实验二-离散时间信号与系统的Z变换分析
- 格式:doc
- 大小:225.50 KB
- 文档页数:6
26利用Z变换分析信号和系统的频域特性Z变换是一种用于分析离散时间信号和离散时间系统频域特性的数学工具。
在这篇文章中,我们将介绍Z变换的定义、性质以及如何利用Z变换分析信号和系统的频域特性。
首先,我们来定义Z变换。
对于一个离散时间信号序列x[n],它的Z 变换被定义为:X(z) = ∑(from n=0 to ∞) x[n] * z^(-n)其中,z为复变量。
Z变换将一个离散时间信号序列映射到一个复平面上的函数。
通过计算X(z),我们可以得到信号x[n]的频域特性。
下面,我们来讨论一些Z变换的性质。
首先是线性性质。
对于两个离散时间信号序列x1[n]和x2[n],以及它们的Z变换X1(z)和X2(z),以及常量a和b,则有:Z(a*x1[n]+b*x2[n])=a*X1(z)+b*X2(z)也就是说,Z变换具有线性性质。
另一个重要的性质是时移性。
对于一个离散时间信号序列x[n-k],以及它的Z变换X(z),则有:Z(x[n-k])=z^(-k)*X(z)这意味着在时域上的延迟会导致复平面上的旋转。
接下来,我们来讨论如何利用Z变换分析信号的频域特性。
首先,我们需要确定信号的Z变换X(z)。
对于一个给定的离散时间信号x[n],我们可以通过对它进行Z变换的计算得到X(z)。
然后,我们可以通过观察X(z)在复平面上的分布来分析信号的频域特性。
例如,我们可以通过计算X(z)的极点和零点来确定信号的稳定性。
如果X(z)的所有极点都位于单位圆内,那么信号是稳定的;否则,信号是不稳定的。
另外,我们还可以通过计算X(z)的幅度和相位特性来分析信号的频域特性。
信号的幅度特性可以通过计算,X(z),来获得,而信号的相位特性可以通过计算arg(X(z))来获得。
除了分析信号的频域特性,Z变换还可以用于分析离散时间系统的频域特性。
对于一个离散时间系统的冲激响应h[n]和输入信号x[n],它们的Z变换分别为H(z)和X(z)。
信号与系统 z变换信号与系统是电子信息学科中的一门重要课程,其中的z变换是信号与系统分析的一种重要工具。
本文将介绍信号与系统中的z变换原理及应用。
一、z变换原理z变换是一种离散域的数学变换,它将离散时间序列转换为复平面上的函数。
在信号与系统中,我们常常需要对信号进行分析和处理,而z变换提供了一种方便且有效的方式。
它将离散时间序列变换为z域函数,从而可以对信号进行频域分析。
z变换的定义是:X(z) = ∑[x(n)·z^(-n)],其中x(n)为离散时间序列,z为复变量。
通过z变换,我们可以将离散时间序列的差分方程转化为代数方程,从而简化信号与系统的分析和计算。
此外,z变换还具有线性性质和时移性质,使得我们可以方便地进行信号的加权叠加和时间偏移操作。
二、z变换的应用1. 系统的频域分析:z变换将离散时间序列转换为z域函数,可以方便地进行频域分析。
通过计算系统的传递函数在z域中的值,我们可以得到系统的频率响应,从而了解系统对不同频率信号的响应特性。
2. 系统的稳定性判断:通过z变换,可以将系统的差分方程转化为代数方程。
我们可以通过分析代数方程的根的位置,判断系统的稳定性。
如果差分方程的根都在单位圆内,说明系统是稳定的。
3. 离散时间系统的滤波设计:z变换为我们提供了一种方便的方法来设计离散时间系统的滤波器。
通过在z域中对滤波器的传递函数进行分析和调整,我们可以设计出满足特定需求的滤波器。
4. 信号的采样与重构:在数字信号处理中,我们常常需要对连续时间信号进行采样和重构。
通过z变换,我们可以将连续时间信号转换为离散时间信号,并在z域中进行处理。
然后再通过z逆变换将离散时间信号重构为连续时间信号。
5. 离散时间系统的时域分析:z变换不仅可以进行频域分析,还可以进行时域分析。
通过z变换,我们可以将离散时间系统的差分方程转换为代数方程,并通过对代数方程的分析,得到系统的时域特性。
z变换是信号与系统分析中非常重要的工具。
(一)离散时间信号的Z 变换1.利用MATLAB 实现z 域的部分分式展开式MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:[r,p,k]=residuez(num,den)式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。
【实例1】 利用MATLAB 计算321431818)(-----+zz z z F 的部分分式展开式。
解:利用MATLAB 计算部分分式展开式程序为% 部分分式展开式的实现程序num=[18];den=[18 3 -4 -1];[r,p,k]=residuez(num,den)2.Z 变换和Z 反变换MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为)()(F iztrans f f ztrans F ==上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为()A sym S =式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。
