高量7-01 二次量子化方法 b
- 格式:ppt
- 大小:173.00 KB
- 文档页数:34
量子力学中的量子场论与二次量子化在量子力学的发展历程中,量子场论和二次量子化是非常重要的概念和方法。
量子场论是一种描述微观粒子行为的理论框架,而二次量子化则是将量子力学的基本概念扩展到多粒子体系的方法。
本文将介绍量子场论的基本知识和二次量子化的概念,以及它们在量子力学研究中的应用和意义。
一、量子场论1.量子场的概念在经典物理学中,物质和场是分开考虑的,而在量子场论中,物质和场被统一起来考虑。
量子场是一种能量和动量在空间中传播的物理场,它可以看作是许多谐振子的集合。
量子场论通过对场算符的量子化来描述不同种类的粒子。
2.量子场算符量子场算符是量子场论的基本工具,它们可以创造和湮灭粒子。
对于费米子,如电子,量子场算符是具有反对易关系的费米子算符;对于玻色子,如光子,量子场算符是具有对易关系的玻色子算符。
3.场的量子化量子场理论将经典的场理论量子化,通过将经典场变量替换为动量和哈密顿算符的算符形式,从而得到了量子场的描述。
量子场的量子化过程涉及到将场展开为一组谐振子模式,而这些模式称为量子场的模式展开。
二、二次量子化1.多粒子态和Fock空间二次量子化是将量子力学的基本概念推广到多粒子体系的方法。
在二次量子化中,多粒子态由一系列粒子的量子数来描述,而不再是单个粒子的波函数。
Fock空间是用于描述多粒子态的数学空间,它由一系列单粒子态的张量积构成。
2.产生算符和湮灭算符二次量子化中,使用产生算符和湮灭算符来操作多粒子态。
产生算符可以将系统中没有粒子的态变为有一个粒子的态,而湮灭算符则将有一个粒子的态变为没有粒子的态。
这两个算符满足一系列对易或反对易关系。
3.二次量子化的物理意义二次量子化的方法可以更方便地描述多粒子体系的行为,例如,可以通过产生算符和湮灭算符来计算多粒子态的能量、动量等守恒量。
此外,二次量子化还是研究粒子之间相互作用和散射等过程的重要工具。
三、应用和意义1.量子场论在粒子物理中的应用量子场论是研究基本粒子物理学的重要工具,例如,量子电动力学(QED)是量子场论的一个重要分支,用于描述电磁相互作用。
二次量子化说到二次量子化得先说说粒子得统计法,微观粒子按照统计法可分为波色子和费米子统计法。
波色子统计法;相同粒子时不可分辨的。
而同时处在亦个单粒子态上的粒子数不受限制。
所谓得不可分辨性时指粒子的交换不改变系统得状态。
泡利不相容原理,不可能由俩个或者多个电子同时处在亦个态上。
实验表明:具有整数得自旋值得粒子遵从波色统计,具有半整数得自旋粒子则遵从费米统计。
用12(,......)n ϕεεε代表N 个相同粒子得ε表象得波函数在交换粒子时状态保持不变。
因而波函数只能改变亦个 常数因子。
即()()121212,......,......n n ϕεεελεεε= 121λ= 俩此交换这对粒子,得2121λ= 故121λ=± 1213141.........n λλλλ===可知波函数只能时全对称或全反对称得。
由叠加原理可知,对一定系统来说,波函数空间或者只包含全对称函数或者全反对称函数。
由此波函数得对称或者反对称取决于粒子得类型。
按照粒子得这个性质,可以把它们分为两类。
一类粒子得多体波函数时全对称得,另亦类粒子得多体波函数时反对称得。
例如一种最简单得全对称波函数是()()()12.........n αααϕεϕεϕε这个波函数表示任意N 个粒子处在同一个单离子态上,可见这种类型得粒子时波色子。
不难看出,表示系统中由俩个或者多个相同粒子处在同一个单粒子态得波函数对于这些粒子得交换必然述对称得。
