二次量子化方法
- 格式:ppt
- 大小:343.50 KB
- 文档页数:28
量子力学知识:量子物理中的二次量子化二次量子化是一种广泛应用于量子物理中的数学形式,它是一种用二次量子化方程描述多体问题的方法。
在量子力学中,一个粒子的运动是由波函数描述的,而多个粒子的运动则需要用到多粒子波函数。
如果我们考虑三个粒子的问题,那么我们需要用到三粒子波函数。
多体问题包括原子、分子、晶体、凝聚体等,研究多体问题可以帮助我们更深入地理解物质。
传统的一次量子化方法只能描述单个粒子的运动情况,而在多体问题中,我们需要更高维度的描述。
我们需要考虑所有粒子之间的量子相互作用,这些相互作用不能由波函数描述。
为了解决这个问题,科学家们提出了二次量子化方法,这种方法可以帮助我们更好地处理多体问题。
二次量子化的基本思想是将多种粒子基态的相互作用转化为多个不同粒子状态之间的相互作用。
这种转化可以使原本复杂的多体问题简化为一个更简单的问题。
通过将多体波函数的二次量子化形式写出来,我们可以得到一些有关多体相互作用的重要信息。
在二次量子化方法中,我们首先定义一个产生和湮灭粒子的算符,这些算符能够在多粒子系统中产生或消灭一个粒子,从而形成新的多粒子系统。
接着我们定义一个Hamilton算子,这个算子描述了整个多体系统的能量和动量。
我们可以将多体波函数写成这些产生和湮灭算符的乘积形式,并将Hamilton算子表示为这些算符的多项式,从而得到一个描述多体相互作用的二次量子化方程。
二次量子化方法不仅可以帮助我们更好地处理多体问题,还可以帮助我们理解许多量子现象。
例如,通过二次量子化方法,我们可以更好地理解玻色-爱因斯坦凝聚现象。
在这种凝聚体中,所有粒子都处于同一个量子态,它们的波函数相干性非常强。
如果我们考虑这种相干性,那么我们可以把所有粒子看做一个巨大的波函数。
二次量子化方法可以将这个波函数的形式写出来,并帮助我们理解这个现象的同时,还可以为我们提供其他更深层次的信息。
除了玻色-爱因斯坦凝聚现象,二次量子化方法还可以用于解释许多其他量子现象,例如超流性、超导性等。
二次量子化的哈密顿量二次量子化是量子力学中的一种重要方法,用于描述多粒子系统的相互作用和运动。
它是在二次量子化框架下,通过引入产生算符和湮灭算符来重新表述系统的哈密顿量,从而更加方便地进行计算和分析。
在二次量子化中,我们将系统的基态视为真空态,并引入湮灭算符和产生算符来描述系统中的粒子数目和激发态。
湮灭算符a_i可以将第i个粒子湮灭,而产生算符a_i†可以将第i个粒子产生。
这种描述方式使得我们可以方便地处理多粒子系统的相互作用和运动。
在二次量子化框架下,系统的哈密顿量可以表示为湮灭算符和产生算符的线性组合。
例如,对于一个自由粒子系统,其哈密顿量可以写成:H = ∑_i ε_i a_i† a_i其中,ε_i表示第i个粒子的能量。
这个哈密顿量描述了自由粒子系统中粒子的能量和粒子数目之间的关系。
对于相互作用系统,其哈密顿量可以写成:H = H_0 + H_int其中,H_0表示系统的自由哈密顿量,描述了粒子的动能和势能;H_int表示相互作用哈密顿量,描述了粒子之间的相互作用。
在二次量子化中,我们可以通过引入湮灭算符和产生算符来重新表述这两部分哈密顿量。
通过二次量子化的方法,我们可以方便地处理多粒子系统的相互作用和运动。
例如,在处理费米子系统时,我们可以引入费米算符来描述系统的基态和激发态,并通过对这些算符进行代数运算来得到系统的物理性质。
二次量子化的方法在凝聚态物理、量子场论等领域有着广泛的应用。
它不仅可以用于描述多粒子系统的相互作用和运动,还可以用于研究物质的凝聚态性质、相变行为等。
通过二次量子化的方法,我们可以更加深入地理解量子力学中的多粒子现象,并为实验和理论研究提供了重要的工具。
总之,二次量子化是量子力学中一种重要的描述多粒子系统的方法。
它通过引入湮灭算符和产生算符来重新表述系统的哈密顿量,从而方便地处理多粒子系统的相互作用和运动。
二次量子化方法在凝聚态物理、量子场论等领域有着广泛应用,并为我们深入理解量子力学中的多粒子现象提供了重要的工具。
量子力学中的量子场论与二次量子化在量子力学的发展历程中,量子场论和二次量子化是非常重要的概念和方法。
量子场论是一种描述微观粒子行为的理论框架,而二次量子化则是将量子力学的基本概念扩展到多粒子体系的方法。
本文将介绍量子场论的基本知识和二次量子化的概念,以及它们在量子力学研究中的应用和意义。
一、量子场论1.量子场的概念在经典物理学中,物质和场是分开考虑的,而在量子场论中,物质和场被统一起来考虑。
量子场是一种能量和动量在空间中传播的物理场,它可以看作是许多谐振子的集合。
量子场论通过对场算符的量子化来描述不同种类的粒子。
2.量子场算符量子场算符是量子场论的基本工具,它们可以创造和湮灭粒子。
对于费米子,如电子,量子场算符是具有反对易关系的费米子算符;对于玻色子,如光子,量子场算符是具有对易关系的玻色子算符。
3.场的量子化量子场理论将经典的场理论量子化,通过将经典场变量替换为动量和哈密顿算符的算符形式,从而得到了量子场的描述。