【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=的Z 反变换。
解 (1)Z 变换的MATLAB 程序% Z 变换的程序实现f=sym('a^n');F=ztrans(f)程序运行结果为:z/a/(z/a-1)可以用simplify( )化简得到 :-z/(-z+a)(2)Z 反变换的MATLAB 程序% Z 反变换实现程序F=sym('a*z/(z-a)^2');f=iztrans(F)程序运行结果为f =a^n*n(二)系统函数的零极点分析1. 系统函数的零极点分布离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即)()()(z X z Y z H = (3-1)如果系统函数)(z H 的有理函数表示式为:11211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:[Z,P,K]=tf2zp(B,A)其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。
Z变换及其在离散系统中的应用Z变换是一种在信号处理和控制系统中广泛应用的数学工具。
它可以将离散时间信号转换为连续复平面上的函数,从而方便进行系统分析和设计。
本文将介绍Z变换的定义及其在离散系统中的应用。
一、Z变换的定义Z变换是一种将离散时间信号转换为连续复平面上的函数的数学变换方法。
它可以将离散时间信号转换为Z域中的复函数,为信号处理和控制系统的研究提供了便利。
Z变换的定义如下:X(z) = ∑[x(n) * z^(-n)]其中,X(z)是Z变换的结果,x(n)是离散时间信号,z是复平面上的复数。
在Z变换中,z的取值是复平面上的任意一点。
通过改变z的取值,可以得到不同的频域特性。
常见的选取方式有单位圆上的点、单位圆内的点以及单位圆外的点等。
二、Z变换的性质Z变换具有许多有用的性质,这些性质对于分析和设计离散系统非常有帮助。
以下是Z变换的几个重要性质:1. 线性性质:Z变换是线性的,即对于信号的和或差的Z变换等于该信号的Z变换的和或差。
2. 移位定理:对于离散时间序列,将序列向右或向左移动n个单位时,其Z变换结果乘以z的-n次方。
3. 初值定理:序列的初始值等于其Z变换在z=1处的值。
4. 终值定理:序列的最终值等于其Z变换在z=0处的值。
5. 延时定理:将序列推迟n个单位时,其Z变换结果乘以z的n次方。
三、Z变换在离散系统中的应用Z变换在离散系统中有广泛的应用。
它可以用来描述系统的传递函数,进而进行系统的分析和设计。
以下是几个常见的应用场景:1. 系统稳定性分析:通过对系统的传递函数进行Z变换,可以得到系统在Z域中的极点分布。
通过判断极点的位置,可以判断系统的稳定性。
2. 频率响应分析:通过将频域信号进行Z变换,可以得到系统在Z 域中的频率响应。
通过分析频率响应,可以了解系统对不同频率信号的特性。
3. 离散滤波器设计:Z变换可以用来分析和设计离散滤波器。
通过对滤波器的输入输出进行Z变换,可以得到滤波器的传递函数,并基于传递函数进行进一步设计和优化。
南昌大学实验报告(信号与系统)学生姓名:肖江学号:6100210030 专业班级:电子103班实验类型:□验证□综合□设计□创新实验日期:2012/6/1 实验成绩:Z变换、离散时间系统的Z域分析一、实验目的1、学会用matlab求解z变换与逆z变换。
2、学会离散系统零极点分布图的绘制,理解离散系统零极点分布图的含义。
3、求解离散系统的频率响应特性。
二、实验说明1、一离散系统的差分方程为y(n)-by(n-1)=x(n),若激励为x(n)=a n u(n),起始值y(-1)=0,求响应y(n)。
2、当H(s)极点位于z平面中各方框附近的位置,画出对应的h(n)波形填入方框中。
3、求系统差分方程为y(n)-1.1y(n-1)+0.7y(n-2)=x(n-1),的系统的频率响应特性。