因此与系统的全反对称波函数正交,即时说,在全反对称波函数描写得状态夏发现俩个或者多个粒子处于同一个单粒子态得概率等于零。
可见由全反对称波函数描述得粒子遵从泡利不相容原理。
二次量子化就是亦数学形式,通过生产算符和消灭算符作用在一个N 粒子B 值确定得状态上,所得状态时在原状态增加或者减少一个亦个B 值为b 得粒子。
产生算符和消灭算符由于()12.....N N 得全部允许值决定一组正交归一和完备得基本右矢12.....N N ,这组右矢可以看做广义态矢量空间得亦组算符得共同本征右矢,而12N N 时各个算符得本征值。
二次量子化一维单原子链二次量子化是量子力学中的重要概念之一,它在描述多粒子体系时非常有用。
本文将讨论一维单原子链的二次量子化过程。
一维单原子链是由一系列相互作用的原子组成的,它可以用于研究材料的电子结构、声子传播等问题。
在二次量子化中,我们将一维原子链中的每个原子视为一个量子力学的基本单位,即一个量子态。
通过引入产生算符和湮灭算符,我们可以方便地处理多粒子体系的量子态和相互作用。
在一维单原子链中,每个原子可以处于两个可能的状态:自旋向上或自旋向下。
我们可以用一个二维希尔伯特空间来描述这个系统。
对于一个含有N个原子的链,我们可以用一个N维的列向量表示整个系统的量子态。
例如,对于一个含有三个原子的链,我们可以用如下的形式表示量子态:|↑↑↑⟩= |↑⟩⊗ |↑⟩⊗ |↑⟩其中|↑⟩表示自旋向上的态,⊗表示张量积。
在二次量子化中,我们引入了产生算符a†和湮灭算符a。
产生算符a†可以将一个粒子从自旋向下的态变换为自旋向上的态,而湮灭算符a则相反。
它们满足如下的对易关系:[a,a†] = aa† - a†a = 1利用这些算符,我们可以方便地表示一维单原子链中的量子态和相互作用。
例如,我们可以用产生算符和湮灭算符来表示自旋向上和自旋向下的态:|↑⟩= a†|0⟩|↓⟩ = a|0⟩其中|0⟩表示真空态,即没有粒子的态。
在一维单原子链中,原子之间可以存在相互作用。
我们可以用相互作用哈密顿量来描述这种相互作用。
例如,我们可以用下面的形式表示相互作用哈密顿量:H = ∑(Ji a†i a†i+1 + hi a†i ai + h.c.)其中Ji表示相邻原子之间的相互作用强度,hi表示每个原子的自旋能级。
通过引入产生算符和湮灭算符,我们可以方便地处理相互作用哈密顿量。
例如,我们可以用产生算符和湮灭算符来表示相互作用哈密顿量中的项:a†i a†i+1 = (a†i + a†i+1)(a†i - a†i+1)/2hi a†i ai = hi (a†i a†i - a†i ai)/2h.c.表示共轭项。
二次量子化寒假里忽然想起曾经在看曾书10.3节角动量的Schwinger表象有一个奇思妙想。
当初记在书上的笔记是“一般Hamiltonian可表示为H(x,p), x、p可用a+、a处理,如果H为x、p的二次式,则可用H(a+,a)与[a+,a]求解”现在仔细回想这段话,当初的意思应该是:在经典力学里面,哈密顿量可以表示成两个独立变量的函数(上次还看到说只需要这两个独立变量x和x的一次导数就完备了,不需要诸如x的二次导数、三次导数那些变量,据说朗道书里有讲,本人没细究过),在处理谐振子的时候我们通过引入升降算符a+、a,把哈密顿量表示成H(a+,a),接下来利用[a+,a]=1构造出粒子数算符,谐振子的各个能级就轻而易举的解出来了。
