LTI离散时间系统在变换域中的分析.
- 格式:ppt
- 大小:757.00 KB
- 文档页数:8
第七章离散时间系统的时域分析§7-1 概述一、离散时间信号与离散时间系统离散时间信号:只在某些离散的时间点上有值的信号。
离散时间系统:处理离散时间信号的系统。
混合时间系统:既处理离散时间信号,又处理连续时间信号的系统。
二、连续信号与离散信号连续信号可以转换成离散信号,从而可以用离散时间系统(或数字信号处理系统)进行处理:三、离散信号的表示方法:1、 时间函数:f(k)<——f(kT),其中k 为序号,相当于时间。
例如:)1.0sin()(k k f =2、 (有序)数列:将离散信号的数值按顺序排列起来。
例如:f(k)={1,0.5,0.25,0.125,……,}时间函数可以表达任意长(可能是无限长)的离散信号,可以表达单边或双边信号,但是在很多情况下难于得到;数列的方法表示比较简单,直观,但是只能表示有始、有限长度的信号。
四、典型的离散时间信号1、 单位样值函数:⎩⎨⎧==其它001)(k k δ 下图表示了)(n k −δ的波形。
这个函数与连续时间信号中的冲激函数)(t δ相似,也有着与其相似的性质。
例如:)()0()()(k f k k f δδ=,)()()()(000k k k f k k k f −=−δδ。
2、 单位阶跃函数:⎩⎨⎧≥=其它001)(k k ε这个函数与连续时间信号中的阶跃函数)(t ε相似。
用它可以产生(或表示)单边信号(这里称为单边序列)。
3、 单边指数序列:)(k a k ε比较:单边连续指数信号:)()()(t e t e t a at εε=,其底一定大于零,不会出现负数。
(a) 0.9a = (d) 0.9a =−(b) 1a = (e) 1a =−(c) 1.1a = (f) 1.1a =−4、 单边正弦序列:)()cos(0k k A εφω+双边正弦序列:)cos(0φω+k A五、离散信号的运算1、 加法:)()()(21k f k f k f +=<—相同的k 对应的数相加。
数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MA TLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt e t h j H tj ωω)()(3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。
第八章 离散时间系统的变换域分析一、选择题1、一个因果稳定的离散系统,其H (z )的全部极点须分布在z 平面的 BA 、单位圆外B 、单位圆内C 、单位圆上D 、单位圆内或单位圆上2、为使线性时不变因果离散系统是稳定的,其系统函数)(z H 的极点必须在z 平面的 AA 、单位圆内B 、单位圆外C 、左半平面D 、右半平面3、如果某离散时间系统的系统函数H(z)只有一个在单位圆上实数为1的单极点,则它的h(n)= A 。
A )(n uB )(n u -C )()1(n u n -D 14、已知Z 变换Z 1311)]([--=zn x ,收敛域3z >,则逆变换x(n)为 A 。
A 、)(3n u n B 、3(1)n u n - C 、)(3n u n -- D 、)1(3----n u n5、已知Z 变换Z 1311)]([--=z n x ,收敛域3<z ,则逆变换x(n)为( D ) A )(3n u n B )(3n u n -- C )(3n u n -- D )1(3---n u n6、已知)(n x 的Z变换)2)((1)(21++=z z z X ,)(z X 的收敛域为 C 时,)(n x 为因果信号。
A 、5.0||>z B 、5.0||<z C 、2||>z D 、2||5.0<<z7、已知)(n x 的Z 变换)2)(1(1)(++=z z z X ,)(z X 的收敛域为 C 时,)(n x 为因果信号。
A 、1||>zB 、1||<zC 、2||>zD 、2||1<<z8、)1()1()(---n u n n nu 的z 变换为(A ) A 11-z B )1(1-z z C 1-z z D 12-z z 9、如果序列)()(n u n x 的z 变换为11-+z z ,则)0(x 的值为(B )A 0B 1C 2D 310、)1()1()(---n u n n nu 的z 变换为 A 。
第二章离散时间信号与系统的变换域分析 2.1 序列的Z变换 Z变换的定义 Z变换的收敛域逆Z 变换 Z变换的性质与定理 Z变换与拉氏变换的关系 Z变换的定义抽样信号进行拉氏变换得: Z变换的定义 Z变换的定义例1:求序列 x (n)= an u(n) 的Z变换。
解:为保证收敛,则若 a = 1, 则 Z变换的定义例2:求序列x(n)= -an u(-n-1)的Z变换。
解: Z变换的定义例3:求序列 x (n)= (1/3)|n| 的Z变换。
解: Z变换的收敛域 Z 变换的收敛域对于任意给定的序列x(n) ,使其Z变换收敛的所有z值的集合称为X(z)的收敛域。
其收敛的充要条件是满足绝对可和条件,即:根据级数收敛的阿贝尔定理 Z变换的收敛域 1.有限长序列 x(n)仅在有限长的时间间隔n1≤n ≤ n2内,序列值不全为零,其它时间全为零,即 Z变换的收敛域2.右边序列 x(n)在n ≥n1时,序列值不全为零,在n n1时序列值全为零,此时有收敛域为如为因果序列,其收敛域为 Z变换的收敛域 3.左边序列 x(n)在n n2以外序列值全为零,仅在n ≤ n2时有非零值,其z变换为Z变换的收敛域 4.双边序列双边序列的序列值n可取任何整数值,其z变换为 Z变换的收敛域如果序列Z变换可表达成有理分式的形式:称分子多项式的零点为X(z)的零点,分母多项式的零点为X(z)的极点,因为极点z变换不存在,因此在收敛域内应没有极点,故可通过取X(z)的极点为边界来确定其收敛半径。
Z变换的收敛域例求单位阶跃序列 u(n) 的z变换,并确定其收敛域。
解:由于u(n)为因果序列,其Z变换收敛域为,因函数在z=1处有一极点,极点应在收敛域外,因此可取,求得u(n)的z变换收敛域为。
Z变换的收敛域例求序列逆Z变换逆Z变换从给定的Z变换表达式(包括收敛域)求原序列的过程称为逆z变换。