三、实验内容1、syms n a b z%定义符号n a b zx=a^n; %定义激励信号X=ztrans(x); %计算激励信号的变换H=1/(1-b*z^(-1)); %写出系统z变换式Y=H*X; %计算输出的变换式y1=iztrans(Y); %计算输出时域表达式y=simplify(y1) %化简表达式2、pos=[26,19,18,17,24,27,13,11,9,23,28,7,4,1,22];figure,id=1; %生成新图框,子图id初始化为1for r=0.8:0.2:1.2 %极点的幅度依次为0.8,1.0,1.2for theta=0:pi/4:pi %极点的弧度依次为0,Π/4,Π/2,3Π/4,Πp=r*exp(j*theta);if theta~=0&theta~=pip=[p;p']; %如果极点不在实轴上添加一个共轭极点end[b a]=zp2tf([],p,1); %由零极点得到传递函数subplot(4,7,pos(id));[h,t]=impz(b,a,20); %计算20个点的单位样值响应stem(t,h,'k-','MarkerSize',5);%绘制单位样值响应id=id+1; %子图序号加1end%退出弧角循环end%退出幅度循环3、a=[1,-1.1,0.7];b=[0,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a) %绘制频率特性4、a=[1,-1.1,0.6];b=[0.6,-1.1,1];subplot(2,1,1),zplane(b,a); %绘制零极点分布图subplot(2,1,2),impz(b,a); %绘制单位样值响应figure,freqz(b,a); %绘制频率响应n=[0:40]'; %生成时间点x1=sin(0.1*pi*n); %生成单频信号x2=0*n; %准备方波信号x2(mod(n,10)<5)=1; %生成周期为10的方波信号y1=filter(b,a,x1); %分别对两个信号滤波y2=filter(b,a,x2);figuresubplot(2,1,1),stem(n,x1); %绘制单频信号及其输出波形subplot(2,1,2),stem(n,y1);figuresubplot(2,1,1),stem(n,x2); %绘制方波信号及其输出波形subplot(2,1,2),stem(n,y2);四、实验结果1、y =(a^(1+n)-b^(1+n))/(a-b)2、输出波形如下3、输出波形如下:4、输出波形如下:五、实验总结通过本次实验的学习,对离散系统有了更多的了解,通过用matlab画出离散系统的零极点分布图,使我对离散系统的零极点分布与其对用的频响特性有了深刻的了解;同时对全通网络的相频失真有了进一步了解,幅度没有失真,但对不同的频率信号的相移不同,因此单频信号输入时,其输出信号的波形没有失真,只是整个波形发生了移位,但对于方波信号,由于其中包含了各种频率的信号,因此不同频率的信号相频失真不同,因此输出波形不再是方波。
南京邮电大学实验报告实验名称:离散时间信号与系统的时、频域表示离散傅立叶变换和z变换数字滤波器的频域分析和实现数字滤波器的设计课程名称数字信号处理A(双语) 班级学号B13011025姓名陈志豪开课时间2015/2016学年,第1学期实验名称:离散时间信号与系统的时、频域表示实验目的和任务:熟悉Matlab基本命令,理解和掌握离散时间信号与系统的时、频域表示及简单应用。
在Matlab环境中,按照要求产生序列,对序列进行基本运算;对简单离散时间系统进行仿真,计算线性时不变(LTI)系统的冲激响应和卷积输出;计算和观察序列的离散时间傅立叶变换(DTFT)幅度谱和相位谱。
实验内容:基本序列产生和运算:Q1.1~1.3,Q1.23,Q1.30~1.33离散时间系统仿真:Q2.1~2.3LTI系统:Q2.19,Q2.21,Q2.28DTFT:Q3.1,Q3.2,Q3.4实验过程与结果分析:Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。
clf;n = -10:20;u = [zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.2 命令clf,axis,title,xlabel和ylabel命令的作用是什么?答:clf命令的作用:清除图形窗口上的图形;axis命令的作用:设置坐标轴的范围和显示方式;title命令的作用:给当前图片命名;xlabel命令的作用:添加x坐标标注;ylabel c命令的作用:添加y坐标标注;Q1.3修改程序P1.1,以产生带有延时11个样本的延迟单位样本序列ud[n]。
运行修改的程序并显示产生的序列。
clf;n = -10:20;u = [zeros(1,21) 1 zeros(1,9)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);Q1.23修改上述程序,以产生长度为50、频率为0.08、振幅为2.5、相移为90度的一个正弦序列并显示它。
Z变换及离散时间系统分析Z变换是一种用于描述离散时间系统的重要数学工具。
离散时间系统是指信号的取样点在时间上离散的系统。
而Z变换可以将离散时间信号从时域(时间域)转换到频域(复频域),并在频域进行分析和处理。
Z变换在数字信号处理、控制系统和通信系统等领域有着广泛的应用。
Z变换的定义为:\[ X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n} \]其中,\(x(n)\)表示离散时间信号,\(X(z)\)表示该信号的Z变换,\(z\)表示复变量。