然后我看到角动量居然也可以用升降算符表示(确切的说是产生湮灭算符),这就很容易想到,是否所有的力学量都可以用升降算符表示?既然哈密顿量是力学量的函数,通过表象变换到升降算符表象,哈密顿量显然也可以表示成升降算符的函数H(a+,a),如果哈密顿量是x、p的二次型,利用升降算符的对易子[a+,a],可以很容易求解出各个能级(二次型的考虑是记得当初在学经典力学里面有一个说法,只要哈密顿量是x、p的二次型,总可以用泊松括号求解,而泊松括号可以即狄拉克普朗克常数趋向于零的对易子,曾书习题4.7),求解的过程似乎可以和哈密顿力学的求解过程对应起来。
后来学了二次量子化,在那里,哈密顿量确实都表示成a+、a的函数,再回首当初的奇思妙想,算是二次量子化的发轫,但确实too simple, too naive.1、二次量子化里面的a+、a表示的产生湮灭算符,是指产生或湮灭一个态(这里采用fock表象),和谐振子里面的升降算符在概念上是有差异的。
2、哈密顿量一般来说是偶数次型,不仅限于二次型,还有四次型。
3、二次量子化虽然看起来似乎是一个表象变换,但是它已经把场量子化,这样子,才会有可能产生一个粒子或湮灭一个粒子。
二次量子化与场量子化量子力学是描述微观世界中粒子行为的理论,其在理论物理学中占据着重要的地位。
而在量子力学的发展过程中,二次量子化和场量子化这两个概念也扮演着重要的角色。
本文将介绍这两个概念的背景、原理以及应用。
一、二次量子化的背景和原理1. 量子力学的初步建立量子力学是基于波粒二象性的理论,创立之初描述的是单个粒子的行为。
例如,薛定谔方程可以描述单个粒子的波函数演化。
然而,当牵扯到多粒子系统时,用波函数描述将变得复杂而困难。
2. 多粒子系统的场量子化为了处理多粒子系统,物理学家引入了场的概念,将多粒子系统的态用场的概念来刻画。
场的量子化将多粒子系统的态描述从波函数改为算符,进而引入了二次量子化的概念。
3. 二次量子化的原理二次量子化是在场量子化的基础上发展起来的,它在处理多粒子系统中具有巨大的优势。
在二次量子化中,波函数被替代为算符,物理量也相应地被替代为算符。
通过引入产生算符和湮灭算符,我们可以方便地描述多粒子系统中的粒子数变化。
二次量子化使得处理多体量子系统的问题更加简洁和有效。
二、场量子化的背景和原理1. 场的概念场是指空间中的某一物理量在各点上取值的函数。
例如,电磁场、量子场等都是以空间位置为参数的函数。
2. 场量子化的目的场量子化的目的是将传统的经典场理论转化为满足量子力学要求的理论。
在量子场论中,场是算符,而其本征态则是粒子的态矢量。
3. 场量子化的原理场量子化的基本原理是将经典场的变量替换为算符,同时引入对易关系和正则量子化条件。
通过这种方式,我们可以得到满足量子力学要求的场的量子理论,从而描述多粒子系统的行为。
三、二次量子化和场量子化的应用1. 二次量子化在凝聚态物理中的应用二次量子化在凝聚态物理学中具有重要的应用价值。
例如,在超导理论中,通过二次量子化的方法可以很方便地描述库伦相互作用和超导电子之间的相互作用。
2. 场量子化在粒子物理学中的应用场量子化在粒子物理学中也有广泛的应用。
[第12讲]“一次量子化”与“二次量子化”━━ “古怪”与“不古怪”I,前言II,量子力学的建立━━“无厘头”的一次量子化III, Maxwell场协变量子化━━需要“鬼光子”的一次量子化1,Lorentz规范下协变形式量子化2, 不定度规、负模态、鬼光子3、附加条件━━“协变性要求有鬼,条件保证了看不见它们” IV,“ Schrödinger 场”的二次量子化━━其实不古怪1,“ Schrödinger 场”的“经典”场论2,“ Schrödinger 场”按对易规则二次量子化3,“Schrödinger 场”按Jordan-Wigner规则二次量子化4,将两种二次量子化结果转入粒子数表象5, 与全同多体量子力学的等价性━━所以不古怪6,二次量子化中对易规则选择问题V,自作用“ Schrödinger 场”的二次量子化━━再次的不古怪1, 自作用“ Schrödinger 场”的二次量子化2,转入粒子数表象3,转入坐标表象VI,二次量子化方法评论━━可以理解的古怪※ ※ ※I, 前 言学过量子力学的人都知道,文献和书中经常会遇到说法:经典力学经过“一次量子化”“过渡到”量子力学。
