏镜与石英片后的偏振光的光矢量,OA表示检偏镜的偏振化方向,OP和OP′与OA的夹角分别为β和β',OP和OP′在OA轴上的分量分别为OPA和OP′A。