通过对离散时间系统的输入信号进行Z变换后,可以得到系统的传递函数。
系统的传递函数是指系统的输出与输入之间的关系。
在离散时间系统中,传递函数可以表示为:\[ H(z) = \frac{Y(z)}{X(z)} \]其中,\(Y(z)\)表示系统的输出信号,\(X(z)\)表示系统的输入信号。
通过Z变换可以对离散时间系统进行频域分析。
频域分析可以用来研究离散时间系统的频率特性,比如系统的频率响应、幅频特性、相频特性等。
频域分析可以揭示系统在不同频率下对信号的处理情况,对于设计和优化离散时间系统非常有帮助。
Z变换具有一些重要的性质,可以方便地对离散时间系统进行分析和计算。
其中一些常用的性质包括:1. 线性性质:对于任意常数\(a\)和\(b\),以及信号\(x(n)\)和\(y(n)\),有\(Z(a \cdot x(n) + b \cdot y(n)) = a \cdot X(z) + b \cdot Y(z)\)。
这个性质说明Z变换对线性系统是可加性的。
2. 移位性质:如果将信号\(x(n)\)向左或向右移动\(k\)个单位,那么它的Z变换\(X(z)\)也将发生相应的移位,即\(Z(x(n-k)) = z^{-k} \cdot X(z)\)。
这个性质说明Z变换对系统的时移(时延)是敏感的。
3. 初值定理:如果离散时间信号\(x(n)\)在n=0处存在有限值,那么在Z变换中,它的初值可以通过计算\(X(z)\)在z=1处的值得到,即\(x(0) = \lim_{z \to 1}X(z)\)。
《信号与系统》课程实验报告变换。
zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。
例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。
零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。
(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。
由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。
(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。
Z变换及离散时间系统分析Z变换是一种将离散时间信号转换为复平面上的函数的数学工具。
它在离散时间系统的分析和设计中起着重要的作用。
本文将介绍Z变换的定义、性质,以及如何利用Z变换分析离散时间系统。
1.Z变换的定义:Z变换可以将离散时间信号转换为复平面上的函数。
假设有一个离散时间信号x[n],经过Z变换得到的函数为X(z)。
其定义为:X(z)=Z{x[n]}=∑(x[n]*z^(-n))其中,z是复变量,n为离散时间点。
2.Z变换的性质:Z变换具有许多重要的性质,其中一些性质与连续时间傅里叶变换类似,另一些则是离散时间系统的特有性质。
(1)线性性质:如果x1[n]和x2[n]是离散时间信号,a和b是常数,则有:Z{a*x1[n]+b*x2[n]}=a*X1(z)+b*X2(z)(2)平移性质:如果x[n]的Z变换是X(z),那么x[n-m]的Z变换是z^(-m)*X(z)。
这意味着在离散时间域上的平移,在Z变换域上相当于乘以z的负幂次。
(3)初值定理和终值定理:如果x[n]的Z变换是X(z),则有:x[0] = lim(z->∞) X(z)x[-1] = lim(z->0) X(z)(4)共轭对称性:如果x[n]的Z变换是X(z),那么x*[n](x[n]的共轭)的Z变换是X*(z)(X(z)的共轭)。
(5)频率抽样定理:如果x(t)是带限信号,那么它的频谱可以通过对x[n]进行离散化来获得,即X(jω)=X(e^(jωT)),其中T是采样间隔。
3.离散时间系统的分析:利用Z变换,可以对离散时间系统进行分析和设计。
通常,我们可以将离散时间系统看作是一个线性差分方程,通过对该差分方程进行Z变换,可以得到系统的传输函数H(z)。
离散时间系统的输入输出关系可以表示为:Y(z)=H(z)*X(z)其中,Y(z)为输出信号,X(z)为输入信号,H(z)为系统的传输函数。
通过分析传输函数H(z),我们可以确定系统的稳定性、频率响应、相位特性等。
离散时间信号及其Z变换离散时间信号是指在离散时间点上取值的信号。
它可以用一个数列来表示,其中每个数代表了在相应时间点上的信号取值。
离散时间信号在数字信号处理中起着重要的作用,因为它们可以通过数字系统来表示和处理。
离散时间信号的定义可以表示为x(n),其中n是离散时间点的索引。
离散时间信号可以是有限长度的,也可以是无限长度的。
有限长度的离散时间信号可以表示为x(n),其中n取值范围在0到N-1之间,N为信号的长度。
而无限长度的离散时间信号可以表示为x(n),其中n取遍整个整数集。
离散时间信号的Z变换是一种重要的信号变换方法,它将离散时间信号转换为复变量的函数。