其实,从科学观点看,这个“一次量子化”实在是个“无厘头”的东西。
然而,古怪并不到此为止,更有甚者:在量子力学中,再经过 “第二次量子化”,还可以从单粒子量子力学转向建立相对论量子场论。
并且理论与实验还广泛符合,十分成功!本讲专门谈谈这两个古怪。
结论是: 一次量子化是“无厘头”的古怪,二次量子化的基础是波粒二象性,是理性的不古怪。
II ,量子力学的建立━━“无厘头”的一次量子化先简单重复一下“一次量子化”具体内容:将牛顿力学的力学量转化为作用到系统状态空间上的算符(开始了“无厘头”的逻辑飞跃!),同时也就得到坐标和动量的对易规则,构成算符的非对易代数:()ˆˆˆ,,ˆˆ,,,,i j i j r r p p i E E i t x p i i j x y z δ∂⎧→→=-∇→=⎪∂⎨⎪⎡⎤==⎣⎦⎩接着再将牛顿力学能量等式()22p E V r m=+对应地转化成算符方程,作用到表征状态的实变数复值函数(),r t ψ上,就得到状态运动方程:()()()2,,2r t i V r r t tm ψψ∂⎛⎫-=∆+ ⎪∂⎝⎭现在得到了算符的非对易运算规则,又有了状态运动方程,再添加一点与实验测量和物理解释有关的辅助公设,就能建立起非相对论量子力学。
1.二次量子化以后,波函数就升级为“波泛函”了。
Wave functional? 嗯,我又民科了,这个词是我生造的 :-)……所谓量子化就是一个确定性丧失的过程。
在一次量子化中,所有物理量的确定性都丧失了。
形式上看,就是物理量从确定的数,变成不确定的算符。
但是一个算符挂在空中摆来摆去是没有意义的。
只有当算符落实到波函数上的时候,它才能获得意义。
所以波函数的引入,对于一次量子化来说,是显然而且必须的。
波函数是关于粒子状态的函数,取值为复数,其模方表示粒子出现在该状态的几率。
从此,一切物理量都依概率分布,我们再也不能问“能量是多大”,只能问“能量是这么大的概率是多少”。
但是一次量子化并不是一场彻底的革命。
有两个物理量仍然是确定的,是可以测准的:一个是几率本身,另一个是作为相位的作用量。
它们合在一起可以构造出波函数。
既然一切物理量都不确定了,那么为什么只有概率分布还是确定的?概率分布为什么不能也依概率分布?因此,二次量子化就是要继续这场革命,将不确定进行到底,剥夺波函数的确定性,把波函数算符化,使之成为场算符。
但是场算符本身也是没有意义的,因为任何算符都不能独立存在,场算符最终也要落实到一个对象上去。
但那不是波函数,因为场算符本身就代表波函数,因此场算符应该作用在更高级的波函数上,那就是波泛函Ψ。
波泛函是一个从Hilbert空间向复数域的映射,Ψ[φ] 把场的每种经典构型φ(x) (也就是波函数),映射到一个复数Ψ 上。
这个复数就描述了出现φ(x)那种波函数的几率幅,因此可以说是几率之几率。
所有的波泛函构成一个更大的“Hilbert空间”。
基于这种构造,我们还可以实施第三次量子化,就是把波泛函再正则量子化为泛函场算符。
这样这些场算符同样需要落实。
它们作用在“波泛泛函”上面。
如此递推,可至无穷。
事实上,从量子力学开始第一次量子化的时候,它就已经蕴含了以后所有阶次的量子化。
有了一次量子化就会有二次,有了二次就会有三次。