其实质是求X(z)的幂级数展开式各项的系数。
4.4 all-pass system (全通系统)--(1)1arg[()]arg{}arg{}111cos()sin()sin()arg{}2arctan{}1cos()sin()1cos()j j j j j j ap j j j j e re e re e H e re e re er jr r r jr r ωθωθωωθωθωωωθωθωθωωωθωθωθ-----==-+-------=-+=----+---|()|constantj ap H e ω=An all-pass system is defined as a system for which the frequency-response magnitude is a constant1*1()1z a H z az---=-EXAMPLE *1/,j a a reθ=零点:极点***1(1)|()|1111j j j j j j j j j e a a e a e H e e e ae ae aeωωωωωωωωω----------====---无幅度失真,有相位失真11*111*111()()()1(1)(1)c r M M k k k ap k k k k k z d z e z e H z A d z e z e z ------==⎛⎫---= ⎪---⎝⎭∏∏Where A is a constant and the d k ’s are real, and the e k ’s are complex.Characters of poles and zeros:Each zero is paired with a conjugate reciprocal pole. 零点和极点互为共轭倒数;若实系数系统函数,则零点对互为共轭,极点对互为共轭。
general form for the system functionof an all-pass system witha real-valued impulse response4/33/4 YY YN Determine whether or not each system is an all-pass system .z=∞有零点无穷远有零点EXAMPLE同一系统中互为共轭倒数的零点和极点对幅度响应的作用互相抵消幅度响应的类型只取决于红色的零点和极点EXAMPLE0.25210.2()10.2H z z --=-EXAMPLE111()15H z z-=-可采用级联全通系统,或将极点取共轭倒数的方式将不稳定系统变成幅度响应相同的稳定系统1110.2()10.2z H z z ---=-不同系统中互为共轭倒数的零点(极点)对幅度响应的作用相同EXAMPLE:幅度响应相同的系统最大相位()()'(),|()||'()|j j ap H z H z H z H e H e ωω==1. 补偿相位失真2. 与最小相位系统合作补偿幅度失真min ().()()ap H z H z H z =有相位失真补偿相位失真无相位失真有幅度失真补偿幅度失真无幅度失真Application3. 将不稳定系统变成稳定系统1212()()(),|()||()|j j ap H z H z H z H e H e ωω==不稳定稳定4.5 minimum-phase system(最小相位系统)1. Definition of inverse system (逆系统)()()1,that is ()1/()then,()()()()or :[]*[][],then,[]*[]*[][]i i i i i H z H z H z H z X z H z H z X z h n h n n x n h n h n x n δ=====For a given LTI system, the corresponding inverse system is defined to be the system that if it is cascade with the origin System, the overall effective system function is unity; i.e.,For to hold, the region of convergenceof and must overlap .()H z ()i H z []*[][]i h n h n n δ=(2)一个因果的LTI 系统,其系统函数为以下说法正确的是()(A)系统是稳定的。
实验三 连续时间LTI 系统的频域分析一、实验目的1、掌握系统频率响应特性的概念及其物理意义;2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用;3、学习和掌握幅度特性、相位特性以及群延时的物理意义;4、掌握用MATLAB 语言进行系统频响特性分析的方法。
基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。
二、实验原理及方法1 连续时间LTI 系统的频率响应所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。
上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到:)()()(ωωωj H j X j Y =3.1或者: )()()(ωωωj X j Y j H =3.2)(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。
即⎰∞∞--=dt et h j H tj ωω)()( 3.3由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,因此,也可以表示成复数的不同表达形式。
在研究系统的频率响应时,更多的是把它表示成极坐标形式:)()()(ωϕωωj ej H j H = 3.4上式中,)j (ωH 称为幅度频率相应(Magnitude response ),反映信号经过系统之后,信号各频率分量的幅度发生变化的情况,)(ωϕ称为相位特性(Phase response ),反映信号经过系统后,信号各频率分量在相位上发生变换的情况。