Z变换是一种在数字信号处理中常用的工具,它将离散时间信号从时域转换到复频域,从而可以进行频谱分析和系统设计等操作。
离散时间信号x(n)的Z变换可以表示为X(z),其中z为复变量。
Z变换的定义可以表示为:X(z) = Σ(x(n) * z^(-n))其中Σ表示求和符号,x(n)表示离散时间信号的取值,z^(-n)表示z的负幂次方。
Z变换的性质和连续时间信号的拉普拉斯变换类似,具有线性性、平移性、卷积性、频率抽样等性质。
Z变换将离散时间信号映射到复平面上的点,其中每个点对应离散时间信号在不同频率上的幅度和相位信息。
Z变换在信号处理中有广泛的应用。
它可以用于系统的频域分析,比如计算系统的频率响应、幅频特性和相频特性等。
Z变换还可以用于信号的滤波和等级控制,用于设计数字滤波器和控制器,从而实现对信号的调制和解调。
此外,Z变换还可以用于信号的压缩和编码,用于提取信号中的相关特征和压缩信号的数据量。
总而言之,离散时间信号及其Z变换是数字信号处理中的重要概念和工具。
离散时间信号可以用一个数列来表示,在离散时间点上取值。
而Z变换则将离散时间信号从时域转换到复频域,从而实现对信号的频谱分析和系统设计等操作。
离散时间信号及其Z变换的应用广泛,包括系统分析、信号滤波、信号压缩等领域。
一.实验目的1.学会使用MATLAB 表示信号的方法并绘制信号波形 2.掌握使用MATLAB 进行信号基本运算的指令二.实验内容1. 求出下列离散序列的Z 变换① 1122()()cos()()k k f k k πε= ② 223()(1)()()k f k k k k ε=- ③ 3()()(5)f k k k εε=-- ④[]4()(1)()(5)f k k k k k εε=---2.已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。
①2121()2z z F z z z ++=+- ②22341111()1F z z z z z =++++③2342(36)()z z F z z++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+ 3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用① 122344()()()z H z z z +=++ ② 221()0.81z H z z -=+ 4. 已知描述离散系统的差分方程为:() 1.2(1)0.35(2)()0.25(1)y k y k y k f k f k --+-=+-请绘出系统的幅频和相频特性曲线,并说明系统的作用。
三.程序及仿真分析2(1)syms k zFz=(z^2+z+1)/(z^2+z-2); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/2*charfcn[0](k)+1/2*(-2)^k+1(2)syms k zFz=1+1/z+1/z^2+1/z^3+1/z^4; %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =charfcn[2](k)+charfcn[1](k)+charfcn[0](k)+charfcn[3](k)+charfcn[4](k)(3)syms k zFz=(2*(z^2+3*z+6))/(z^4); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =12*charfcn[4](k)+6*charfcn[3](k)+2*charfcn[2](k)(4)syms k zFz=(z*(z^2+z+1))/((z+1)*(z-2)*(z+3)); %定义Z变换表达式fk=iztrans(Fz,k) %求反Z变换fk =-1/6*(-1)^k+7/15*2^k+7/10*(-3)^k3.(1)A=[1 7/6 1/3];B=[4 0 4];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')(2) A=[1 0 0.81];B=[1 0 -1];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线'4.A=[1 -1.2 0.35];B=[1 0.25 0];[H,w]=freqz(B,A,200,'whole'); %求出对应范围内200个频率点的频率响%应样值HF=abs(H); %求出幅频特性值HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线title('幅频特性曲线')subplot(2,1,2);plot(w,HX) %画出相频特性曲线title('相频特性曲线')四.实验总结。