量子场的量子化过程涉及到将场展开为一组谐振子模式,而这些模式称为量子场的模式展开。
二、二次量子化1.多粒子态和Fock空间二次量子化是将量子力学的基本概念推广到多粒子体系的方法。
在二次量子化中,多粒子态由一系列粒子的量子数来描述,而不再是单个粒子的波函数。
Fock空间是用于描述多粒子态的数学空间,它由一系列单粒子态的张量积构成。
2.产生算符和湮灭算符二次量子化中,使用产生算符和湮灭算符来操作多粒子态。
产生算符可以将系统中没有粒子的态变为有一个粒子的态,而湮灭算符则将有一个粒子的态变为没有粒子的态。
这两个算符满足一系列对易或反对易关系。
3.二次量子化的物理意义二次量子化的方法可以更方便地描述多粒子体系的行为,例如,可以通过产生算符和湮灭算符来计算多粒子态的能量、动量等守恒量。
此外,二次量子化还是研究粒子之间相互作用和散射等过程的重要工具。
三、应用和意义1.量子场论在粒子物理中的应用量子场论是研究基本粒子物理学的重要工具,例如,量子电动力学(QED)是量子场论的一个重要分支,用于描述电磁相互作用。
二次量子化二次量子化又叫正则量子化,是对量子力学的一种新的数学表述。
普通的量子力学方法只能处理粒子数守恒的系统。
但在相对论量子力学中,粒子可以产生和湮灭,普通量子力学的数学表述方法不再适用。
二次量子化通过引入产生算符和湮灭算符处理粒子的产生和湮灭,是建立相对论量子力学和量子场论的必要数学手段。
相比普通量子力学表述方式,二次量子化方法能够自然而简洁的处理全同粒子的对称性和反对称性,所以即使在粒子数守恒的非相对论多体问题中,也被广泛应用。
然而,现在的二次量子化理论反映物质埸的特征是不够全面的。
其一:只用作为埸的自由度的广义坐标,是一维的无穷多个指标的广义坐标,也就是说尽管是多个指标,它在空间的自由度却仅有一维。
无穷多个指标的广义坐标,只分别对应无穷多个光量子,描写它们一维的状态。
为了描写物质埸的矢量性,物质埸的自由度的广义坐标也应该是多维的广义坐标,必须把推广成,对应物质埸在处的振动的动量,对应物质波的几率密度,即传统的二次量子化理论中的态函数。
在各类物理文献(包括科普)中,我们都能经常看到一个术语,即二次量子化,一般指场量子化或从量子力学到量子场论的这个“提升”过程。
然而,所谓的二次量子化其实是一个错误的概念,至少是一个应该被摒弃的不恰当的概念,其产生及仍被使用有着一定的历史根源。
但这并不仅仅是历史错误被认识后人们懒得改变的习惯用法,否则也没有特别说明的必要了,而是依然存在于物理文献中的误解,它还在误导着更多的人。
量子场论的产生是这样一个过程。
物理学家们首先建立了基于平直时空点粒子的量子力学,以薛定谔方程来描述,然后为了统一量子力学和狭义相对论,或者说为了找到符合狭义相对性原理的量子力学,他们认为有必要“推广”薛定谔方程,从而找到了克莱恩-戈登方程和狄拉克方程等等并认为他们就是“推广”的薛定谔方程,进一步研究发现这些方程的变量并不是描述点粒子的动力学量,而是所谓的场,一类在时空每一点都有取值的函数,对这类场进行量子化最终促成了量子场论—同时满足狭义相对论和量子力学的新理论的诞生。
第八章量子多体问题方法及其应用二次量子化的基本概念,正则变换为主的多体理论方法。
§8.1 二次量子化方法在讨论多体问题时,采用粒子的产生和湮灭算符的方法,------“二次量子化”方法。
8.1A 二次量子化,玻色子和费米子一次量子化:算符的量子化(经典的力学量到量子力学中的厄密算符)。
例如电磁场的量子化。
8.1B 量子光学中的JC模型举例,一个二能级原子与单模量子化广场作用,耦合Hamiltonian为---------跃迁,式中,带入Hamiltonian中,得式中,对于一个模式,,则此处,采用长波近似,即。
则有又有,一个电子在原子中的Hamiltonian为,则。
所以,式中,为“电偶极跃迁矩阵元”。
此时,相互作用的Hamiltonian描述的是:把原子放在一个体积为V的腔中,电子与腔存在的模式为的量子化平面波电磁场发生相互作用,发生从基态到激发态的跃迁。
模式中含有的光子数为,吸收过程的初态为,末态为,即。
在中第二项含有一个高频振荡因子,对时间的平均后,通常被忽略,叫做“旋转波近似”。
则有当考虑从激发态向基态跃迁时,,可得。
当两种跃迁同时存在时,在长波近似和旋转波近似下。
现在,我们回到起点考虑问题:(1)矢势为----量子化;(2)体系Hamiltonian为,(3)完备性关系,。
对进行处理,即物理要求,。
则。
形式上,从的跃迁可表示为算符,-----Pauli算符。
若记,则。
类似,。
所以在坐标表象中考虑问题,,且基于以上讨论,我们可得式中,忽略公式中算符的脚标,即相互作用Hamiltonian为,。
体系总Hamiltonian为,式中,去掉零点能,旋转波近似下,扔掉上式中的最后两项,-----JC模型。
项描述过程:消灭一个光子,原子发生的跃迁。
项描述过程:产生一个光子,原子发生的跃迁。
上式成立的条件为,。
-----旋转波近似将Hamiltonian作用到上,寻找不变子空间。
过程如下,上面出现了,将H作用到上,从上面的过程可知,形成H的一个不变子空间。