武汉工程大学数字信号处理实验报告二专业班级:14级通信03班学生姓名:秦重双学号:1404201114实验时间:2017年5月3日实验地点:4B315指导老师: 杨述斌实验一离散时间信号的分析实验一、实验目的①认识常用的各种信号,理解其数学表达式和波形表示。
②掌握在计算机中生成及绘制数值信号波形的方法。
③掌握序列的简单运算及计算机实现与作用。
④理解离散时间傅里叶变换、Z变换及它们的性质和信号的频域特性。
二、实验设备计算机,MATLAB语言环境。
三、实验基础理论1、序列的相关概念离散时间信号用一个称为样本的数字序列来表示。
一般用{x[n]}表示,其中自变量n的取值范围是﹣∞到﹢∞之间的整数。
为了表示方便,序列通常直接用x[n]表示。
离散时间信号可以是一个有限长序列,也可以是一个无限长序列。
有限长(也称为有限时宽)序列仅定义在有限的时间间隔中:﹣∞≤N1 ≤N2 ≤+∝。
有限长序列的长度或时宽为N=N1 -N2+1。
满足x[n+kN]=x[n](对于所有n)的序列称为周期为N的周期序列,其中N取任意正整数;k取任意整数;2、常见序列常见序列有单位取样值信号、单位阶跃序列、矩形序列、斜变序列、单边指数序列、正弦序列、复指数序列等。
3、序列的基本运算序列的基本运算有加法、乘法、倒置(反转)、移位、尺度变换、卷积等。
4、离散傅里叶变换的相关概念5、Z变换的相关概念四.实验内容与步骤1、知识准备认真复习以上基础理论,理解本实验所用到的实验原理。
2、离散时间信号(序列)的产生利用MATLAB语言编程和绘制单位样值信号、单位阶跃序列、指数序列、正弦序列及随机离散信号的波形,以加深对离散信号时域表示的理解。
①单位取样值信号Matlab程序x=0;y=1;stem(x,y);title('单位样值’);axis([—2,2,0,1]);②单位阶跃序列Matlab程序n0=0;n1=—5;n2=5;n=[n1:n2];x=[(n—n0)>=0];stem(n,x);xlabel('n');ylabel(’x(n)’);title(’单位阶跃序列’);③指数序列、正弦序列Matlab程序n=[0:10];x=(1/3)。
信号与系统第八章Z变换及分析第八章Z变换及分析是信号与系统课程的重要内容之一、本章主要介绍了Z变换的定义、性质以及在信号与系统分析中的应用。
下面将详细介绍这些内容。
首先,Z变换是一种将离散时间信号转换为复变量函数的方法。
Z变换的定义如下:$$X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$$其中,$X(z)$为Z变换,$x[n]$为离散时间信号,$z$为复变量。
Z变换具有线性性质、时移性质、尺度变换性质等。
通过这些性质,可以简化信号与系统的分析。
在信号与系统的分析中,Z变换具有以下几个重要的应用:1.离散时间系统的表示和分析:通过Z变换,可以将离散时间系统的差分方程表示为系统函数的乘积形式,从而方便地分析系统的稳定性、频率响应等性质。
2.离散时间信号的频域表示:Z变换将离散时间信号转换为复变量函数,可以通过计算Z变换的幅频特性、相频特性等来分析信号的频域性质。
3.离散时间信号与连续时间信号的转换:通过将连续时间信号进行采样,并进行Z变换,可以将连续时间信号转换为离散时间信号进行分析。
此外,本章还介绍了常用的离散时间信号的Z变换和逆Z变换公式,包括单位脉冲序列、单位阶跃序列、指数序列等。
最后,本章还介绍了Z变换的收敛域和极点零点的求解方法。
通过求解Z变换的收敛域,可以确定系统的稳定性;通过求解Z变换的极点和零点,可以确定系统的频率响应和相位特性。
综上所述,第八章Z变换及分析是信号与系统课程的重要内容。
通过学习Z变换的定义、性质以及在信号与系统分析中的应用,可以更好地理解离散时间信号与系统的特性,并且为进一步学习信号处理和系统设计打下坚实的基础。
实验二 离散时间信号与系统的Z 变换分析一、 实验目的1、熟悉离散信号Z 变换的原理及性质2、熟悉常见信号的Z 变换3、了解正/反Z 变换的MATLAB 实现方法4、了解离散信号的Z 变换与其对应的理想抽样信号的傅氏变换和拉氏变换之间的关系5、了解利用MATLAB 实现离散系统的频率特性分析的方法二、 实验原理1、正/反Z 变换Z 变换分析法是分析离散时间信号与系统的重要手段。
如果以时间间隔s T 对连续时间信号f (t)进行理想抽样,那么,所得的理想抽样信号()f t δ为:()()*()()*()Ts s k f t f t t f t t kT δδδ∞=-∞==-∑理想抽样信号()f t δ的双边拉普拉斯变换F (s)为:()()*()()s ksT sts s k k F s f t t kT e dt f kT e δδ∞∞∞---∞=-∞=-∞⎡⎤=-=⎢⎥⎣⎦∑∑⎰若令()()s f kT f k = ,ssT z e= , 那么()f t δ的双边拉普拉斯变换F (s)为:()()()sT s k z e k F s f k z F z δ∞-==-∞==∑则离散信号f (k )的Z 变换定义为:()()k k F z f k z ∞-=-∞=∑从上面关于Z 变换的推导过程中可知,离散信号f (k )的Z 变换F(z)与其对应的理想抽样信号()f t δ的拉氏变换F (s)之间存在以下关系:()()sT s z e F s F z δ==同理,可以推出离散信号f (k )的Z 变换F(z)和它对应的理想抽样信号()f t δ的傅里叶变换之间的关系为 ()()j Ts z e F j F z δωΩ==如果已知信号的Z 变换F(z),要求出所对应的原离散序列f (k ),就需要进行反Z 变换,反Z 变换的定义为:11()()2k f k F z z dz j π-=⎰Ñ其中,C 为包围1()k F z z -的所有极点的闭合积分路线。
在MATLAB 语言中有专门对信号进行正反Z 变换的函数ztrans( ) 和itrans( )。
其调用格式分别如下:F=ztrans( f ) 对f(n)进行Z 变换,其结果为F(z) F=ztrans(f,v) 对f(n)进行Z 变换,其结果为F(v) F=ztrans(f,u,v) 对f(u)进行Z 变换,其结果为F(v) f=itrans ( F ) 对F(z)进行Z 反变换,其结果为f(n) f=itrans(F,u) 对F(z)进行Z 反变换,其结果为f(u) f=itrans(F,v,u ) 对F(v)进行Z 反变换,其结果为f(u)注意: 在调用函数ztran( )及iztran( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w )等进行说明,即要将这些变量说明成符号变量。
例①.用MATLAB 求出离散序列()(0.5)()kf k k ε= 的Z 变换MATLAB 程序如下:syms k zf=0.5^k; %定义离散信号Fz=ztrans(f) %对离散信号进行Z 变换 运行结果如下:Fz = 2*z/(2*z-1)例②.已知一离散信号的Z 变换式为2()21zF z z =- ,求出它所对应的离散信号f (k) MATLAB 程序如下:syms k zFz=2* z/(2*z-1); %定义Z 变换表达式 fk=iztrans(Fz,k) %求反Z 变换 运行结果如下:fk = (1/2)^k例③:求序列()(1)(4)f k k t εε=---的Z 变换.clc;clear all syms nhn=sym('kroneckerDelta(n, 1) + kroneckerDelta(n, 2)+ kroneckerDelta(n, 3)') Hz=ztrans(hn) Hz=simplify(Hz)2、离散系统的频率特性同连续系统的系统函数H (s)类似,离散系统的系统函数H (z )也反映了系统本身固有的特性。
对于离散系统来说,如果把其系统函数H (z )中的复变量z 换成s j T j ee ωΩ=(其中s T ω=Ω),那么所得的函数()j H e ω就是此离散系统的频率响应特性,即离散时间系统的频率响应为:()()()()j j j j z e H e H e e H z ωωωϕω===g其中, ()j H e ω称为离散系统的幅频特性,()ϕω称为系统的相频特性。
同连续系统一样,离散时间系统的幅频特性也是频率的偶函数,相频特性也是频率的齐函数。
由于j eω是频率的周期函数,所以离散系统的频率响应特性也是频率的周期函数,其周期为2π,或者角频率周期为2T sT πΩ=。
实际上,这就是抽样系统的抽样频率,而其中的T 则是系统的抽样周期。
频率响应呈现周期性是离散系统特性区别于连续系统特性的重要特点。
因此,只要分析()j H e ω在2ωπ≤范围内的情况,便可分析出系统的整个频率特性。
()j H e ω函数来表示离散系统的频率响应特性, ()j H e ω表示幅频特性,而相频特性仍用()ϕω来表示。
应该特别注意的是,虽然这里的变量仍然称为频率变量,但是它已经不是原来意义上的角频率概念,而实际上是表示角度的概念。
我们称之为数字频率。
它与原来角频率的关系为:s T ω=Ω。
也就是说,根据离散系统的系统函数H (z ),令其中的j z eω=,并且代入0~2π范围内不同的频率值(实际上是角度值),就可以逐个计算出不同频率时的响应,求出离散系统的频率响应特性。
再利用离散系统频率特性的周期性特点(周期为2),求出系统的整个频率特性。
离散系统的幅频特性曲线和相频特性曲线能够直观地反映出系统对不同频率的输入序列的处理情况。
在函数()j H e ω随的变换关系中,在=0附近,反映了系统对输入信号低频部分的处理情况,而在=附近,则反映了系统对输入信号高频部分的处理情况。
一般来说,分析离散系统频率响应特性就要绘制频率响应曲线,而这是相当麻烦的。
虽然可以通过几何矢量法来定性画出频率响应特性曲线,但一般来说这也是很麻烦的。
值得庆幸的是,MATLAB 为我们提供了专门用于求解离散系统频率响应的函数freqz() ,其调用格式如下:[H ,w]=freqz(B,A,N) 其中,B 和A 分别是表示待分析的离散系统的系统函数的分子,分母多项式的向量,N 为正整数,返回向量H 则包含了离散系统频率响应函数()j H e ω在0~π范围内的N 个频率等分点的值。
向量则包含0~π范围内的N 个频率等分点。
在默认情况下N=512。
[H ,w]=freqz(B,A,N,'whole') 其中,B ,A 和N 的意义同上,而返回向量H 包含了频率响应函数()j H e ω在0~2π范围内N 个频率等分点的值。
由于调用freqz()函数只能求出离散系统频率响应的数值,不能直接绘制曲线图,因此,我们可以先用freqz()函数求出系统频率响应的值,然后再利用MATLAB 的abs()和angle()函数以及plot()命令,即可绘制出系统在0~π或0~2π范围内的幅频特性和相频特性曲线。
例①.若离散系统的系统函数为0.5()z H z z-=,请用MATLAB 计算0~π频率范围内10个等分点的频率响应()j H e ω的样值。
MATLAB 程序如下:A=[1 0]; %分母多项式系数向量 B=[1 -0.5]; %分子多项式系数向量[H,w]=freqz(B,A,10) %求出对应0~π范围内10个频率点的频率响应样值 运行结果如下: H =0.5000 0.5245 + 0.1545i 0.5955 + 0.2939i 0.7061 + 0.4045i 0.8455 + 0.4755i 1.0000 + 0.5000i 1.1545 + 0.4755i 1.2939 + 0.4045i 1.4045 + 0.2939i 1.4755 + 0.1545i w = 0 0.3142 0.6283 0.9425 1.2566 1.5708 1.8850 2.1991 2.5133 2.8274例②.用MATLAB 计算前面离散系统在0~2π频率范围内200个频率等分点的频率响应值,并绘出相应的幅频特性和相频特性曲线。
MATLAB 程序如下:A=[1 0]; B=[1 -0.5];[H,w]=freqz(B,A,200);[H,w]=freqz(B,A,200,'whole'); %求出对应0~2π范围内200个频率点的频率响%应样值 HF=abs(H); %求出幅频特性值 HX=angle(H); %求出相频特性值subplot(2,1,1);plot(w,HF) %画出幅频特性曲线 subplot(2,1,2);plot(w,HX) %画出相频特性曲线运行结果如下:运行结果分析:从该系统的幅频特性曲线可以看出,该系统呈高通特性,是一阶高通滤波器。
三、 实验内容1. 求出下列离散序列的Z 变换① 1122()()cos()()k k f k k πε= ② 223()(1)()()k f k k k k ε=- ③ 3()()(5)f k k k εε=--④ []4()(1)()(5)f k k k k k εε=---2. 已知下列单边离散序列的z 变换表达式,求其对应的原离散序列。
①2121()2z z F z z z ++=+-②22341111()1F z z z z z=++++ ③2342(36)()z z F z z ++= ④ 24(1)()(1)(2)(3)z z z F z z z z ++=+-+3. 已知离散系统的系统函数H (z)如下,请绘出系统的幅频和相频特性曲线,并说明系统的作用 ① 122344()()()z H z z z +=++ ② 221()0.81z H z z -=+4. 已知描述离散系统的差分方程为:() 1.2(1)0.35(2)()0.25(1)y k y k y k e k e k --+-=+-请绘出系统的幅频和相频特性曲线,并说明系统的作用。
四、预习要求1、熟悉正反z变换的意义及用MATLAB软件实现的方法2、熟悉离散系统的频率响应特性及用MATLAB软件实现的方法3、编写MATLAB程序五、实验报告要求1、简述实验目的及实验原理2、计算相应z变换或反z变换的理论值,并与实验结果进行比较3、记录离散系统的频率响应特性曲线,分析系统作用4、写出程序清单5、收获与建议%参考程序%三1.①clc;clear allsyms k zf1=0.5^k*cos(k*pi/2); %定义离散信号Fz1=ztrans(f1) %对离散信号进行Z变换% 实验二1.②f2=k*(k-1)*(2/3)^k; %定义离散信号Fz2=ztrans(f2) %对离散信号进行Z变换% 实验二1.③f3=sym('kroneckerDelta(n, 1) + kroneckerDelta(n, 2)+ kroneckerDelta(n, 3)')Fz3=ztrans(f3)Fz3=simplify(Fz3)% 实验二1.④f4=k*(k-1)*sym('kroneckerDelta(k, 1) + kroneckerDelta(k, 2)+ kroneckerDelta(k, 3)'); %定义离散信号Fz4=ztrans(f4)Fz4=simplify(Fz4)。